
MTH5104: Convergence and Continuity 2023–2024

Problem Sheet 4 (Sequences 2)

1. Which of the following sequences (xn)∞n=1 are monotonic? For those that are, state whether
they are increasing or decreasing, and whether they are strictly increasing or decreasing.
Give a brief justification in each case.

(a) xn = n
(n+1)(n+2) ;

(b) xn = n+1
(n+2)(n+3) ;

(c) xn = cosπn;

(d) xn = dn1/2e;

Solution.

(a) The first few terms are x1 = 1/6, x2 = 1/6, x3 = 3/20 and x4 = 2/15 so it looks like
the sequence is decreasing, albeit slowly. We check this for general n ∈ N:

xn − xn+1 =
n

(n+ 1)(n+ 2)
− n+ 1

(n+ 2)(n+ 3)
=

n− 1

(n+ 1)(n+ 2)(n+ 3)
.

So we have xn − xn+1 ≥ 0 for all n ∈ N. In other words the sequence is indeed
decreasing, but not strictly decreasing, since x1 = x2.

(b) This is just the sequence from part (a), but started at x2. It is thus strictly decreasing.

(c) The first elements are x1 = −1; x2 = +1; x3 = −1; x4 = +1. In fact xn = −1 when
n is odd, and xn = +1 when n is even. So, this sequence is neither increasing nor
decreasing.

(d) The sequence given by xn = dn1/2e is an increasing sequence. To prove this, observe
that we know that

√
n+ 1 >

√
n for all n, and from the definition of dye we know

that if y > z then dye ≥ dze.

However the sequence is not strictly increasing since, for example, x2 = d21/2e =
d1.414...e = 2 and x3 = d31/2e = d1.732...e = 2.

2. For each of the following three sequences state whether they converge to a limit. If a
sequence converges, state and prove the limit. (You may use any results from the lecture
notes but you should state which result you are using.) If the sequence does not converge,
find two subsequences that converge to different limits. Again, justify your answer by
reference to results from the lecture notes.



Convergence and Continuity 2023–2024 Problem Sheet 4

(a) (xn)∞n=1, where xn =
(
1 + sin(nπ/5)

)2(n+ 1

2n2

)
,

(b) (yn)∞n=1, where yn =
2n2 + 5(−1)n

4n2 + 1
,

(c) (zn)∞n=1, where zn = (−1)n
(
n+ 3

n+ 2

)
.

Solution. It might be useful in the following to remember that ( 1
n) converges to zero,

that (−1)n is a sequence which does not converge and that |cos(x)| ≤ 1 for all x ∈ R.
Moreover, the following results from the lecture course are useful:

• Lemma 2.3: if xn → 0 and |yn| ≤ |xn| for all n ∈ N, then yn → 0 (“dominated
convergence”).

• Theorem 2.19 (i) (aka Lemma 2.5 in the case x = 0): if xn → x then cxn → cx.

• Theorem 2.19 (ii) (aka Theorem 2.8 in the case x = 0 = y): if xn → x and yn → y
then xn + yn → x+ y.

• Theorem 2.19 (iii) (aka Theorem 2.13 in the case x = 0 = y): if xn → x and yn → y
then xnyn → xy.

• Theorem 2.19 (iv): if xn → x and yn → y then xn/yn → x/y provided y 6= 0 and
yn 6= 0.

• Theorem 2.17: if xn → 0 and |yn| ≤M for all n then xnyn → 0.

We can now solve the exercises.

(a) (xn)∞n=1, where

xn =
(
1 + sin(nπ/5)

)2(n+ 1

2n2

)
,

converges to 0.

Observe that xn is the product of two factors. From the chain of inequalities∣∣(1 + sin(nπ/5))2
∣∣ = |1 + sin(nπ/5)|2 ≤

(
1 + | sin(nπ/5)|

)2 ≤ 22 = 4

we see that the first factor is bounded. We can bound the second factor as follows:∣∣∣n+ 1

2n2

∣∣∣ =
|n+ 1|
|2n2|

≤ n+ n

2n2
=
∣∣∣ 1
n

∣∣∣.
We know that (1/n) converges to 0, so the second factor converges to 0 by dominated
convergence. Therefore (xn) converges to zero by Theorem 2.17 (see above).

(b) (yn)∞n=1, where

yn =
2n2 + 5(−1)n

4n2 + 1
,

converges to 1
2 .

2
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First, divide through by n2:

yn =
2 + 5(−1)nn−2

4 + n−2
.

We know that (n−2) converges to 0 by comparison with (n−1) (dominated conver-
gence), and hence (5n−2) converges to 0, by Lemma 2.5/Theorem 2.19(i). Since
|5(−1)nn−2| ≤ 5n−2, we see that (5(−1)nn−2) converges to 0 (dominated conver-
gence).

By Theorem 2.19(ii), the numerator converges to 2 and the denominator to 4. Finally,
by Theorem 2.19(iv), the quotient converges to 1

2 .

(c) (zn)∞n=1, where

zn = (−1)n
(
n+ 3

n+ 2

)
,

does not converge, but has subsequences converging to +1 and −1.

Let ẑk = z2k for all k ∈ N. So (ẑk)∞k=1 = (z2, z4, z6, . . .) is a subsequence of (zn)
consisting of the even terms. Note that

ẑk =
2k + 3

2k + 2
= 1 +

1

2k + 2
.

and that 1
2k+2 ≤

1
k . We saw that

(
1
k

)
converges to 0, so (ẑk) converges to 1 by

dominated convergence and Theorem 2.19(ii).

Let z̃k = z2k−1 for all k ∈ N. So (z̃k)∞k=1 = (z1, z3, z5, . . .) is a subsequence of (zn)
consisting of the odd terms. Note that

z̃k = −2k + 2

2k + 1
= −1− 1

2k + 1
,

and that 1
2k+1 ≤

1
k . So (ẑk) converges to −1 by dominated convergence and Theorem

2.19(ii).

3. Prove the following “Sandwich principle” mentioned in the notes:

If (yn) is some sequence and (xn) and (zn) are two other sequences with xn ≤ yn ≤ zn
for all n ∈ N, and with limn→∞ xn = limn→∞ zn = L, then (yn) converges as well and
limn→∞ yn = L.

Solution. We claim: If (yn) is some sequence and (xn) and (zn) are two other sequences
with xn ≤ yn ≤ zn and with limn→∞ xn = limn→∞ zn = L, then (yn) converges as well
and limn→∞ yn = L.

Proof. Given ε > 0, the convergence of (xn) and (zn) to L implies that we can find some
Nx ∈ N and Nz ∈ N, such that for all n > Nx we have |xn − L| < ε and for all n > Nz

3
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we have |zn − L| < ε. Note, in particular, that xn > L − ε and zn < L + ε. Now set
N = max{Nx, Nz}. Then for n > N , we conclude that

L− ε < xn ≤ yn ≤ zn < L+ ε.

It follows that |yn − L| < ε for all n > N , and thus yn → L as n→∞.

4. Let the sequence (xn)∞n=1 be defined inductively by

x1 = 2 and xn+1 =
xn
2

+
1

4− xn
. (?)

(a) Compute x2 and x3 (and maybe use a calculator to obtain approximations to the
next few terms).

(b) Prove that (xn)∞n=1 is strictly decreasing. Hint: the right hand side of (?) is mono-
tonically increasing in the range (−∞, 4).

(c) Prove that 0 is a lower bound for (xn)∞n=1.

(d) Deduce that (xn)∞n=1 converges and compute the limit. (This goes a little beyond
where we are in the module, but do the best you can.)

Solution.

(a) x2 = 1 + 1/2 = 3/2 and x3 = 3/4 + 2/5 = 23/20.

(b) Let f(x) = x/2 + 1/(4− x), so that xn+1 = f(xn). Observe that f(x) is a monotoni-
cally increasing function in the range (−∞, 4). (In fact, it is monotonically increasing
everywhere except at x = 4, where f(x) is undefined.) We prove xn − xn+1 ≥ 0 for
all n ∈ N by induction on n. We saw in (a) that this inequality holds for n = 1. Now
suppose xn − xn+1 ≥ 0 for some n ∈ N. Then xn+1 − xn+2 = f(xn) − f(xn+1) ≥ 0
since xn ≥ xn+1 and f is monotonically increasing.

(c) Again, use induction on n. The claim is true for n = 1. It is clear that f(x) ≥ 0 for
all x ∈ [0, 4). We know from part (b) that xn ≤ 2 < 4 for all n ∈ N. Suppose that
xn ≥ 0 for some n ∈ N. Then xn+1 = f(xn) ≥ 0. This deals with the inductive step.

(d) By Theorem 2.26, (xn)∞n=1 converges to a real number, say x. Consider the identity
xn+1 = f(xn). Taking the limit of both sides, we obtain x = f(x). (We are using
the fact here that f is continuous in the range (−∞, 4), a concept we don’t officially
encounter until later in the module.) Substituting the explicit form for f yields the
quadratic x2−4x+2 = 0, which has solutions x = 2±

√
2. So (xn)∞n=1 must converge

to 2−
√

2, since the other root is greater than 2.

As an aside, the next few terms of the series are x4 = 0.925877, x5 = 0.788235,
x6 = 0.705473 and x7 = 0.656270, so convergence to 2 −

√
2 ≈ 0.585786 does not

seem particularly rapid.

4
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5. For each of the following sequences, identify all its accumulation points. For each accu-
mulation point a ∈ R give a subsequence that converges to a.

(a) (xn)∞n=1, where xn = n−1 cos(nπ/2),

(b) (yn)∞n=1, where yn = cos(nπ/2), and

(c) (zn)∞n=1, where zn = n cos(nπ/2).

Solution.

(a) The only accumulation point is 0, since the sequence itself converges to 0 (e.g., by com-
parison with (n−1) using dominated convergence). The trivial subsequence (xn)∞n=1

converges to 0 as does (x1, x3, x5, . . .) = (0, 0, 0, . . .).

(b) (yn) is the sequence (0,−1, 0,+1, 0,−1, 0,+1, . . .), so the accumulation points are = 1,
0 and 1. We can see this by considering the three subsequences (y2, y6, y10, . . .) =
(−1,−1,−1, . . .), (y1, y3, y5, . . .) = (0, 0, 0, . . .) and (y4, y8, y12, . . .) = (1, 1, 1, . . .).
There are no other accumulation points. (For every a ∈ R \ {−1, 0, 1} there exists
ε > 0 such that |yn − a| ≥ ε for all n ∈ N.

(c) The only accumulation point is 0, corresponding to the subsequence (z1, z3, z5, . . .) =
(0, 0, 0, . . .). No a ∈ R \ Z can be an accumulation point by the same argument as
used in (b). For any a ∈ Z\{0} there is at most one term zn of the sequence satisfying
|zn − a| < ε = 1

2 .

6. Consider the sequence (xn)∞n=1 defined by xn = (−1)n(1 + 1/n). Define bk = supn≥k xn =
sup{xn : n ∈ N and n ≥ k}.

(a) Evaluate the first six terms b1, b2, . . . , b6 of the sequence (bk)∞k=1, leaving the result
as an exact rational number.

(b) Give the general form for bk, treating separately the cases k even and k odd.

(c) Show that the sequence (bk)∞k=1 converges and state the limit of the sequence.

(d) Verify that (bk)∞k=1 is decreasing.

Solution.

(a)

b1 = sup{−2, 32 ,−
4
3 ,

5
4 ,−

6
5 ,

7
6 , . . .} = 3

2 ,

b2 = sup{32 ,−
4
3 ,

5
4 ,−

6
5 ,

7
6 , . . .} = 3

2 ,

b3 = sup{−4
3 ,

5
4 ,−

6
5 ,

7
6 , . . .} = 5

4 ,

b4 = sup{54 ,−
6
5 ,

7
6 , . . .} = 5

4 ,

b5 = sup{−6
5 ,

7
6 , . . .} = 7

6 ,

b6 = sup{−6
5 ,

7
6 , . . .} = 7

6 .
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(b) In general, bk = (k + 2)/(k + 1) when n is odd, and bk = (k + 1)/k when n is even.

(c) When k is odd |bk − 1| = 1/(k + 1) ≤ 1/k and when k is even, |bk − 1| = 1/k; either
way, |bk − 1| ≤ 1/k. Since (1/k)∞k=1 converges to 0, it follows that (bk)∞k=1 converges
to 1.

(d) If k is odd then bk − bk+1 = (k + 2)/(k + 1) − (k + 2)/(k + 1) = 0 and when k is
even bk − bk+1 = (k + 1)/k − (k + 3)/(k + 2) = 2/(k(k + 2)) ≥ 0. So bk is decreasing
(but not strictly decreasing). Note that, as mentioned in lectures, the sequence (bk)
is necessarily decreasing, since the terms are defined as suprema over smaller and
smaller sets.

7. Let (xn)∞n=1 be a sequence of real numbers. Recall what it means for (xn)∞n=1 to be a
Cauchy sequence.

(a) Using only the definition, but not any results proved in the course, prove that (xn)∞n=1

given by

xn = 2 +
1

3n2

is a Cauchy sequence.

(b) Using only the definition, but not any results proved in the course, prove that (xn)∞n=1

given by

xn =

n∑
k=1

3

k

is not a Cauchy sequence.

Solution. This is actually a question from the May 2015 Exam. Recall that (xn)∞n=1 is
a Cauchy sequence iff

∀ε > 0 ∃N ∈ N ∀n,m > N : |xn − xm| < ε.

(a) Proof. Given ε > 0, pick N = d1εe. Then for all m,n > N , we obtain from the
triangle inequality

|xn − xm| =
∣∣∣∣ 1

3n2
− 1

3m2

∣∣∣∣ ≤ 1

3n2
+

1

3m2
<

2

3N2
≤ 1

N2
≤ 1

N
≤ ε,

so |xn − xm| < ε.

(b) We have to prove the negation of the above quantifier expression, i.e.

∃ε > 0 ∀N ∈ N ∃n,m > N : |xn − xm| ≥ ε.

6
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Proof. Pick ε = 1. Given N ∈ N, there is some l ∈ N such that 2l > N . We then
pick n = 2l+1 and m = 2l for this l. As

|xn − xm| =
n∑

k=m+1

3

k

is a sum consisting of 2l elements which are all at least 3
2l+1 , we can estimate this by

|xn − xm| ≥ 2l · 3

2l+1
=

3

2
≥ 1 = ε

which proves the claim.

8. Let (xn)∞n=1 be a sequence of real numbers and let (yn)∞n=1 be the sequence defined by
yn = xn+1 for each n ∈ N. Prove, using only the definition of convergence:

(a) If (xn)∞n=1 converges to x, then (yn)∞n=1 converges to x.

(b) If (yn)∞n=1 converges to x, then (xn)∞n=1 converges to x.

Solution. Let yn = xn+1 for each n ∈ N.

(a) If (xn)∞n=1 converges to x, then (yn)∞n=1 converges to x.

Proof. We must show that

∀ε > 0 ∃N ∈ N ∀n > N : |yn − x| < ε.

So given any ε > 0, we must find N ∈ N such that

∀n > N : |xn+1 − x| < ε. (∗)

So suppose we have been given ε > 0 (by the demon). Since (xn)∞n=1 converges to
x, we know that there exists Nx such that ∀n > Nx : |xn − x| < ε. But whenever
n > Nx, it is also true that n + 1 > Nx. So we may take N = Nx and then (∗) will
be true.

(b) If (yn)∞n=1 converges to x, then (xn)∞n=1 converges to x.

Proof. We must show that

∀ε > 0 ∃N ∈ N ∀n > N : |xn − x| < ε.

So given any ε > 0, we must find N ∈ N such that

∀n > N : |xn − x| < ε. (∗)

So suppose we have been given ε > 0 (by the demon). Since (yn)∞n=1 converges to x,
we know that there exists Ny such that ∀n > Ny : |yn − x| = |xn+1 − x| < ε. But
whenever n > Ny, we have n + 1 > Ny + 1. So we may take N = Ny + 1. Then for
all n > N , we have n − 1 > Ny and thus |yn−1 − x| = |xn − x| < ε, i.e. (∗) will be
true.
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