Random Processes — 2023 /24 Solutions 10

(a) Since the holding times are distributed Exp(2), we should take all the diagonal
entries to be —2. Now we need the other entries chosen to make the row sums
all 0 and to satisfy %] = p;; (where p;; is the ij entry of P, that is the transition
probability in the discrete-time chain). We get:

2 1 1 0
2/3 -2 2/3 2/3
12 1 -2 1/2
1 2/3 1/3 —2

G:

(b) This time we need the holding time in state i to be Exp(i), we should take
all the diagonal entry g;; = —i. As before we need the other entries chosen to
make the row sums all 0 and to satisfy gTJ = p;; (where p;; is the ij entry of P,
that is the transition probability in the discrete-time chain). We get:

~1 1/2 1/2 0
2/3 -2 2/3 2/3
3/4 3/2 -3 3/4
2 4/3 2/3 —4

G:

3. Suppose that all the emails I receive have 0, 1, 2 or 3 attachments. Emails with
k attachments arrive as a Poisson process of rate ay. Let A(t) be the number of
attachments in all emails I receive in the time interval [0, ¢].

(a) Let’s think how A(t) can increase in a short interval [t,¢ + h]. In other words

what is P(A(t +h) =m+ k| A(t) = m). We can have:
e k= 1: An email with one attachment arrives. This happens with proba-
bility aih + o(h).

e k =2: An email with two attachments arrives. This happens with prob-
ability ash + o(h).

e k£ = 3: An email with three attachments arrives. This happens with
probability ash + o(h).
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Note that having k = 2 because two emails each with one attachment arrive is
possible but has probability o(h). This gives

Gii+1 = Q1,  Giiy2 = Q2,  Gi;43 = Q3

These are the only transitions that happen with non-negligible probability.

(b) We need to set g; = — (a1 + as + a3) to make the row sums of the generator
0. We get
—(oq + ag + ag) (031 o7 az 0 0
0 —(Oél + (0] + Oég) aq Qo (3 0
G = 0 0 —(1+a+a3) g a as

4. Let Q(t) be the total number of people in the system (waiting and being served)
at time ¢

(a) Just as for the M(\)/M(u)/1 queue we have
P(one arrival in [t,t + h]) = Ah + o(h)
as arrivals form a Poisson process of rate A\. So the birth parameter \; = A for

all 7 > 0.

For the departures we need to distinguish between the cases Q(t) = 1 (when
only one server is busy) and Q(t) > 2 (when both servers are busy). For the
first of these cases:

P(Q(t+h) = 0| Q(t) = 1) = P(service ends in [t,t + h])+o(h) = 1—e *"+o(h) = ph-+o(h)
and for the second case when m > 2 we have:
P(Q(t+ h) =m — 1| Q(t) = m) =P(one of the two services ends in [¢,t + h]) 4+ o(h)
=2(1 — e ") (e
= 2uh + o(h)

All other transitions between states have probability o(h) so this is a birth-
death process with parameters

0 ifi=0;
o2 ifi > 2.
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(which can also be represented by the generator

—-A A 0 0 0 0

nwo =A—pu A 0 0 O
G=120 24 —A—2u A 0 0
A0

0 0 2 —A—2u

(b) The forwards equations are:
Pio(t) = =Apio(t) + ppia(t)
Pia(t) = Apio(t) — (1 + N)pia () + 2up;o(t)
p;J- (t) = Apij—1(t) — (2 4+ N)pij(t) + 2up; j41(t) for j =2
and the backwards equations are:
Pos(t) = —Apo,;i(t) + Ap1;(t)
pll,](t) = /’Lpifl,j(t) — (,M + )\)])l’](t) + )\pi+17]‘ (t)
pg,j(t) = 2upi—1,5(t) — (2p + N)pi;(t) + Apiy1,;(t) for i > 2.

(c) Lettingt — oo, and assuming that p; ;(t) — w; for all 4, the backward equations
become:

tlirélop67j (t) = —Awj + Aw; =0
i pl 5 (8) = pw; — (i + Aw; + dw; =0
tlim Pi () = 2pw; — (2 + MNw; + Aw; =0 for i > 2.
—o0
and the fowards equations become:
tli)rglopg,j(t) = —Awy + pw;
tli}rgop’u(t) = Awy — (p + N)wy + 2w,
tlim Pii(t) = Awj — (2p + Nwj + 2pw;yq - for j > 2.
So using the result of the limit of the backwards equations in the limit of the
forwards equations:
—>\w0 + MWy = 0
Awy — (p + Nwy + 2pwe =0
Awj_g — (2p+ Nw; + 2pw,p =0 for j > 2.
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so we have equations:

A
wr = —Wo
i
[+ A A
Wy = Wy — —w
2 2 1 2,uo
2+ A A .
W1 = M2,u wj—ﬂwj,l for j > 2.

d e From the first equation we have w; = 2wy = 2pwy as required
M P

e Substituting for w; in the second equation we get

A AN A A2 0,2
Wy = —— — Wy — — Wy = ——= Wy = w,
2 2M’u02u02u20 P Wo
as required. So by induction we have w; = 2p7 wy for all j > 1.

e Suppose that w; = 2p’wy for all 1 < 7 < j then from the equation for w; 4

we have
2+ N A
Wj1 = uQM 2p’wo — 52/7] "y
) A )
= 2p7w0+2@p7w0 —QpJ'LUQ
—_ 2pj+lw0

as required. So by induction we have w; = 2p’w, for all j > 1.

(e) For there to be a limiting distribution we need to be able to choose wy so that
>_jsowj = 1. That is we need

wo <1+22pj> =1

=1

We can do this by setting

wy = <1+22pj>_1

j=z1

provided that the sum converges. This happens if and only if p < 1 that is
A< 2pu.
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(f) If A <2 we have >, 2p7 = 22 So we take

2 \ ' 1-
wp— (1420} _1=p
1—p 1+p

So the limiting distribution is

1— e oAl
ﬁj2p7 if 7 > 1.

(a) We assumed that arrivals form a Poisson process. In this example they will
not. The probability of an arrival in the interval [¢, ¢ 4+ h] will depend on Q(t).

(b) The only thing that changes is the probability of an arrival happening. we
have:

P(Q(t+h)=n+1]Q(t) =n)="P(one arrival in [t,t + h]) - P(they do not leave) + o(h)
= (A +o(h))pn + o(h)
= puh + o(h)

So we have a birth-death process with parameters A\; = p;\ (for i > 0), u; = p
(for i > 1).

(¢) We can achieve this by setting p; =1 for 0 <i <k —1 and p; =0 for i > k.

6. Of course your answer will look different because your G will be different. However
whichever G you chose, the general idea will be the same (see part (d) for the reason).

(a) There are lots of possible examples. I will go with:

G=1|2 -3 1

Any 3 x 3 matrix with negative values on the diagonal, positive values every-
where else and row sums being 0 will do.
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(b) The backwards equations are

p/n(t) p/12(t> p/13(t) -2 1 1 pll(t) p12(t) p13(t)
Pou(t) Po(t) phs(t) | =1 2 =3 1 | |pad) p2a) pxs(l)
Py (t) paa(t) pas(t) 2 2 -4 pa1(t) ps2(t) pss(t)

By the assumption of the question, letting ¢ — oo we get that p;;(t) — w;. So

Pu(t) pia(t) pist) -2 1 1 wp W2 W3
tlggo Por(t) Pholt) Pos(®) | =1 2 -3 1 wp W2 Ws
Pai(t) Pao(t) pas(t) 2 2 -4 wy w2 w3

—2w1 + w; +wq —211)2 + wag + wo —2’(1)3 + w3 + ws

= | 2w; — 3wy +wy 2wy —3ws +wy  2w3 — 3ws + ws
2’&01 + 2’(01 — 4w1 2w2 + 2w2 — 4U}2 211)3 + 221)3 — 411)3

000

0 0
0 0

o O

The 9 entries of this matrix identity together show that

lim p; ;(t) = 0

t—o0
for all 4,5 € {1, 2, 3}.

(c) The forwards equations are

Pu(t) pia(t) pis(t) pu(t) pia(t) pus(t) -2 1 1
Pou(t) pa(t) pog(t) | = | p2u(t) poa(t) pos(t) | | 2 —3 1
P (t) pho(t) pis(t) pai(t) ps(t) pss(t)) \2 2 —4
Letting ¢t — oo and using the result of part (b) we get that
0 0O w; W2 Wj —2 1 1
0 0 0)]=1w wy ws 2 -3 1
0 00 w1, W2 Wj 2 2 —4

Since each row of the righthand side is equal, this is equivalent to

(00 0)=(wr wy wy)| 2 =3 1
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This gives equations

—2w1 + 2’LU2 + 2103 =0
w1—3w2+2w3:O

w1+w2—4w3:O

which we solve to get

(’w1 w2 w3) = (wl %wl %wl)
Finally, since (wl Wo U)g) is a probability distribution we must have w; +

wy + w3 = 1 and so
1 3 1

(wi wy wy)=(3 i 3)
Why did everything magically cancel out to give the all 0 matrix in part (b)?
If you look carefully, each entry is some w; multiplied by the sum of the entries
in row j of the generator. Because the rows in the generator always sum to 0,
this is 0. It follows that the result of part (b) holds for any n x n generator.

Now by the argument of part (c) we get that
(w1 wy - wn)G: (O 0o --- 0)

We have proved that if a continuous-time Markov chain has a limiting distri-
bution w then w is the solution to the matrix equation wG = 0.

This should remind you of Theorem 4.6 (if a discrete-time Markov chain has
a limiting distribution then it is the unique solution to the matrix equation
wP =w).

The Poisson process waits in state i for a random time with Exp(A) distribution
and them jumps up to state ¢ + 1. Each of these jumps changes the parity of
the state. It follows that Y'(¢) is a the continuous-time process with state space

{0,1} and generator
-2 A
o= (3 2).

This would no longer be a Markov chain as it will not satisfy the Markov
property. If X (¢) = 0 then Y (¢) = 0 and the time I wait for the next jump in
Y is distributed Exp()g). However, if X (t) = 2 then Y'(¢) = 0 (same as before)
but the time I wait for the next jump in Y is distributed Exp(A2). So how the
chain evolves from state 0 depends on the previous history of the process.

7
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(a)

(b)

We can’t apply the argument of Sheet 9 Question 1 because the arrivals do not
form a Poisson process.

The first arrival must arrive on a boat. The first boat comes at time 1 and
is guaranteed to have a creature on it (since p = 1). So the time of the first
arrival is the constant random variable taking the value 1 with probability 1.

Again the first arrival must come on a boat but now we must wait until the
first boat with a creature on it. Since this happens with probability p, the first
arrival time is distributed Geom(p).

As in part (b) the first arrival happens at time 1 but now we must wait for
the next arrival which could be either a birth or the next boat. Let 15 be the
time that the population size first reaches 2. Then certainly 1 < 75 < 2. The
probability that there is a birth in the interval [1,1 4+ z] (with 0 < z < 1)
is 1 — e P (since there is one individual and births to them form a Poisson
process of rate 3). If there is no birth in the interval [1, 2] then the population
reaches size at time 2 (when the second boat arrives). So the cdf of Ty is

0 if x < 1;
PThy<z)=R1—-ef"D if1 <o <2
1 if 2> 2.

This is a rather peculiar random variable it is not discrete or continuous but a
mixture of the two.

Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk



