
Random Processes – 2023/24 Solutions 10

2.

(a) Since the holding times are distributed Exp(2), we should take all the diagonal
entries to be −2. Now we need the other entries chosen to make the row sums
all 0 and to satisfy

gij
2
= pij (where pij is the ij entry of P , that is the transition

probability in the discrete-time chain). We get:

G =


−2 1 1 0
2/3 −2 2/3 2/3
1/2 1 −2 1/2
1 2/3 1/3 −2


(b) This time we need the holding time in state i to be Exp(i), we should take

all the diagonal entry gii = −i. As before we need the other entries chosen to
make the row sums all 0 and to satisfy

gij
i
= pij (where pij is the ij entry of P ,

that is the transition probability in the discrete-time chain). We get:

G =


−1 1/2 1/2 0
2/3 −2 2/3 2/3
3/4 3/2 −3 3/4
2 4/3 2/3 −4



3. Suppose that all the emails I receive have 0, 1, 2 or 3 attachments. Emails with
k attachments arrive as a Poisson process of rate αk. Let A(t) be the number of
attachments in all emails I receive in the time interval [0, t].

(a) Let’s think how A(t) can increase in a short interval [t, t + h]. In other words
what is P(A(t+ h) = m+ k | A(t) = m). We can have:

� k = 1: An email with one attachment arrives. This happens with proba-
bility α1h+ o(h).

� k = 2: An email with two attachments arrives. This happens with prob-
ability α2h+ o(h).

� k = 3: An email with three attachments arrives. This happens with
probability α3h+ o(h).
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Note that having k = 2 because two emails each with one attachment arrive is
possible but has probability o(h). This gives

gi,i+1 = α1, gi,i+2 = α2, gi,i+3 = α3

These are the only transitions that happen with non-negligible probability.

(b) We need to set gii = −(α1 + α2 + α3) to make the row sums of the generator
0. We get

G =


−(α1 + α2 + α3) α1 α2 α3 0 0 · · ·

0 −(α1 + α2 + α3) α1 α2 α3 0 · · ·
0 0 −(α1 + α2 + α3) α1 α2 α3 · · ·

. . . . . . . . . · · ·


4. Let Q(t) be the total number of people in the system (waiting and being served)
at time t

(a) Just as for the M(λ)/M(µ)/1 queue we have

P(one arrival in [t, t+ h]) = λh+ o(h)

as arrivals form a Poisson process of rate λ. So the birth parameter λi = λ for
all i ⩾ 0.

For the departures we need to distinguish between the cases Q(t) = 1 (when
only one server is busy) and Q(t) ⩾ 2 (when both servers are busy). For the
first of these cases:

P(Q(t+h) = 0 | Q(t) = 1) = P(service ends in [t, t+ h])+o(h) = 1−e−µh+o(h) = µh+o(h)

and for the second case when m ⩾ 2 we have:

P(Q(t+ h) = m− 1 | Q(t) = m) = P(one of the two services ends in [t, t+ h]) + o(h)

= 2(1− e−µh)(e−µh)

= 2µh+ o(h)

All other transitions between states have probability o(h) so this is a birth-
death process with parameters

λi = λ, µi =


0 if i = 0;

µ if i = 1;

2µ if i ⩾ 2.
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(which can also be represented by the generator

G =


−λ λ 0 0 0 0 . . .
µ −λ− µ λ 0 0 0 . . .
0 2µ −λ− 2µ λ 0 0 . . .
0 0 2µ −λ− 2µ λ 0 . . .
...

. . . . . . . . .
...


(b) The forwards equations are:

p′i,0(t) = −λpi,0(t) + µpi,1(t)

p′i,1(t) = λpi,0(t)− (µ+ λ)pi,1(t) + 2µpi,2(t)

p′i,j(t) = λpi,j−1(t)− (2µ+ λ)pi,j(t) + 2µpi,j+1(t) for j ⩾ 2

and the backwards equations are:

p′0,j(t) = −λp0,j(t) + λp1,j(t)

p′1,j(t) = µpi−1,j(t)− (µ+ λ)pi,j(t) + λpi+1,j(t)

p′i,j(t) = 2µpi−1,j(t)− (2µ+ λ)pi,j(t) + λpi+1,j(t) for i ⩾ 2.

(c) Letting t → ∞, and assuming that pi,j(t) → wj for all i, the backward equations
become:

lim
t→∞

p′0,j(t) = −λwj + λwj = 0

lim
t→∞

p′1,j(t) = µwj − (µ+ λ)wj + λwj = 0

lim
t→∞

p′i,j(t) = 2µwj − (2µ+ λ)wj + λwj = 0 for i ⩾ 2.

and the fowards equations become:

lim
t→∞

p′0,j(t) = −λw0 + µw1

lim
t→∞

p′1,j(t) = λw0 − (µ+ λ)w1 + 2µw2

lim
t→∞

p′i,j(t) = λwj−1 − (2µ+ λ)wj + 2µwj+1 for j ⩾ 2.

So using the result of the limit of the backwards equations in the limit of the
forwards equations:

−λw0 + µw1 = 0

λw0 − (µ+ λ)w1 + 2µw2 = 0

λwj−1 − (2µ+ λ)wj + 2µwj+1 = 0 for j ⩾ 2.
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so we have equations:

w1 =
λ

µ
w0

w2 =
µ+ λ

2µ
w1 −

λ

2µ
w0

wj+1 =
2µ+ λ

2µ
wj −

λ

2µ
wj−1 for j ⩾ 2.

(d) � From the first equation we have w1 =
λ
µ
w0 = 2ρw0 as required

� Substituting for w1 in the second equation we get

w2 =
µ+ λ

2µ

λ

µ
w0 −

λ

2µ
w0 =

λ2

2µ2
w0 = 2ρ2w0

as required. So by induction we have wj = 2ρjw0 for all j ⩾ 1.

� Suppose that wi = 2ρiw0 for all 1 ⩽ i ⩽ j then from the equation for wj+1

we have

wj+1 =
2µ+ λ

2µ
2ρjw0 −

λ

2µ
2ρj−1w0

= 2ρjw0 + 2
λ

2µ
ρjw0 − 2ρjw0

= 2ρj+1w0

as required. So by induction we have wj = 2ρjw0 for all j ⩾ 1.

(e) For there to be a limiting distribution we need to be able to choose w0 so that∑
j⩾0wj = 1. That is we need

w0

(
1 +

∑
j⩾1

2ρj

)
= 1

We can do this by setting

w0 =

(
1 +

∑
j⩾1

2ρj

)−1

provided that the sum converges. This happens if and only if ρ < 1 that is
λ < 2µ.
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(f) If λ < 2µ we have
∑

j⩾1 2ρ
j = 2ρ

1−ρ
. So we take

w0 =

(
1 +

2ρ

1− ρ

)−1

=
1− ρ

1 + ρ
.

So the limiting distribution is

wj =

{
1−ρ
1+ρ

if j = 0;
1−ρ
1+ρ

2ρj if j ⩾ 1.

5.

(a) We assumed that arrivals form a Poisson process. In this example they will
not. The probability of an arrival in the interval [t, t+ h] will depend on Q(t).

(b) The only thing that changes is the probability of an arrival happening. we
have:

P(Q(t+ h) = n+ 1 | Q(t) = n) = P(one arrival in [t, t+ h]) · P(they do not leave) + o(h)

= (λh+ o(h))pn + o(h)

= pnλh+ o(h)

So we have a birth-death process with parameters λi = piλ (for i ⩾ 0), µi = µ
(for i ⩾ 1).

(c) We can achieve this by setting pi = 1 for 0 ⩽ i ⩽ k − 1 and pi = 0 for i ⩾ k.

6. Of course your answer will look different because your G will be different. However
whichever G you chose, the general idea will be the same (see part (d) for the reason).

(a) There are lots of possible examples. I will go with:

G =

−2 1 1
2 −3 1
2 2 −4


Any 3 × 3 matrix with negative values on the diagonal, positive values every-
where else and row sums being 0 will do.
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(b) The backwards equations arep′11(t) p′12(t) p′13(t)
p′21(t) p′22(t) p′23(t)
p′31(t) p′32(t) p′33(t)

 =

−2 1 1
2 −3 1
2 2 −4

p11(t) p12(t) p13(t)
p21(t) p22(t) p23(t)
p31(t) p32(t) p33(t)


By the assumption of the question, letting t → ∞ we get that pij(t) → wj. So

lim
t→∞

p′11(t) p′12(t) p′13(t)
p′21(t) p′22(t) p′23(t)
p′31(t) p′32(t) p′33(t)

 =

−2 1 1
2 −3 1
2 2 −4

w1 w2 w3

w1 w2 w3

w1 w2 w3


=

−2w1 + w1 + w1 −2w2 + w2 + w2 −2w3 + w3 + w3

2w1 − 3w1 + w1 2w2 − 3w2 + w2 2w3 − 3w3 + w3

2w1 + 2w1 − 4w1 2w2 + 2w2 − 4w2 2w3 + 2w3 − 4w3


=

0 0 0
0 0 0
0 0 0


The 9 entries of this matrix identity together show that

lim
t→∞

p′i,j(t) = 0

for all i, j ∈ {1, 2, 3}.

(c) The forwards equations arep′11(t) p′12(t) p′13(t)
p′21(t) p′22(t) p′23(t)
p′31(t) p′32(t) p′33(t)

 =

p11(t) p12(t) p13(t)
p21(t) p22(t) p23(t)
p31(t) p32(t) p33(t)

−2 1 1
2 −3 1
2 2 −4


Letting t → ∞ and using the result of part (b) we get that0 0 0

0 0 0
0 0 0

 =

w1 w2 w3

w1 w2 w3

w1 w2 w3

−2 1 1
2 −3 1
2 2 −4


Since each row of the righthand side is equal, this is equivalent to

(
0 0 0

)
=
(
w1 w2 w3

)−2 1 1
2 −3 1
2 2 −4


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This gives equations

−2w1 + 2w2 + 2w3 = 0

w1 − 3w2 + 2w3 = 0

w1 + w2 − 4w3 = 0

which we solve to get (
w1 w2 w3

)
=
(
w1

3
5
w1

2
5
w1

)
Finally, since

(
w1 w2 w3

)
is a probability distribution we must have w1 +

w2 + w3 = 1 and so (
w1 w2 w3

)
=
(
1
2

3
10

1
5

)
(d) Why did everything magically cancel out to give the all 0 matrix in part (b)?

If you look carefully, each entry is some wi multiplied by the sum of the entries
in row j of the generator. Because the rows in the generator always sum to 0,
this is 0. It follows that the result of part (b) holds for any n× n generator.

Now by the argument of part (c) we get that(
w1 w2 · · · wn

)
G =

(
0 0 · · · 0

)
We have proved that if a continuous-time Markov chain has a limiting distri-
bution w then w is the solution to the matrix equation wG = 0.

This should remind you of Theorem 4.6 (if a discrete-time Markov chain has
a limiting distribution then it is the unique solution to the matrix equation
wP = w).

7.

(a) The Poisson process waits in state i for a random time with Exp(λ) distribution
and them jumps up to state i + 1. Each of these jumps changes the parity of
the state. It follows that Y (t) is a the continuous-time process with state space
{0, 1} and generator

G =

(
−λ λ
λ −λ

)
.

(b) This would no longer be a Markov chain as it will not satisfy the Markov
property. If X(t) = 0 then Y (t) = 0 and the time I wait for the next jump in
Y is distributed Exp(λ0). However, if X(t) = 2 then Y (t) = 0 (same as before)
but the time I wait for the next jump in Y is distributed Exp(λ2). So how the
chain evolves from state 0 depends on the previous history of the process.
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8.

(a) We can’t apply the argument of Sheet 9 Question 1 because the arrivals do not
form a Poisson process.

(b) The first arrival must arrive on a boat. The first boat comes at time 1 and
is guaranteed to have a creature on it (since p = 1). So the time of the first
arrival is the constant random variable taking the value 1 with probability 1.

(c) Again the first arrival must come on a boat but now we must wait until the
first boat with a creature on it. Since this happens with probability p, the first
arrival time is distributed Geom(p).

(d) As in part (b) the first arrival happens at time 1 but now we must wait for
the next arrival which could be either a birth or the next boat. Let T2 be the
time that the population size first reaches 2. Then certainly 1 < T2 ⩽ 2. The
probability that there is a birth in the interval [1, 1 + x] (with 0 < x < 1)
is 1 − e−βx (since there is one individual and births to them form a Poisson
process of rate β). If there is no birth in the interval [1, 2] then the population
reaches size at time 2 (when the second boat arrives). So the cdf of T2 is

P(T2 ⩽ x) =


0 if x < 1;

1− e−β(x−1) if 1 ⩽ x < 2;

1 if x ⩾ 2.

This is a rather peculiar random variable it is not discrete or continuous but a
mixture of the two.

Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk
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