## Solutions 9

1. 

(a) The island will be uninhabited at time 3 if and only if there are no arrivals in the interval $[0,3]$. Since the arrivals form a Poisson process of rate $\alpha$ the probability of this is $e^{-3 \alpha}$. Hence the probability that the island is inhabited after 3 months is $1-e^{-3 \alpha}$.
(b) For there to be no new creatures in the interval $[t, t+h]$ we need that there are no arrivals and that each of the existing $m$ creatures produces no offspring. By the assumptions of the question these are independent so:

$$
\begin{aligned}
\mathbb{P}(X(t+h)=m \mid X(t)=m) & =\mathbb{P}(\text { no arrivals }) \cdot \mathbb{P}(\text { no births for a single creature })^{m} \\
& =(1-\alpha h+o(h))(1-\beta h+o(h))^{m} \\
& =(1-\alpha h)(1-\beta h)^{m}+o(h) \\
& =(1-\alpha h)(1-m \beta h+o(h))+o(h) \\
& =1-\alpha h-m \beta h+m \alpha \beta h^{2}+o(h) \\
& =1-(\alpha+m \beta) h+o(h)
\end{aligned}
$$

(c) For there to be one new creature in the interval $[t, t+h]$ we must have either a single arrival and no births or no arrivals and a single birth. The single birth could happen to any one of the $m$ creatures existing at time $t$. So

$$
\begin{aligned}
\mathbb{P}(X(t+h)=m+1 \mid X(t)=m) & =\mathbb{P}(\text { one arrival }) \cdot \mathbb{P}(\text { no births })+\mathbb{P}(\text { no arrivals }) \cdot \mathbb{P}(\text { one birth }) \\
& =(\alpha h+o(h))(1-\beta h+o(h))^{m} \\
& +(1-\alpha h+o(h)) m(\beta h+o(h))(1-\beta h+o(h))^{m-1} \\
& =\alpha h+m \beta h+o(h) \\
& =(\alpha+m \beta) h+o(h)
\end{aligned}
$$

(d) To have more than two new creatures one of the following must happen in the interval $[t, t+h]$.

- at least 2 arrivals
- at least 2 creatures producing offspring
- one creature producing at least 2 offspring

Each of these happens with probability $o(h)$. So $\mathbb{P}(X(t+h) \geqslant m+2 \mid X(t)=$ $m)=o(h)$.
(e) Parts (b,c,d) show that the probabilities $\mathbb{P}(X(t+h)=n \mid X(t)=m)$ satisfy the conditions of a birth process with birth parameters $\lambda_{i}=\alpha+\beta i$. It was also clear from these calculations that $\mathbb{P}(X(t+s)=n \mid X(t)=m)$ does not depend on the process up to time $t$. That is if $a<b$ then $X(b)-X(a)$ conditioned on $X(a)$ is independent of the process up to time $a$. These are the conditions we need for a birth process.
2. Let $(X(t): t \geqslant 0)$ be the size of a population given by a birth process with $X(0)=0$ and birth parameters $\lambda_{i}=3+i$.
(a) For a general birth process we have

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\lambda_{0} p_{0}(t) \\
p_{1}^{\prime}(t) & =\lambda_{0} p_{0}(t)-\lambda_{1} p_{1}(t) \\
p_{2}^{\prime}(t) & =\lambda_{1} p_{1}(t)-\lambda_{2} p_{2}(t)
\end{aligned}
$$

From the questions we have $\lambda_{0}=3, \lambda_{1}=4, \lambda_{2}=5$ so the equations are:

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-3 p_{0}(t) \\
p_{1}^{\prime}(t) & =3 p_{0}(t)-4 p_{1}(t) \\
p_{2}^{\prime}(t) & =4 p_{1}(t)-5 p_{2}(t)
\end{aligned}
$$

(b) The first equation has solution $p_{0}=C e^{-3 t}$ and we know $p_{0}(0)=1$ so $C=1$. So the solution is

$$
p_{0}(t)=e^{-3 t}
$$

Rearranging the second equation and substituting for $p_{0}(t)$ gives

$$
\begin{aligned}
p_{1}^{\prime}(t)+4 p_{1}(t) & =3 e^{-3 t} \\
e^{-4 t} \frac{d}{d t}\left(p_{1}(t) e^{4 t}\right) & =3 e^{-3 t} \quad \text { (rewriting lefthand side as a derivative) } \\
\frac{d}{d t}\left(p_{1}(t) e^{4 t}\right) & =3 e^{t} .
\end{aligned}
$$

And so (using the initial condition $p_{1}(0)=0$ ),

$$
p_{1}(t) e^{4 t}=\int_{0}^{t} 3 e^{x} d x=3 e^{t}-3 .
$$

So the solution is

$$
p_{1}(t)=3 e^{-3 t}-3 e^{-4 t}
$$

Rearranging the third equation and substituting for $p_{1}(t)$ gives

$$
\begin{aligned}
p_{2}^{\prime}(t)+5 p_{2}(t) & =12 e^{-3 t}-12 e^{-4 t} \\
e^{-5 t} \frac{d}{d t}\left(p_{2}(t) e^{5 t}\right) & =12 e^{-3 t}-12 e^{-4 t} \quad \text { (rewriting lefthand side as a derivative) } \\
\frac{d}{d t}\left(p_{1}(t) e^{4 t}\right) & =12 e^{2 t}-12 e^{t} .
\end{aligned}
$$

And so (using the initial condition $p_{2}(0)=0$ ),

$$
p_{2}(t) e^{5 t}=\int_{0}^{t} 12 e^{2 x}-12 e^{x} d x=\left[6 e^{2 x}-12 e^{x}\right]_{x=0}^{x=t}=6 e^{2 t}-12 e^{t}+6 .
$$

So the solution is

$$
p_{2}(t)=6 e^{-3 t}-12 e^{-4 t}+6 e^{-5 t}
$$

(c) The probability that the population has size at least 3 at time 1 is

$$
\mathbb{P}(X(1) \geqslant 3)=1-\mathbb{P}(X(1)=0)-\mathbb{P}(X(1)=1)-\mathbb{P}(X(1)=2)
$$

We know that $\mathbb{P}(X(1)=k)=p_{k}(1)$ and putting in the values for these from above gives

$$
\begin{aligned}
\mathbb{P}(X(1) \geqslant 3) & =1-p_{0}(1)-p_{1}(1)-p_{2}(1) \\
& =1-e^{-3}-3 e^{-3}+3 e^{-4}-6 e^{-3}+12 e^{-4}-6 e^{-5} \\
& =1-10 e^{-3}+15 e^{-4}-6 e^{-5} \approx 0.736 .
\end{aligned}
$$

(d) We know that $S_{i}$ the time between the $(i-1)$ th birth and the $i$ th birth is distributed $\operatorname{Exp}\left(\lambda_{i-1}\right)$ so has expectation $\frac{1}{\lambda_{i-1}}$. So

$$
\begin{aligned}
\mathbb{E}(\text { time population reaches size } 10) & =\mathbb{E}\left(S_{1}+S_{2}+\cdots+S_{10}\right) \\
& =\mathbb{E}\left(S_{1}\right)+\mathbb{E}\left(S_{2}\right)+\cdots+\mathbb{E}\left(S_{10}\right) \\
& =\frac{1}{\lambda_{0}}+\frac{1}{\lambda_{1}}+\cdots+\frac{1}{\lambda_{9}}
\end{aligned}
$$

(there are 10 terms in this sum because we need to wait for 10 births).
Putting in the $\lambda_{i}$ from the question we get:

$$
\mathbb{E}(\text { time population reaches size } 10)=\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{12}=1.603
$$

(e) These are precisely the parameters we worked out in question 1 with $\alpha=3$ and $\beta=1$. So a situation where this could arise is measuring the size of a population where we have immigration occuring at a rate 3 per unit time and each individual producing offspring at a rate 1 per unit time with all of these processes being independent.
3.
(a) The equations are

$$
p_{n}^{\prime}(t)=-n \lambda p_{n}(t)+(n-1) \lambda p_{n-1}(t)
$$

for $n \geqslant 1$.
(b) We need to set $p_{n}(t)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}$ and check that the equation is satisfied. Differentiating this expression using the product rule we have

$$
p_{n}^{\prime}(t)=-\lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}+e^{-\lambda t} \lambda e^{-\lambda t}(n-1)\left(1-e^{-\lambda t}\right)^{n-2}
$$

Now we just need to substitute these expressions (for $p_{n}(t)$ and $p_{n}^{\prime}(t)$ ) into the equation and check that it works.
One way to do this is to rewrite the equation as $f(t)=0$ where

$$
f(t)=p_{n}^{\prime}(t)+n \lambda p_{n}(t)-(n-1) \lambda p_{n-1}(t) .
$$

Let's substitute into this and check that we get 0 .

$$
\begin{aligned}
f(t) & =-\lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}+e^{-\lambda t} \lambda e^{-\lambda t}(n-1)\left(1-e^{-\lambda t}\right)^{n-2}+n \lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1} \\
& -(n-1) \lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-2} \\
& =\left(1-e^{-\lambda t}\right)^{n-2}\left(-\lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)+(n-1) \lambda e^{-2 \lambda t}+n \lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)-(n-1) \lambda e^{-\lambda t}\right)
\end{aligned}
$$

The second bracket is equal to $\left(-\lambda e^{-\lambda t}+\lambda e^{-2 \lambda t}+n \lambda e^{-2 \lambda t}-\lambda e^{-2 \lambda t}+n \lambda e^{-\lambda t}-n \lambda e^{-2 \lambda t}-n \lambda e^{-\lambda t}+\lambda e^{-\lambda t}\right)=0$
and so this is indeed a solution to the equations.
(c) We have that $\mathbb{P}(X(t)=n)=p(1-p)^{n-1}$ where $p=e^{-\lambda t}$ and so $X(t) \sim$ $\operatorname{Geom}\left(e^{-\lambda t}\right)$. Hence $\mathbb{E}(X(t))=e^{\lambda t}$.
(d) If $Y(t)$ is a Poisson process of rate $\lambda$ then $Y(t) \sim \operatorname{Po}(\lambda t)$ and so $\mathbb{E}(Y(t))=\lambda t$. So the expected size of a linear birth process is exponential in $t$ in contrast to linear in $t$ for the Poisson process. The linear birth process grows much faster.
4.
(a) In each case, if we write $S_{i}$ for the time between the $(i-1)$ th arrival/birth and the $i$ th arrival/birth then

$$
\mathbb{E}(\text { time of } k \text { th birth })=\mathbb{E}\left(S_{1}\right)+\mathbb{E}\left(S_{2}\right)+\cdots+\mathbb{E}\left(S_{k}\right)
$$

In $Y(t)$ we have that $S_{i} \sim \operatorname{Exp}(2)$ while in $Z(t)$ we have $S_{i} \sim \operatorname{Exp}\left(2^{i-1}\right)$.
Write $e_{k}$ for the expectation of the time of the $k$ th birth in process $Y$ and $f_{k}$ for the expectation of the time of the $k$ th birth in process $Z$. Using the observation above we have:

$$
\begin{aligned}
& e_{1}=\frac{1}{2} ; \quad e_{2}=1 ; \quad e_{3}=\frac{3}{2} ; \quad e_{4}=2 . \\
& f_{1}=1 ; \quad f_{2}=\frac{3}{2} ; \quad f_{3}=\frac{7}{4} ; \quad f_{4}=\frac{15}{8} .
\end{aligned}
$$

So $e_{k}<f_{k}$ for $k=1,2,3$ but $e_{k}>f_{k}$ for $k=4$. Also $f_{k}<2$ for all $k$ and $e_{k}>2$ for all $k \geqslant 5$ so we have $e_{k}>f_{k}$ for all $k \geqslant 4$.
(b) - In the Poisson process $Y(t)$ we have birth parameters $\lambda_{i}=2$. The sum $\sum_{i=0}^{\infty} \frac{1}{\lambda_{i}}=\sum_{i=0}^{\infty} \frac{1}{2}$ is infinite so by Theorem 8.3 the probability of explosion is 0 .

- In the birth process $Z(t)$ we have birth parameters $\lambda_{i}=2^{i}$. The sum $\sum_{i=0}^{\infty} \frac{1}{\lambda_{i}}=\sum_{i=0}^{\infty} \frac{1}{2^{i}}=2$ which is finite so by Theorem 8.3 the probability of explosion is 1 .


## Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk

