Suppose that we have m failure times, $x=\left(x_{1}, \ldots, x_{m}\right)$, for a light bulb type A and n failure times, $y=\left(y_{1}, \ldots, y_{n}\right)$ for a light bulb type B. We assume that the samples x and y are independent of each other, $x=\left(x_{1}, \ldots, x_{m}\right)$ is an iid sample from Exponential $\left(\lambda_{1}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is an iid sample from $\operatorname{Exponential}\left(\lambda_{2}\right)$, where $\lambda_{1}>0$ and $\lambda_{2}>0$ are unknown. Let gamma $\left(a_{1}, b_{1}\right)$ and gamma $\left(a_{2}, b_{2}\right)$ be independent priors on λ_{1} and λ_{2}, respectively.

1. Find the joint posterior density, $p\left(\lambda_{1}, \lambda_{2} \mid x, y\right)$ of λ_{1} and λ_{2}.
2. How would you estimate $d=\frac{\lambda_{1}}{\lambda_{2}}$ by simulations?

Solution:

1. The joint posterior, $p\left(\lambda_{1}, \lambda_{2} \mid x, y\right)$ of λ_{1} and λ_{2} is

$$
\begin{aligned}
p\left(\lambda_{1}, \lambda_{2} \mid x, y\right) & \propto \text { prior } \times \text { likelihood } \\
& =p\left(\lambda_{1}, \lambda_{2}\right) \times p\left(x, y \mid \lambda_{1}, \lambda_{2}\right)
\end{aligned}
$$

where $p\left(\lambda_{1}, \lambda_{2}\right)$ is the joint prior distribution of λ_{1} and λ_{2}, and $p\left(x, y \mid \lambda_{1}, \lambda_{2}\right)$ is the likelihood of x and y.
Now, by independence of $\lambda_{1} \sim \operatorname{gamma}\left(a_{1}, b_{1}\right)$ and $\lambda_{2} \sim \operatorname{gamma}\left(a_{2}, b_{2}\right)$, we have

$$
\begin{aligned}
p\left(\lambda_{1}, \lambda_{2}\right) & =p\left(\lambda_{1}\right) p\left(\lambda_{2}\right) \\
& =\frac{b_{1}^{a_{1}} \lambda_{1}^{a_{1}-1} \exp \left(-b_{1} \lambda_{1}\right)}{\Gamma\left(a_{1}\right)} \frac{b_{2}^{a_{2}} \lambda_{2}^{a_{2}-1} \exp \left(-b_{2} \lambda_{1}\right)}{\Gamma\left(a_{2}\right)} .
\end{aligned}
$$

By the independence of the two samples x and y and the independence of x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n} as well

$$
\begin{aligned}
p\left(x, y \mid \lambda_{1}, \lambda_{2}\right) & =\prod_{i=1}^{m} \lambda_{1} \exp \left(-\lambda_{1} x_{i}\right) \prod_{i=1}^{n} \lambda_{2} \exp \left(-\lambda_{1} y_{i}\right) \\
& =\lambda_{1}^{m} \exp \left(-\lambda_{1} \sum_{i=1}^{m} x_{i}\right) \lambda_{2}^{n} \exp \left(-\lambda_{2} \sum_{i=1}^{n} y_{i}\right) .
\end{aligned}
$$

Hence, the joint posterior, $p\left(\lambda_{1}, \lambda_{2} \mid x, y\right)$ of λ_{1} and λ_{2} is

$$
\begin{aligned}
p\left(\lambda_{1}, \lambda_{2} \mid x, y\right) & \propto \lambda_{1}^{a_{1}-1} \exp \left(-b_{1} \lambda_{1}\right) \lambda_{2}^{a_{2}-1} \exp \left(-b_{2} \lambda_{1}\right) \lambda_{1}^{m} \exp \left(-\lambda_{1} \sum_{i=1}^{m} x_{i}\right) \lambda_{2}^{n} \exp \left(-\lambda_{2} \sum_{i=1}^{n} y_{i}\right) \\
& \left.\left.=\lambda_{1}^{a_{1}+m-1} \exp \left(-\left(b_{1}+\sum_{i=1}^{m} x_{i}\right)\right) \lambda_{1}\right) \lambda_{2}^{a_{2}+n-1} \exp \left(-\left(b_{2}+\sum_{i=1}^{n} y_{i}\right)\right) \lambda_{2}\right) .
\end{aligned}
$$

Thus, $p\left(\lambda_{1}, \lambda_{2} \mid x, y\right)=p\left(\lambda_{1} \mid x\right) p\left(\lambda_{2} \mid y\right)$, where $p\left(\lambda_{1} \mid x\right) \sim \operatorname{gamma}\left(a_{1}+m, b_{1}+\sum_{i=1}^{m} x_{i}\right)$ and $p\left(\lambda_{2} \mid y\right) \sim \operatorname{gamma}\left(a_{2}+n, b_{2}+\sum_{i=1}^{n} y_{i}\right)$, and λ_{1} and λ_{2} are independent under the posterior.
2. To estimate $d=\frac{\lambda_{1}}{\lambda_{2}}$ (which is random) by simulations we would generate an iid sample $\Lambda_{i 1}, i=1, \ldots, M$ from gamma $\left(a_{1}+m, b_{1}+\sum_{i=1}^{m} x_{i}\right)$ and an iid sample $\Lambda_{i 2}, i=1, \ldots, M$ from gamma $\left(a_{2}+n, b_{2}+\sum_{i=1}^{n} y_{i}\right)$. Then $\left(\Lambda_{i 1}, \Lambda_{i 2}\right), i=1, \ldots, M$ is an iid sample of $\left(\lambda_{1}, \lambda_{2}\right)$. Let $d_{i}=\Lambda_{i 1} / \Lambda_{i 2}, i=1, \ldots, M$. Then, $d_{i}, i=1, \ldots, M$ is an id sample from d. Hence, we can estimate d by the sample mean of $d_{i}, i=1, \ldots, M$. That is, $\hat{d}=\frac{1}{M} \sum_{i=1}^{M} d_{i}$.

