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Today’s agenda

Today’s lecture

Learn how simulation can be used to approximate integrals.

Learn how to compute numerically integrals in Bayesian inference
e.g., expectations, probabilities.

Learn two integration methods
Basic Monte Carlo integration
Monte Carlo integration.
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Bayesian inference

p(θ | y) ∝ p(θ) p(y | θ)

Posterior distribution ∝ prior distribution × likelihood

In the Bayesian framework, all our inferences about θ are based on
the posterior distribution p(θ | y).
The posterior mean is

θ̂B =
∫
θ

θp(θ | y) dθ.
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Bayesian inference

If θ = (θ1, . . . , θK) is a K-dimensional vector, then we might be
interested in the posterior for one of the components, θ1, say.

The marginal posterior density is

p(θ1 | y) =
∫ ∫

· · ·
∫
f(θ2, . . . , θK | y)dθ2 . . . dθK .

Sometimes it might be not feasible to calculate these integrals
analytically.

Simulation methods will often be helpful.
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Example: Comparing two binomials

Suppose we have data from a clinical trial of two treatments for a
serious illness.
The data are the number of deaths after each treatment.
Let the data be ki deaths out of ni patients, i = 1, 2 for the two
treatments.
The two unknown parameters are q1 and q2, the probability of death
with each treatment.
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Example: Comparing two binomials

We can assume that for each i = 1, 2

ki ∼ Bin(ni, qi)

Take as independent prior distributions

qi ∼ Beta(αi, βi), i = 1, 2

Then the posterior distributions are

qi | ki ∼ Beta(ki + αi, ni − ki + βi), i = 1, 2
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Example: Comparing two binomials

For each qi, we have the exact posterior, so we can make exact
inferences (point estimates and credible intervals) as in examples we
have seen.

Suppose we want to know the posterior probability

P (q2 < q1 | k1, k2)

Or suppose we want to estimate the difference in proportions
δ = q2 − q1.
There is no simple formula or beta distribution function we can use
now.
But we can use simulation (i.e. a Monte Carlo method).
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Monte Carlo methods

Monte Carlo method refers to the theory and practice of using
random samples to approximate a quantity:

Expectations.
Integrals.
Probabilities.
Other summaries of distributions.

Named due to casinos in Monte Carlo.
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Basic Monte Carlo integration

Suppose we want to evaluate the integral

I =
∫ b

a

h(x) dx.

Suppose we are unable to compute I in closed form.
We can rewrite I as

I =
∫ b

a

w(x)f(x) dx,

where w(x) = h(x)(b− a), f(x) = 1
b−a , x ∈ [a, b].
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Basic Monte Carlo integration

Noticing that f is the pdf for a uniform random variable X ∼ U(a, b)
Hence,

I = E[w(X)].

If we generate X1, . . . , XN iid from U(a, b), by the WLLN

Î = 1
N

N∑
i=1

w(Xi)
P−→ E[w(X)] = I, as N →∞.

This is the basic Monte Carlo integration.
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Basic Monte Carlo integration

Let h(x) = x3 and

I =
∫ 1

0

x3 dx

Obviously, I = 1/4.
Simulate x1, . . . , xN from U(0, 1), N = 10, 000.
Compute Î = 1

104

∑104

i=1 x
3
i = 0.248
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Monte Carlo integration

A generalisation of the basic Monte Carlo integration is to estimate
a quantity based on a probability distribution f .

We want to compute

I =
∫
h(x)f(x) dx = E[h(X)], X ∼ f(x),

where f is the pdf of a random variable X.
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Monte Carlo integration

Now, we generate an iid random sample X1, . . . , XN from f and use
this sample to estimate I by

Î = 1
N

N∑
i=1

h(Xi).

By the WLLN

Î
P−→ E[h(X)] = I, asN →∞.
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Example: Monte Carlo integration

Let f(x) = 1√
2π exp{− 1

2x
2} be the standard normal density.

We want

I = Φ(x) = P (X ≤ x) =
∫ x

−∞

f(s) ds, X ∼ N(0, 1), x ∈ R.

We can rewrite

I =
∫ ∞

−∞

h(s)f(s) ds,

where h(s) = 1 if s ≤ x and h(s) = 0 otherwise.
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Example: Monte Carlo integration

We generate X1, . . . , XN iid from N(0, 1) and compute

Î = 1
N

N∑
i=1

h(Xi) = number of observations less than x
N

.

If x = 2, then Φ(2) = 0.9772 and Î = 0.9781 with N = 10, 000.
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Monte Carlo for Bayesian inference

Example: Comparing two binomials

Recall that
k1 ∼ Bin(n1, q1), k2 ∼ Bin(n2, q2)

Assume the flat prior on (q1, q2)

p(q1, q2) = 1

Then the posterior distribution p(q1, q2 | k1, k2) is

p(q1, q2 | k1, k2) = c1q
k1
1 (1− q1)n1−k1qk2

2 (1− q2)n2−k2 .
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Example: Comparing two binomials

Note that p(q1, q2 | k1, k2) = p(q1 | k1)p(q2 | k2).

Thus, q1 and q2 are independent under the posterior.

Also

p(q1 | k1) ∼ beta(1 + k1, 1 + n1 − k1),
p(q2 | k2) ∼ beta(1 + k2, 1 + n2 − k2).
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Example: Comparing two binomials

We want to compute δ = q2 − q1.
Note that δ is random parameter with posterior density p(δ | k1, k2)
We can estimate δ using its posterior mean which is

I = E(δ) = E(q2 − q1)

= E(g(q1, q2)) =
∫ 1

0

∫ 1

0

g(q1, q2)p(q1, q2 | k1, k2) dq1dq2,

where g(q1, q2) = q2 − q1.

Not easy to do analytically but we can use Monte Carlo integration.
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Example: Comparing two binomials

Hence, using Monte Carlo, we can simulate an iid sample
(Q(1)

1 , Q(1)
2 ), . . . , (Q(N)

1 , Q(N)
2 ) from p(q1, q2 | k1, k2) by drawing

Q(1)
1 , . . . , Q(n)

1 iid ∼ beta(1 + k1, 1 + n1 − k1)
Q(1)

2 , . . . , Q(n)
2 iid ∼ beta(1 + k2, 1 + n2 − k2)

We can estimate I by

Î = 1
N

N∑
i=1

g(Q(i)
1 , Q(i)

2 ) = 1
N

N∑
i=1

(Q(i)
2 −Q(i)

1 ).

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Example: Comparing two binomials

Also, note that δ(i) = Q(i)
2 −Q(i)

1 , i = 1, . . . , N can be viewed as an
iid sample from δ.

Then the posterior density of δ, p(δ | k1, k2), can be approximated
by plotting the histogram of δ(1), . . . , δ(N).

A 95% quantile credible intervals of δ can be obtained by sorting the
simulated values and finding the 0.025 and 0.975 sample quantiles
of δ(1), . . . , δ(N).
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Board question: Comparing two binomials

k1 = 8 ∼ Bin(n1, q1), k2 = 6 ∼ Bin(n2, q2).
Assume n1 = n2 = 10.

Describe how you would estimate δ = q2 − q1 and
I = P (q2 < q1 | k1, k2) using simple Monte Carlo integration.

Compute a 95% quantile credible interval for δ.
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Board question: binomial data, flat prior

Let k ∼ binom(n, q).
Assume flat prior on q.
Let n = 860 and k = 441
R code below
a=1
b=1
n=860
k=441
N=10000
beta.post.sample=rbeta(N, shape1=a+k,shape2=b+n-k)
gamma.sample=log((beta.post.sample/(1-beta.post.sample)))
mean(gamma.sample)
c(quantile(gamma.sample,0.025),quantile(gamma.sample,0.975))
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Board question: binomial data, flat prior

When this code has run, what will beta.post.sample contain?
What will gamma.sample contain?

Describe the estimator θ̂ for a quantity θ (which you should also
determine) that would be obtained by the following R commands

gamma.sample=log((beta.post.sample/(1-beta.post.sample)))
mean(gamma.sample)

In statistical terms, what quantity will the last line of code output?

See also, Question 3, final exam Jan 2023
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