QUEEN MARY, UNIVERSITY OF LONDON MTH6102: Bayesian Statistical Methods

Solutions of exercise sheet 6

2023 - 2024

This assignment counts for 4% of the module total. The deadline for submission is Monday the 13th November at 11am.

Submit the R code used as an R script file (with extension .R). But you need to write the answers in a separate file. This can be a Word document, pdf or a clearly legible image of hand-written work. So you need to submit two files.

The first two questions use a dataset on QMPlus.

- 1. (25 marks). For input data use the first column in the dataset, labelled **x**. Suppose that the observed data x_1, \ldots, x_n follow a normal distribution $N(\mu, \sigma^2)$, where σ is assumed to be known and equal to 2.
 - (a) Let the last two digits of your ID number be BC. As a prior distribution for μ , take a normal distribution $N(\mu_0, \sigma_0^2)$. We want the prior mean to be B + 15 and the prior probability $P(\mu \leq C)$ to be 0.1. Find the prior parameters μ_0 and σ_0^2 that satisfy this.
 - (b) Using this prior distribution, find the posterior distribution for μ . (You may use the formulas)
 - (c) Calculate the posterior probability $P(\mu \leq 2)$.
 - (d) Calculate a 95% equal-tail credible interval for μ .
 - (e) Calculate a 95% HDP credible interval for μ

Solution:

(a) The prior mean is $\mu_0 = B + 15$. Also

$$P(\mu \le C) = 0.1$$

$$P\left(\frac{\mu - \mu_0}{\sigma_0} \le \frac{C - \mu_0}{\sigma_0}\right) = 0.1$$

$$\Phi\left(\frac{C - \mu_0}{\sigma_0}\right) = 0.1$$

$$\frac{C - \mu_0}{\sigma_0} = \Phi^{-1}(0.1)$$

$$\sigma_0 = \frac{C - \mu_0}{\Phi^{-1}(0.1)}$$

 $\Phi^{-1}(0.1)$ (inverse function of standard normal cdf) could be found using qnorm (0.1), to give $\Phi^{-1}(0.1) = -1.282$.

(b) The posterior distribution is $N(\mu_1, \sigma_1^2)$, with formulae for the parameters as in the lectures. Suppose the data is in the vector **x**, and **sigma**, **mu0** and **sigma0** have been given the correct values.

```
n = length(x)
xbar = mean(x)
mu1 = (mu0/sigma0^2 + n*xbar/sigma^2)/(1/sigma0^2 + n/sigma^2)
sigma1 = sqrt(1/(1/sigma0^2 + n/sigma^2))
```

- (c) This is given by pnorm(2, mean=mu1, sd=sigma1).
- (d) This is given by c(qnorm(0.025,mean=mu1,sd=sigma1),qnorm(0.975,mean=mu1,sd=sigma1)).
- (e) The Gaussian posterior distribution $N(\mu_1, \sigma_1^2)$ is symmetric and unimodal. Hence, the 95% equal-tail credible interval derived in 1d) is, in fact, an HPD interval. Indeed, we want to find endpoints θ_L and θ_U such that

$$\begin{split} P(\theta_L < \mu < \theta_U) &= 0.95 \\ f_{N(\mu_1, \sigma_1^2)}(\theta_L) &= f_{N(\mu_1, \sigma_1^2)}(\theta_U) \end{split}$$

By standardising, the above happens by taking

$$\frac{\theta_L - \mu_1}{\sigma_1} = -1.96 \\ \frac{\theta_U - \mu_1}{\sigma_1} = 1.96$$

- 2. (30 marks). Suppose we observe iid data y_1, \ldots, y_n from Poisson distribution with parameter λ . Let λ have the Gamma (α, β) distribution, the conjugate prior distribution for the Poisson likelihood, where α and β are known prior parameters.
 - (a) Find the posterior distribution for λ . Now, an ecologist counts the numbers of centipedes in each of n = 20 twenty onemetre-square quadrats. The numbers y_1, \ldots, y_{20} are in the second column labelled as y in the dataset.
 - (b) Let the last three digits of your ID number be ABC. Suppose we want the prior mean for λ to be 5 + A and the prior standard deviation to be 5 + B. Find the prior distribution parameters that satisfy this.
 - (c) Using the prior distribution from (b), find the posterior distribution for λ .
 - (d) Calculate the posterior median and a 95% credible interval for λ .
 - (e) Calculate the posterior median and a 95% credible interval for θ , where

$$\theta = 1 - \exp(-\lambda).$$

Solution:

(a) The posterior distribution is $\text{Gamma}(\alpha_1, \beta_1)$ with $\alpha_1 = \alpha + S$ and $\beta_1 = n + \beta$, where n is the sample size and S is the sum of the data.

(b) The Gamma(α, β) distribution has mean $\frac{\alpha}{\beta}$ and variance $\frac{\alpha}{\beta^2}$.

We want to match these to $5 + A = E(\lambda)$ and $(5 + B)^2 = Var(\lambda)$. So we have to find α and β such that

$$5+A = \frac{\alpha}{\beta}, \ (5+B)^2 = \frac{\alpha}{\beta^2} = \frac{5+A}{\beta}$$

Hence rearranging gives

$$\beta = \frac{5+A}{(5+B)^2}, \ \alpha = \frac{(5+A)^2}{(5+B)^2}.$$

- (c) The posterior distribution is $\text{Gamma}(\alpha_1, \beta_1)$ with $\alpha_1 = n + \alpha$ and $\beta_1 = S + \beta$, where *n* is the sample size, *S* is the sum of the data, $\alpha = \frac{(5+A)^2}{(5+B)^2}$ and $\beta = \frac{5+A}{(5+B)^2}$.
- (d) If the posterior parameters are alpha1 and beta1, then the median and 95% credible interval are given by

(e) The transformation $1 - \exp(-\lambda)$ is a one-to-one increasing function, so we can just transform each of the results from part (c). E.g. for the median:

med = qgamma(0.5, shape=alpha1, rate=beta1)
1-exp(-med)

3. (45 marks). This question continues exercise sheet 5, question 4. Now there are two machines, each with a different precision of measurement, τ_1 and τ_2 . They each take a number of measurements with the same known mean $\mu = 1000$. The measurements are $x = (x_1, \ldots, x_m)$ on the first machine can be modelled as a random sample from a normal distribution with known mean $\mu = 1000$ and precision τ_1 and $y = (y_1, \ldots, y_n)$ on the second machine can be modelled as a random sample from a normal distribution with known mean $\mu = 1000$ and precision τ_1 and $y = (y_1, \ldots, y_n)$ on the second machine can be modelled as a random sample from a normal distribution with known mean $\mu = 1000$ and precision τ_2 .

The observed data are m = 10, $\sum_{i=1}^{m} (x_i - 1000)^2 = 0.12$, n = 8 and $\sum_{i=1}^{n} (y_i - 1000)^2 = 0.09$. Use independent gamma prior distributions for τ_1 and τ_2 with same parameters α and β as for τ in exercise sheet 5, that is $\alpha = 5$ and $\beta = 0.05$.

- (a) Find the joint posterior density of τ_1 and τ_2 .
- (b) What are the marginal posterior distributions for τ_1 and τ_2 ?
- (c) Using R, generate a sample of size 10,000 from the joint posterior density of τ_1 and τ_2 .

We are in fact interested in the standard deviations $\sigma_1 = \frac{1}{\sqrt{\tau_1}}$ and $\sigma_2 = \frac{1}{\sqrt{\tau_2}}$.

- (d) Use R to denerate samples from the posterior distributions of σ_1 and σ_2 , by transforming the τ_1, τ_2 samples that you generated in (c). (There is no need to work out on paper the posterior distributions of σ_1, σ_2 .)
- (e) Use R to find the posterior median and a 95% credible interval for each of σ_1 and σ_2 .

(f) Using the samples of σ_1 and σ_2 that you generate in (d) estimate the difference in $d = \sigma_1 - \sigma_2$ and the posterior probability that d < 0.

Solution:

(a) The margina prior distributions are

$$\tau_1, \tau_2 \sim \text{Gamma}(\alpha, \beta)$$

independently, with $\alpha = 5$, $\beta = 0.05$. The joint posterior density of τ_1 and τ_2 , $p(\tau_1, \tau_2 \mid x, y)$, is, by independence,

$$p(\tau_{1},\tau_{2} \mid x,y) \propto p(\tau_{1},\tau_{2})p(x,y \mid \tau_{1},\tau_{2})$$

$$= p(\tau_{1})p(\tau_{2})p(x \mid \tau_{1})p(y \mid \tau_{2})$$

$$\propto \tau_{1}^{\alpha-1} \exp(-\beta\tau_{1})\tau_{2}^{\alpha-1} \exp(-\beta\tau_{2})\tau_{1}^{m/2} \exp\left(-\tau_{1}\frac{1}{2}\sum_{i=1}^{m}(x_{i}-1000)^{2}\right)$$

$$\times \tau_{1}^{n/2} \exp\left(-\tau_{2}\frac{1}{2}\sum_{i=1}^{n}(y_{i}-1000)^{2}\right)$$

$$= \tau_{1}^{\alpha+m/2-1} \exp\left(-\tau_{1}(\beta+\frac{1}{2}\sum_{i=1}^{m}(x_{i}-1000)^{2})\right)$$

$$\times \tau_{2}^{\alpha+n/2-1} \exp\left(-\tau_{2}(\beta+\frac{1}{2}\sum_{i=1}^{n}(y_{i}-1000)^{2})\right)$$

Hence, $p(\tau_1, \tau_2 \mid x, y) = p(\tau_1 \mid x)p(\tau_2 \mid y)$, where $p(\tau_1 \mid x) \sim \text{Gamma}(\alpha_1, \beta_1)$ and $p(\tau_2 \mid y) \sim \text{Gamma}(\alpha_2, \beta_2)$ with

$$\alpha_1 = \alpha + m/2 = 10, \ \beta_1 = \beta + \frac{1}{2} \sum_{i=1}^m (x_i - 1000)^2 = 0.11,$$

 $\alpha_2 = \alpha + n/2 = 9, \ \beta_2 = \beta + \frac{1}{2} \sum_{i=1}^n (y_i - 1000)^2 = 0.095.$

(b) From (a), the posterior distributions are independent, and

$$\tau_1 \sim \text{Gamma}(\alpha_1, \beta_1)$$

 $\tau_2 \sim \text{Gamma}(\alpha_2, \beta_2)$

with

$$\alpha_1 = \alpha + m/2 = 10, \ \beta_1 = \beta + \frac{1}{2} \sum_{i=1}^m (x_i - 1000)^2 = 0.11,$$

 $\alpha_2 = \alpha + n/2 = 9, \ \beta_2 = \beta + \frac{1}{2} \sum_{i=1}^n (y_i - 1000)^2 = 0.095.$

There is R code for the rest of the questions (c), (d), (e), (f) on QMPlus.