Suppose that we have m failure times, $x=(x_1,\ldots,x_m)$, for a light bulb type A and n failure times, $y=(y_1,\ldots,y_n)$ for a light bulb type B. We assume that the samples x and y are independent of each other, $x=(x_1,\ldots,x_m)$ is an iid sample from Exponential (λ_1) and $y=(y_1,\ldots,y_n)$ is an iid sample from Exponential (λ_2) , where $\lambda_1>0$ and $\lambda_2>0$ are unknown. Let $\mathrm{gamma}(a_1,b_1)$ and $\mathrm{gamma}(a_2,b_2)$ be independent priors on λ_1 and λ_2 , respectively.

- 1. Find the joint posterior density, $p(\lambda_1, \lambda_2 \mid x, y)$ of λ_1 and λ_2 .
- 2. How would you estimate $d = \frac{\lambda_1}{\lambda_2}$ by simulations?

Solution:

1. The joint posterior, $p(\lambda_1, \lambda_2 \mid x, y)$ of λ_1 and λ_2 is

$$p(\lambda_1, \lambda_2 \mid x, y) \propto \text{prior} \times \text{likelihood}$$

= $p(\lambda_1, \lambda_2) \times p(x, y \mid \lambda_1, \lambda_2)$,

where $p(\lambda_1, \lambda_2)$ is the joint prior distribution of λ_1 and λ_2 , and $p(x, y \mid \lambda_1, \lambda_2)$ is the likelihood of x and y.

Now, by independence of $\lambda_1 \sim \text{gamma}(a_1, b_1)$ and $\lambda_2 \sim \text{gamma}(a_2, b_2)$, we have

$$\begin{split} p(\lambda_1, \lambda_2) &= p(\lambda_1) p(\lambda_2) \\ &= \frac{b_1^{a_1} \lambda_1^{a_1 - 1} \exp(-b_1 \lambda_1)}{\Gamma(a_1)} \frac{b_2^{a_2} \lambda_2^{a_2 - 1} \exp(-b_2 \lambda_1)}{\Gamma(a_2)}. \end{split}$$

By the independence of the two samples x and y and the independence of x_1, \ldots, x_m and y_1, \ldots, y_n as well

$$p(x, y \mid \lambda_1, \lambda_2) = \prod_{i=1}^m \lambda_1 \exp(-\lambda_1 x_i) \prod_{i=1}^n \lambda_2 \exp(-\lambda_1 y_i)$$
$$= \lambda_1^m \exp(-\lambda_1 \sum_{i=1}^m x_i) \lambda_2^n \exp(-\lambda_2 \sum_{i=1}^n y_i).$$

Hence, the joint posterior, $p(\lambda_1, \lambda_2 \mid x, y)$ of λ_1 and λ_2 is

$$p(\lambda_1, \lambda_2 \mid x, y) \propto \lambda_1^{a_1 - 1} \exp(-b_1 \lambda_1) \lambda_2^{a_2 - 1} \exp(-b_2 \lambda_1) \lambda_1^m \exp(-\lambda_1 \sum_{i=1}^m x_i) \lambda_2^n \exp(-\lambda_2 \sum_{i=1}^n y_i)$$

$$= \lambda_1^{a_1 + m - 1} \exp(-(b_1 + \sum_{i=1}^m x_i)) \lambda_1) \lambda_2^{a_2 + n - 1} \exp(-(b_2 + \sum_{i=1}^n y_i)) \lambda_2).$$

Thus, $p(\lambda_1, \lambda_2 \mid x, y) = p(\lambda_1 \mid x)p(\lambda_2 \mid y)$, where $p(\lambda_1 \mid x) \sim \text{gamma}(a_1 + m, b_1 + \sum_{i=1}^m x_i)$ and $p(\lambda_2 \mid y) \sim \text{gamma}(a_2 + n, b_2 + \sum_{i=1}^n y_i)$, and λ_1 and λ_2 are independent under the posterior.

2. To estimate $d = \frac{\lambda_1}{\lambda_2}$ (which is random) by simulations we would generate an iid sample $\Lambda_{i1}, i = 1, \ldots, M$ from $\operatorname{gamma}(a_1 + m, b_1 + \sum_{i=1}^m x_i)$ and an iid sample $\Lambda_{i2}, i = 1, \ldots, M$ from $\operatorname{gamma}(a_2 + n, b_2 + \sum_{i=1}^n y_i)$. Then $(\Lambda_{i1}, \Lambda_{i2}), i = 1, \ldots, M$ is an iid sample of (λ_1, λ_2) . Let $d_i = \Lambda_{i1}/\Lambda_{i2}, i = 1, \ldots, M$. Then, $d_i, i = 1, \ldots, M$ is an iid sample from d. Hence, we can estimate d by the sample mean of $d_i, i = 1, \ldots, M$. That is, $\hat{d} = \frac{1}{M} \sum_{i=1}^M d_i$.