2.

(a) Since the holding times are distributed $\operatorname{Exp}(2)$, we should take all the diagonal entries to be -2 . Now we need the other entries chosen to make the row sums all 0 and to satisfy $\frac{g_{i j}}{2}=p_{i j}$ (where $p_{i j}$ is the $i j$ entry of P, that is the transition probability in the discrete-time chain). We get:

$$
G=\left(\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
2 / 3 & -2 & 2 / 3 & 2 / 3 \\
1 / 2 & 1 & -2 & 1 / 2 \\
1 & 2 / 3 & 1 / 3 & -2
\end{array}\right)
$$

(b) This time we need the holding time in state i to be $\operatorname{Exp}(i)$, we should take all the diagonal entry $g_{i i}=-i$. As before we need the other entries chosen to make the row sums all 0 and to satisfy $\frac{g_{i j}}{i}=p_{i j}$ (where $p_{i j}$ is the $i j$ entry of P, that is the transition probability in the discrete-time chain). We get:

$$
G=\left(\begin{array}{cccc}
-1 & 1 / 2 & 1 / 2 & 0 \\
2 / 3 & -2 & 2 / 3 & 2 / 3 \\
3 / 4 & 3 / 2 & -3 & 3 / 4 \\
2 & 4 / 3 & 2 / 3 & -4
\end{array}\right)
$$

3. Suppose that all the emails I receive have $0,1,2$ or 3 attachments. Emails with k attachments arrive as a Poisson process of rate α_{k}. Let $A(t)$ be the number of attachments in all emails I receive in the time interval $[0, t]$.
(a) Let's think how $A(t)$ can increase in a short interval $[t, t+h]$. In other words what is $\mathbb{P}(A(t+h)=m+k \mid A(t)=m)$. We can have:

- $k=1$: An email with one attachment arrives. This happens with probability $\alpha_{1} h+o(h)$.
- $k=2$: An email with two attachments arrives. This happens with probability $\alpha_{2} h+o(h)$.
- $k=3:$ An email with three attachments arrives. This happens with probability $\alpha_{3} h+o(h)$.

Note that having $k=2$ because two emails each with one attachment arrive is possible but has probability $o(h)$. This gives

$$
g_{i, i+1}=\alpha_{1}, \quad g_{i, i+2}=\alpha_{2}, \quad g_{i, i+3}=\alpha_{3}
$$

These are the only transitions that happen with non-negligible probability.
(b) We need to set $g_{i i}=-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$ to make the row sums of the generator 0 . We get

$$
G=\left(\begin{array}{ccccccc}
-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) & \alpha_{1} & \alpha_{2} & \alpha_{3} & 0 & 0 & \ldots \\
0 & -\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) & \alpha_{1} & \alpha_{2} & \alpha_{3} & 0 & \cdots \\
0 & 0 & -\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) & \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots \\
& & \ddots & \ddots & \ddots & \cdots &
\end{array}\right)
$$

4. Let $Q(t)$ be the total number of people in the system (waiting and being served) at time t
(a) Just as for the $M(\lambda) / M(\mu) / 1$ queue we have

$$
\mathbb{P}(\text { one arrival in }[t, t+h])=\lambda h+o(h)
$$

as arrivals form a Poisson process of rate λ. So the birth parameter $\lambda_{i}=\lambda$ for all $i \geqslant 0$.
For the departures we need to distinguish between the cases $Q(t)=1$ (when only one server is busy) and $Q(t) \geqslant 2$ (when both servers are busy). For the first of these cases:
$\mathbb{P}(Q(t+h)=0 \mid Q(t)=1)=\mathbb{P}($ service ends in $[t, t+h])+o(h)=1-e^{-\mu h}+o(h)=\mu h+o(h)$ and for the second case when $m \geqslant 2$ we have:

$$
\begin{aligned}
\mathbb{P}(Q(t+h)=m-1 \mid Q(t)=m) & =\mathbb{P}(\text { one of the two services ends in }[t, t+h])+o(h) \\
& =2\left(1-e^{-\mu h}\right)\left(e^{-\mu h}\right) \\
& =2 \mu h+o(h)
\end{aligned}
$$

All other transitions between states have probability $o(h)$ so this is a birthdeath process with parameters

$$
\lambda_{i}=\lambda, \quad \mu_{i}= \begin{cases}0 & \text { if } i=0 \\ \mu & \text { if } i=1 \\ 2 \mu & \text { if } i \geqslant 2\end{cases}
$$

(which can also be represented by the generator

$$
G=\left(\begin{array}{ccccccc}
-\lambda & \lambda & 0 & 0 & 0 & 0 & \ldots \\
\mu & -\lambda-\mu & \lambda & 0 & 0 & 0 & \ldots \\
0 & 2 \mu & -\lambda-2 \mu & \lambda & 0 & 0 & \ldots \\
0 & 0 & 2 \mu & -\lambda-2 \mu & \lambda & 0 & \ldots \\
\vdots & & \ddots & \ddots & \ddots & & \vdots
\end{array}\right)
$$

(b) The forwards equations are:

$$
\begin{aligned}
p_{i, 0}^{\prime}(t) & =-\lambda p_{i, 0}(t)+\mu p_{i, 1}(t) \\
p_{i, 1}^{\prime}(t) & =\lambda p_{i, 0}(t)-(\mu+\lambda) p_{i, 1}(t)+2 \mu p_{i, 2}(t) \\
p_{i, j}^{\prime}(t) & =\lambda p_{i, j-1}(t)-(2 \mu+\lambda) p_{i, j}(t)+2 \mu p_{i, j+1}(t) \quad \text { for } j \geqslant 2
\end{aligned}
$$

and the backwards equations are:

$$
\begin{aligned}
p_{0, j}^{\prime}(t) & =-\lambda p_{0, j}(t)+\lambda p_{1, j}(t) \\
p_{1, j}^{\prime}(t) & =\mu p_{i-1, j}(t)-(\mu+\lambda) p_{i, j}(t)+\lambda p_{i+1, j}(t) \\
p_{i, j}^{\prime}(t) & =2 \mu p_{i-1, j}(t)-(2 \mu+\lambda) p_{i, j}(t)+\lambda p_{i+1, j}(t) \quad \text { for } i \geqslant 2 .
\end{aligned}
$$

(c) Letting $t \rightarrow \infty$, and assuming that $p_{i, j}(t) \rightarrow w_{j}$ for all i, the backward equations become:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} p_{0, j}^{\prime}(t) & =-\lambda w_{j}+\lambda w_{j}=0 \\
\lim _{t \rightarrow \infty} p_{1, j}^{\prime}(t) & =\mu w_{j}-(\mu+\lambda) w_{j}+\lambda w_{j}=0 \\
\lim _{t \rightarrow \infty} p_{i, j}^{\prime}(t) & =2 \mu w_{j}-(2 \mu+\lambda) w_{j}+\lambda w_{j}=0 \quad \text { for } i \geqslant 2 .
\end{aligned}
$$

and the fowards equations become:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} p_{0, j}^{\prime}(t) & =-\lambda w_{0}+\mu w_{1} \\
\lim _{t \rightarrow \infty} p_{1, j}^{\prime}(t) & =\lambda w_{0}-(\mu+\lambda) w_{1}+2 \mu w_{2} \\
\lim _{t \rightarrow \infty} p_{i, j}^{\prime}(t) & =\lambda w_{j-1}-(2 \mu+\lambda) w_{j}+2 \mu w_{j+1} \quad \text { for } j \geqslant 2 .
\end{aligned}
$$

So using the result of the limit of the backwards equations in the limit of the forwards equations:

$$
\begin{aligned}
-\lambda w_{0}+\mu w_{1} & =0 \\
\lambda w_{0}-(\mu+\lambda) w_{1}+2 \mu w_{2} & =0 \\
\lambda w_{j-1}-(2 \mu+\lambda) w_{j}+2 \mu w_{j+1} & =0 \quad \text { for } j \geqslant 2 .
\end{aligned}
$$

so we have equations:

$$
\begin{aligned}
w_{1} & =\frac{\lambda}{\mu} w_{0} \\
w_{2} & =\frac{\mu+\lambda}{2 \mu} w_{1}-\frac{\lambda}{2 \mu} w_{0} \\
w_{j+1} & =\frac{2 \mu+\lambda}{2 \mu} w_{j}-\frac{\lambda}{2 \mu} w_{j-1} \quad \text { for } j \geqslant 2 .
\end{aligned}
$$

(d) - From the first equation we have $w_{1}=\frac{\lambda}{\mu} w_{0}=2 \rho w_{0}$ as required

- Substituting for w_{1} in the second equation we get

$$
w_{2}=\frac{\mu+\lambda}{2 \mu} \frac{\lambda}{\mu} w_{0}-\frac{\lambda}{2 \mu} w_{0}=\frac{\lambda^{2}}{2 \mu^{2}} w_{0}=2 \rho^{2} w_{0}
$$

as required. So by induction we have $w_{j}=2 \rho^{j} w_{0}$ for all $j \geqslant 1$.

- Suppose that $w_{i}=2 \rho^{i} w_{0}$ for all $1 \leqslant i \leqslant j$ then from the equation for w_{j+1} we have

$$
\begin{aligned}
w_{j+1} & =\frac{2 \mu+\lambda}{2 \mu} 2 \rho^{j} w_{0}-\frac{\lambda}{2 \mu} 2 \rho^{j-1} w_{0} \\
& =2 \rho^{j} w_{0}+2 \frac{\lambda}{2 \mu} \rho^{j} w_{0}-2 \rho^{j} w_{0} \\
& =2 \rho^{j+1} w_{0}
\end{aligned}
$$

as required. So by induction we have $w_{j}=2 \rho^{j} w_{0}$ for all $j \geqslant 1$.
(e) For there to be a limiting distribution we need to be able to choose w_{0} so that $\sum_{j \geqslant 0} w_{j}=1$. That is we need

$$
w_{0}\left(1+\sum_{j \geqslant 1} 2 \rho^{j}\right)=1
$$

We can do this by setting

$$
w_{0}=\left(1+\sum_{j \geqslant 1} 2 \rho^{j}\right)^{-1}
$$

provided that the sum converges. This happens if and only if $\rho<1$ that is $\lambda<2 \mu$.
(f) If $\lambda<2 \mu$ we have $\sum_{j \geqslant 1} 2 \rho^{j}=\frac{2 \rho}{1-\rho}$. So we take

$$
w_{0}=\left(1+\frac{2 \rho}{1-\rho}\right)^{-1}=\frac{1-\rho}{1+\rho}
$$

So the limiting distribution is

$$
w_{j}= \begin{cases}\frac{1-\rho}{1+\rho} & \text { if } j=0 \\ \frac{1-\rho}{1+\rho} 2 \rho^{j} & \text { if } j \geqslant 1\end{cases}
$$

5.

(a) We assumed that arrivals form a Poisson process. In this example they will not. The probability of an arrival in the interval $[t, t+h]$ will depend on $Q(t)$.
(b) The only thing that changes is the probability of an arrival happening. we have:

$$
\begin{aligned}
\mathbb{P}(Q(t+h)=n+1 \mid Q(t)=n) & =\mathbb{P}(\text { one arrival in }[t, t+h]) \cdot \mathbb{P}(\text { they do not leave })+o(h) \\
& =(\lambda h+o(h)) p_{n}+o(h) \\
& =p_{n} \lambda h+o(h)
\end{aligned}
$$

So we have a birth-death process with parameters $\lambda_{i}=p_{i} \lambda($ for $i \geqslant 0), \mu_{i}=\mu$ (for $i \geqslant 1$).
(c) We can achieve this by setting $p_{i}=1$ for $0 \leqslant i \leqslant k-1$ and $p_{i}=0$ for $i \geqslant k$.
6. Of course your answer will look different because your G will be different. However whichever G you chose, the general idea will be the same (see part (d) for the reason).
(a) There are lots of possible examples. I will go with:

$$
G=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
2 & -3 & 1 \\
2 & 2 & -4
\end{array}\right)
$$

Any 3×3 matrix with negative values on the diagonal, positive values everywhere else and row sums being 0 will do.
(b) The backwards equations are

$$
\left(\begin{array}{ccc}
p_{11}^{\prime}(t) & p_{12}^{\prime}(t) & p_{13}^{\prime}(t) \\
p_{21}^{\prime}(t) & p_{22}^{\prime}(t) & p_{23}^{\prime}(t) \\
p_{31}^{\prime}(t) & p_{32}^{\prime}(t) & p_{33}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
2 & -3 & 1 \\
2 & 2 & -4
\end{array}\right)\left(\begin{array}{ccc}
p_{11}(t) & p_{12}(t) & p_{13}(t) \\
p_{21}(t) & p_{22}(t) & p_{23}(t) \\
p_{31}(t) & p_{32}(t) & p_{33}(t)
\end{array}\right)
$$

By the assumption of the question, letting $t \rightarrow \infty$ we get that $p_{i j}(t) \rightarrow w_{j}$. So

$$
\begin{aligned}
\lim _{t \rightarrow \infty}\left(\begin{array}{lll}
p_{11}^{\prime}(t) & p_{12}^{\prime}(t) & p_{13}^{\prime}(t) \\
p_{21}^{\prime}(t) & p_{22}^{\prime}(t) & p_{23}^{\prime}(t) \\
p_{31}^{\prime}(t) & p_{32}^{\prime}(t) & p_{33}^{\prime}(t)
\end{array}\right) & =\left(\begin{array}{ccc}
-2 & 1 & 1 \\
2 & -3 & 1 \\
2 & 2 & -4
\end{array}\right)\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3} \\
w_{1} & w_{2} & w_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-2 w_{1}+w_{1}+w_{1} & -2 w_{2}+w_{2}+w_{2} & -2 w_{3}+w_{3}+w_{3} \\
2 w_{1}-3 w_{1}+w_{1} & 2 w_{2}-3 w_{2}+w_{2} & 2 w_{3}-3 w_{3}+w_{3} \\
2 w_{1}+2 w_{1}-4 w_{1} & 2 w_{2}+2 w_{2}-4 w_{2} & 2 w_{3}+2 w_{3}-4 w_{3}
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The 9 entries of this matrix identity together show that

$$
\lim _{t \rightarrow \infty} p_{i, j}^{\prime}(t)=0
$$

for all $i, j \in\{1,2,3\}$.
(c) The forwards equations are

$$
\left(\begin{array}{lll}
p_{11}^{\prime}(t) & p_{12}^{\prime}(t) & p_{13}^{\prime}(t) \\
p_{21}^{\prime}(t) & p_{22}^{\prime}(t) & p_{23}^{\prime}(t) \\
p_{31}^{\prime}(t) & p_{32}^{\prime}(t) & p_{33}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{lll}
p_{11}(t) & p_{12}(t) & p_{13}(t) \\
p_{21}(t) & p_{22}(t) & p_{23}(t) \\
p_{31}(t) & p_{32}(t) & p_{33}(t)
\end{array}\right)\left(\begin{array}{ccc}
-2 & 1 & 1 \\
2 & -3 & 1 \\
2 & 2 & -4
\end{array}\right)
$$

Letting $t \rightarrow \infty$ and using the result of part (b) we get that

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3} \\
w_{1} & w_{2} & w_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right)\left(\begin{array}{ccc}
-2 & 1 & 1 \\
2 & -3 & 1 \\
2 & 2 & -4
\end{array}\right)
$$

Since each row of the righthand side is equal, this is equivalent to

$$
\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right)\left(\begin{array}{ccc}
-2 & 1 & 1 \\
2 & -3 & 1 \\
2 & 2 & -4
\end{array}\right)
$$

This gives equations

$$
\begin{array}{r}
-2 w_{1}+2 w_{2}+2 w_{3}=0 \\
w_{1}-3 w_{2}+2 w_{3}=0 \\
w_{1}+w_{2}-4 w_{3}=0
\end{array}
$$

which we solve to get

$$
\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right)=\left(\begin{array}{lll}
w_{1} & \frac{3}{5} w_{1} & \frac{2}{5} w_{1}
\end{array}\right)
$$

Finally, since $\left(\begin{array}{lll}w_{1} & w_{2} & w_{3}\end{array}\right)$ is a probability distribution we must have $w_{1}+$ $w_{2}+w_{3}=1$ and so

$$
\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right)=\left(\begin{array}{lll}
\frac{1}{2} & \frac{3}{10} & \frac{1}{5}
\end{array}\right)
$$

(d) Why did everything magically cancel out to give the all 0 matrix in part (b)? If you look carefully, each entry is some w_{i} multiplied by the sum of the entries in row j of the generator. Because the rows in the generator always sum to 0 , this is 0 . It follows that the result of part (b) holds for any $n \times n$ generator.

Now by the argument of part (c) we get that

$$
\left(\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right) G=\left(\begin{array}{llll}
0 & 0 & \cdots & 0
\end{array}\right)
$$

We have proved that if a continuous-time Markov chain has a limiting distribution \mathbf{w} then \mathbf{w} is the solution to the matrix equation $\mathbf{w} G=\mathbf{0}$.
This should remind you of Theorem 4.6 (if a discrete-time Markov chain has a limiting distribution then it is the unique solution to the matrix equation $\mathbf{w} P=\mathbf{w}$).
7.
(a) The Poisson process waits in state i for a random time with $\operatorname{Exp}(\lambda)$ distribution and them jumps up to state $i+1$. Each of these jumps changes the parity of the state. It follows that $Y(t)$ is a the continuous-time process with state space $\{0,1\}$ and generator

$$
G=\left(\begin{array}{cc}
-\lambda & \lambda \\
\lambda & -\lambda
\end{array}\right) .
$$

(b) This would no longer be a Markov chain as it will not satisfy the Markov property. If $X(t)=0$ then $Y(t)=0$ and the time I wait for the next jump in Y is distributed $\operatorname{Exp}\left(\lambda_{0}\right)$. However, if $X(t)=2$ then $Y(t)=0$ (same as before) but the time I wait for the next jump in Y is distributed $\operatorname{Exp}\left(\lambda_{2}\right)$. So how the chain evolves from state 0 depends on the previous history of the process.
8.
(a) We can't apply the argument of Sheet 9 Question 1 because the arrivals do not form a Poisson process.
(b) The first arrival must arrive on a boat. The first boat comes at time 1 and is guaranteed to have a creature on it (since $p=1$). So the time of the first arrival is the constant random variable taking the value 1 with probability 1.
(c) Again the first arrival must come on a boat but now we must wait until the first boat with a creature on it. Since this happens with probability p, the first arrival time is distributed Geom (p).
(d) As in part (b) the first arrival happens at time 1 but now we must wait for the next arrival which could be either a birth or the next boat. Let T_{2} be the time that the population size first reaches 2 . Then certainly $1<T_{2} \leqslant 2$. The probability that there is a birth in the interval $[1,1+x]$ (with $0<x<1$) is $1-e^{-\beta x}$ (since there is one individual and births to them form a Poisson process of rate β). If there is no birth in the interval $[1,2]$ then the population reaches size at time 2 (when the second boat arrives). So the cdf of T_{2} is

$$
\mathbb{P}\left(T_{2} \leqslant x\right)= \begin{cases}0 & \text { if } x<1 \\ 1-e^{-\beta(x-1)} & \text { if } 1 \leqslant x<2 \\ 1 & \text { if } x \geqslant 2\end{cases}
$$

This is a rather peculiar random variable it is not discrete or continuous but a mixture of the two.

Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk

