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-y's agenda

Today's lecture

@ Learn how simulation can be used to approximate integrals.

@ Learn how to compute numerically integrals in Bayesian inference
e.g., expectations, probabilities.

@ Learn two integration methods

o Basic Monte Carlo integration
o Monte Carlo integration.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



p(0 | y) o< p(8) ply | 0)

Posterior distribution oc prior distribution x likelihood J

o In the Bayesian framework, all our inferences about 6 are based on
the posterior distribution p(6 | ).

@ The posterior mean is
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Bayesian inference

o If 0 =(0,,...,0,) is a K-dimensional vector, then we might be
interested in the posterior for one of the components, 6,, say.

@ The marginal posterior density is

p(91|y)://~--/f(92,...,9K|y)d92...d9K.

@ Sometimes it might be not feasible to calculate these integrals
analytically.

@ Simulation methods will often be helpful.
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Example: Comparing two binomials

@ Suppose we have data from a clinical trial of two treatments for a
serious illness.

o The data are the number of deaths after each treatment.

o Let the data be k; deaths out of n; patients, i = 1,2 for the two
treatments.

@ The two unknown parameters are g; and g, the probability of death
with each treatment.
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- Comparing two binomials

@ We can assume that for each i = 1,2
k; ~ Bin(n;, ¢;)
o Take as independent prior distributions
q; ~ Beta(ay, 8;), i = 1,2
@ Then the posterior distributions are

q; | kz ~ Beta(ki —|—ai,ni — ki +ﬂz)7 ’L = 1,2
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Example: Comparing two binomials

o For each ¢;, we have the exact posterior, so we can make exact
inferences (point estimates and credible intervals) as in examples we
have seen.

@ Suppose we want to know the posterior probability

P(g2 < q1 | k1, k2)

o Or suppose we want to estimate the difference in proportions

d=q—q.
o There is no simple formula or beta distribution function we can use
now.

o But we can use simulation (i.e. a Monte Carlo method).
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-arlo methods

o Monte Carlo method refers to the theory and practice of using
random samples to approximate a quantity:
o Expectations.
o Integrals.
o Probabilities.
o Other summaries of distributions.

o Named due to casinos in Monte Carlo.
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-te Carlo integration

@ Suppose we want to evaluate the integral

I= /abh(:c) dz.

@ Suppose we are unable to compute I in closed form.

@ We can rewrite I as
b
I:/ w(zx) f(z) de,

where w(z) = h(z)(b—a), f(z) = 7, = € [a,b].

a
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-onte Carlo integration

o Noticing that f is the pdf for a uniform random variable X ~ U(a, b)

@ Hence,
I = Flw(X)].

o If we generate X, ..., Xy iid from U(a,b), by the WLLN
1 & P
I=+ Z_;w(Xi) = Blw(X)] =1, as N — cc.

o This is the basic Monte Carlo integration.
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o Let h(z) = 2® and

1
I:/ z* dx
0
o Obviously, I =1/4.

o Simulate z,,...,zy from U(0,1), N = 10, 000.
o Compute [ = -t 37! 4% — 0.248
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- Carlo integration

@ A generalisation of the basic Monte Carlo integration is to estimate
a quantity based on a probability distribution f.

@ We want to compute
1= [ h@)ftz)da = EIBX)), X ~ fo)

where f is the pdf of a random variable X.
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o Now, we generate an iid random sample X, ..., Xy from f and use
this sample to estimate I by

1 N
I=+ ;h(Xi).

o By the WLLN
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-Monte Carlo integration

o Let f(x) = ﬁexp{—%xz} be the standard normal density.

o We want
[ =)= P(X <) = / F(s)ds, X ~N(0,1),z €R.

o We can rewrite
j / h(s)f(s) ds,

where h(s) =1 if s < and h(s) = 0 otherwise.
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-/Ionte Carlo integration

o We generate X,,..., Xy iid from N(0,1) and compute

s 1 & number of observations less than x
== z:: hX,) = N .

o If =2, then ®(2) = 0.9772 and [ = 0.9781 with N = 10, 000.
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-e Carlo for Bayesian inference

Example: Comparing two binomials

o Recall that
kl ~ Bin(nlaql)v k2 ~ Bin(nZaQQ)

o Assume the flat prior on (g, g.)

p(¢,q.) =1

o Then the posterior distribution p(q,, ¢, | k., k) is

p(Q17Q2 | ki, k2) = Clel(l - %)nl_qusz(l - Q2)n2_k2~
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_omparing two binomials

o Note that p(q,, ¢ | ki, k2) = p(as | k1)p(g: | k2).
@ Thus, ¢, and g, are independent under the posterior.

o Also

p(q, | ki) ~ beta(1+k,, 1 +ny — k),
(@2 | ko) ~ beta(l + ky, 1 4+ ng — ky).
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Example: Comparing two binomials

@ We want to compute 6 = ¢, — q;.
o Note that 0 is random parameter with posterior density p(0 | ky, k)

o We can estimate ¢ using its posterior mean which is
I=E@0)=FE(qg.—q)
9(a:,42)) / / (¢1,9:)P(q1, 2 | vy ko) dg,dgs.,

where g(q1,¢:) = ¢ — q..

o Not easy to do analytically but we can use Monte Carlo integration.
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-1ple: Comparing two binomials

@ Hence, using Monte Carlo, we can simulate an iid sample
(@1, Q5"), ... (@7, Q) from p(qy, . | ki, k2) by drawing

M, QM iid ~ beta(1 + ky, 1 +ny — ky)

., QM iid ~ beta(1 + ky, 1 +ng — ks)

@ We can estimate I by

N

1 . 1 &
-y Lo@er) = g @ -ar)
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Example: Comparing two binomials

@ Also, note that 6 = Q" —Q,i=1,..., N can be viewed as an
iid sample from §.

o Then the posterior density of 4, p(é | ki, k,), can be approximated
by plotting the histogram of 6, ..., 6%,

o A 95% quantile credible intervals of § can be obtained by sorting the
simulated values and finding the 0.025 and 0.975 sample quantiles
of M ... M.
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-i question: Comparing two binomials

© ky =8~ Bin(n1,q1), ks =6 ~ Bin(nz, g2).

o Assume n, = n, = 10.

o Describe how you would estimate § = ¢, — ¢, and
I = P(ga < q1 | k1, ko) using simple Monte Carlo integration.

o Compute a 95% quantile credible interval for 4.
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Board question: binomial data, flat prior

o Let k ~ binom(n,q).
@ Assume flat prior on gq.
o Let n =860 and k = 441

o R code below
a=1
b=1
n=860
k=441
N=10000
beta.post.sample=rbeta(N, shapel=atk,shape2=b+n-k)
gamma . sample=log((beta.post.sample/(1-beta.post.sample)))
mean (gamma . sample)
c(quantile(gamma.sample,0.025) ,quantile (gamma.sample,0.975))
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Board question: binomial data, flat prior

@ When this code has run, what will beta.post.sample contain?
What will gamma .sample contain?

o Describe the estimator 0 for a quantity 6 (which you should also
determine) that would be obtained by the following R commands

gamma . sample=log((beta.post.sample/(1-beta.post.sample)))
mean (gamma . sample)

o In statistical terms, what quantity will the last line of code output?

o See also, Question 3, final exam Jan 2023
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