1.

- (a) The island will be uninhabited at time 3 if and only if there are no arrivals in the interval [0,3]. Since the arrivals form a Poisson process of rate α the probability of this is $e^{-3\alpha}$. Hence the probability that the island is inhabited after 3 months is $1 e^{-3\alpha}$.
- (b) For there to be no new creatures in the interval [t, t + h] we need that there are no arrivals and that each of the existing m creatures produces no offspring. By the assumptions of the question these are independent so:

$$\mathbb{P}(X(t+h) = m \mid X(t) = m) = \mathbb{P}(\text{no arrivals}) \cdot \mathbb{P}(\text{no births for a single creature})^m$$

$$= (1 - \alpha h + o(h))(1 - \beta h + o(h))^m$$

$$= (1 - \alpha h)(1 - \beta h)^m + o(h)$$

$$= (1 - \alpha h)(1 - m\beta h + o(h)) + o(h)$$

$$= 1 - \alpha h - m\beta h + m\alpha\beta h^2 + o(h)$$

$$= 1 - (\alpha + m\beta)h + o(h)$$

(c) For there to be one new creature in the interval [t, t+h] we must have either a single arrival and no births or no arrivals and a single birth. The single birth could happen to any one of the m creatures existing at time t. So

$$\mathbb{P}(X(t+h) = m+1 \mid X(t) = m) = \mathbb{P}(\text{one arrival}) \cdot \mathbb{P}(\text{no births}) + \mathbb{P}(\text{no arrivals}) \cdot \mathbb{P}(\text{one birth})$$

$$= (\alpha h + o(h))(1 - \beta h + o(h))^{m}$$

$$+ (1 - \alpha h + o(h))m(\beta h + o(h))(1 - \beta h + o(h))^{m-1}$$

$$= \alpha h + m\beta h + o(h)$$

$$= (\alpha + m\beta)h + o(h)$$

- (d) To have more than two new creatures one of the following must happen in the interval [t, t + h].
 - at least 2 arrivals
 - at least 2 creatures producing offspring
 - one creature producing at least 2 offspring

Random Processes Solutions 9

Each of these happens with probability o(h). So $\mathbb{P}(X(t+h) \ge m+2 \mid X(t) = m) = o(h)$.

- (e) Parts (b,c,d) show that the probabilities $\mathbb{P}(X(t+h)=n\mid X(t)=m)$ satisfy the conditions of a birth process with birth parameters $\lambda_i=\alpha+\beta i$. It was also clear from these calculations that $\mathbb{P}(X(t+s)=n\mid X(t)=m)$ does not depend on the process up to time t. That is if a< b then X(b)-X(a) conditioned on X(a) is independent of the process up to time a. These are the conditions we need for a birth process.
- 2. Let $(X(t): t \ge 0)$ be the size of a population given by a birth process with X(0) = 0 and birth parameters $\lambda_i = 3 + i$.
 - (a) For a general birth process we have

$$p'_{0}(t) = -\lambda_{0}p_{0}(t)$$

$$p'_{1}(t) = \lambda_{0}p_{0}(t) - \lambda_{1}p_{1}(t)$$

$$p'_{2}(t) = \lambda_{1}p_{1}(t) - \lambda_{2}p_{2}(t)$$

From the questions we have $\lambda_0 = 3$, $\lambda_1 = 4$, $\lambda_2 = 5$ so the equations are:

$$p'_0(t) = -3p_0(t)$$

$$p'_1(t) = 3p_0(t) - 4p_1(t)$$

$$p'_2(t) = 4p_1(t) - 5p_2(t)$$

(b) The first equation has solution $p_0 = Ce^{-3t}$ and we know $p_0(0) = 1$ so C = 1. So the solution is

$$p_0(t) = e^{-3t}$$

Rearranging the second equation and substituting for $p_0(t)$ gives

$$p_1'(t) + 4p_1(t) = 3e^{-3t}$$

$$e^{-4t} \frac{d}{dt} \left(p_1(t)e^{4t} \right) = 3e^{-3t} \qquad \text{(rewriting lefthand side as a derivative)}$$

$$\frac{d}{dt} \left(p_1(t)e^{4t} \right) = 3e^t.$$

And so (using the initial condition $p_1(0) = 0$),

$$p_1(t)e^{4t} = \int_0^t 3e^x \, dx = 3e^t - 3.$$

Random Processes Solutions 9

So the solution is

$$p_1(t) = 3e^{-3t} - 3e^{-4t}.$$

Rearranging the third equation and substituting for $p_1(t)$ gives

$$p'_{2}(t) + 5p_{2}(t) = 12e^{-3t} - 12e^{-4t}$$
 $e^{-5t}\frac{d}{dt}(p_{2}(t)e^{5t}) = 12e^{-3t} - 12e^{-4t}$ (rewriting lefthand side as a derivative)
$$\frac{d}{dt}(p_{1}(t)e^{4t}) = 12e^{2t} - 12e^{t}.$$

And so (using the initial condition $p_2(0) = 0$),

$$p_2(t)e^{5t} = \int_0^t 12e^{2x} - 12e^x dx = \left[6e^{2x} - 12e^x\right]_{x=0}^{x=t} = 6e^{2t} - 12e^t + 6.$$

So the solution is

$$p_2(t) = 6e^{-3t} - 12e^{-4t} + 6e^{-5t}.$$

(c) The probability that the population has size at least 3 at time 1 is

$$\mathbb{P}(X(1) \geqslant 3) = 1 - \mathbb{P}(X(1) = 0) - \mathbb{P}(X(1) = 1) - \mathbb{P}(X(1) = 2)$$

We know that $\mathbb{P}(X(1) = k) = p_k(1)$ and putting in the values for these from above gives

$$\mathbb{P}(X(1) \ge 3) = 1 - p_0(1) - p_1(1) - p_2(1)$$

$$= 1 - e^{-3} - 3e^{-3} + 3e^{-4} - 6e^{-3} + 12e^{-4} - 6e^{-5}$$

$$= 1 - 10e^{-3} + 15e^{-4} - 6e^{-5} \approx 0.736.$$

(d) We know that S_i the time between the (i-1)th birth and the *i*th birth is distributed $\text{Exp}(\lambda_{i-1})$ so has expectation $\frac{1}{\lambda_{i-1}}$. So

$$\mathbb{E}(\text{time population reaches size } 10) = \mathbb{E}(S_1 + S_2 + \dots + S_{10})$$

$$= \mathbb{E}(S_1) + \mathbb{E}(S_2) + \dots + \mathbb{E}(S_{10})$$

$$= \frac{1}{\lambda_0} + \frac{1}{\lambda_1} + \dots + \frac{1}{\lambda_9}$$

(there are 10 terms in this sum because we need to wait for 10 births).

Putting in the λ_i from the question we get:

$$\mathbb{E}(\text{time population reaches size } 10) = \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{12} = 1.603$$

Random Processes Solutions 9

(e) These are precisely the parameters we worked out in question 1 with $\alpha = 3$ and $\beta = 1$. So a situation where this could arise is measuring the size of a population where we have immigration occurring at a rate 3 per unit time and each individual producing offspring at a rate 1 per unit time with all of these processes being independent.

3.

(a) The equations are

$$p'_n(t) = -n\lambda p_n(t) + (n-1)\lambda p_{n-1}(t)$$

for $n \geqslant 1$.

(b) We need to set $p_n(t) = e^{-\lambda t} (1 - e^{-\lambda t})^{n-1}$ and check that the equation is satisfied. Differentiating this expression using the product rule we have

$$p'_n(t) = -\lambda e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} + e^{-\lambda t} \lambda e^{-\lambda t} (n-1) (1 - e^{-\lambda t})^{n-2}$$

Now we just need to substitute these expressions (for $p_n(t)$ and $p'_n(t)$) into the equation and check that it works.

One way to do this is to rewrite the equation as f(t) = 0 where

$$f(t) = p'_n(t) + n\lambda p_n(t) - (n-1)\lambda p_{n-1}(t).$$

Let's substitute into this and check that we get 0.

$$f(t) = -\lambda e^{-\lambda t} \left(1 - e^{-\lambda t} \right)^{n-1} + e^{-\lambda t} \lambda e^{-\lambda t} (n-1) \left(1 - e^{-\lambda t} \right)^{n-2} + n\lambda e^{-\lambda t} \left(1 - e^{-\lambda t} \right)^{n-1}$$

$$- (n-1)\lambda e^{-\lambda t} \left(1 - e^{-\lambda t} \right)^{n-2}$$

$$= \left(1 - e^{-\lambda t} \right)^{n-2} \left(-\lambda e^{-\lambda t} (1 - e^{-\lambda t}) + (n-1)\lambda e^{-2\lambda t} + n\lambda e^{-\lambda t} (1 - e^{-\lambda t}) - (n-1)\lambda e^{-\lambda t} \right)$$

The second bracket is equal to

$$\left(-\lambda e^{-\lambda t} + \lambda e^{-2\lambda t} + n\lambda e^{-2\lambda t} - \lambda e^{-2\lambda t} + n\lambda e^{-\lambda t} - n\lambda e^{-2\lambda t} - n\lambda e^{-\lambda t} + \lambda e^{-\lambda t}\right) = 0$$

and so this is indeed a solution to the equations.

- (c) We have that $\mathbb{P}(X(t)=n)=p(1-p)^{n-1}$ where $p=e^{-\lambda t}$ and so $X(t)\sim \mathrm{Geom}(e^{-\lambda t})$. Hence $\mathbb{E}(X(t))=e^{\lambda t}$.
- (d) If Y(t) is a Poisson process of rate λ then $Y(t) \sim \text{Po}(\lambda t)$ and so $\mathbb{E}(Y(t)) = \lambda t$. So the expected size of a linear birth process is exponential in t in contrast to linear in t for the Poisson process. The linear birth process grows much faster.

4.

(a) In each case, if we write S_i for the time between the (i-1)th arrival/birth and the ith arrival/birth then

$$\mathbb{E}(\text{time of } k\text{th birth}) = \mathbb{E}(S_1) + \mathbb{E}(S_2) + \cdots + \mathbb{E}(S_k)$$

In Y(t) we have that $S_i \sim \text{Exp}(2)$ while in Z(t) we have $S_i \sim \text{Exp}(2^{i-1})$.

Write e_k for the expectation of the time of the kth birth in process Y and f_k for the expectation of the time of the kth birth in process Z. Using the observation above we have:

$$e_1 = \frac{1}{2};$$
 $e_2 = 1;$ $e_3 = \frac{3}{2};$ $e_4 = 2.$

$$f_1 = 1;$$
 $f_2 = \frac{3}{2};$ $f_3 = \frac{7}{4};$ $f_4 = \frac{15}{8}.$

So $e_k < f_k$ for k = 1, 2, 3 but $e_k > f_k$ for k = 4. Also $f_k < 2$ for all k and $e_k > 2$ for all $k \ge 5$ so we have $e_k > f_k$ for all $k \ge 4$.

- (b) In the Poisson process Y(t) we have birth parameters $\lambda_i = 2$. The sum $\sum_{i=0}^{\infty} \frac{1}{\lambda_i} = \sum_{i=0}^{\infty} \frac{1}{2}$ is infinite so by Theorem 8.3 the probability of explosion is 0.
 - In the birth process Z(t) we have birth parameters $\lambda_i = 2^i$. The sum $\sum_{i=0}^{\infty} \frac{1}{\lambda_i} = \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$ which is finite so by Theorem 8.3 the probability of explosion is 1.

Please let me know if you have any comments or corrections

Robert Johnson r.johnson@qmul.ac.uk