MTH6134 2023 Sample Quiz 1

(1) **Beetles**

EMBEDDED ANSWERS penalty 0.10

Consider the beetles' data as seen in the lab and fit a generalized linear model using the complementary log-log link $\eta_i = \log(-\log(1-\pi_i))$ and the binomial distribution in the R function glm. Examine the output and do calculations before replying to the questions below.

A) What is the value of $\hat{\beta}_0$?

NUMERICAL marked out of 1

 $-39.5723092 \pm 5e-1$ \checkmark

B) Write the standard error of the estimate $\hat{\beta}_0$.

NUMERICAL marked out of 1

 $3.2402899 \pm 5e-1$ \checkmark

C) Consider testing $H_0: \beta_0 = 0$ against $H_1: \beta_0 \neq 0$. Using the code output and the usual $\alpha = 0.05$, select the correct item below.

MULTIPLE CHOICE marked out of 1 One answer only Shuffle

Reject the null hypothesis. \checkmark	
Do not reject the null hypothe-	
sis.	
The test is not conclusive, we	
need more data.	
None of the other conclusions.	

D) Write $\hat{\pi}_3$, the predicted probability for the third observation, that is the predicted fatality for data $(y_3, r_3, x_3) = (18, 62, 0.2903)$.

NUMERICAL marked out of 1

 $0.33797 \pm 5e-2$ (0%)

E) Write the log-likelihood for the null model, i.e. for the model with all fatality probabilities equal.

NUMERICAL marked out of 1

$-155.2002438 \pm 5e-1 (0\%)$	
-------------------------------	--

F) How many parameters are associated with the null model.

NUMERICAL marked out of 1

 $1 \pm 1e-2$ (0%)

G) Write the residual deviance for your analysis.

NUMERICAL marked out of 1

 $3.4464 \pm 5e-2$ (0%)

H) Write the degrees of freedom associated with the residual deviance.

NUMERICAL marked out of 1

 $6 \pm 5e-2$ (0%)

I) For which comparison (i.e. test) do we use the residual deviance for?

Multiple choice	marked out of 1	One answer only	Shuffle

The glm fit against the maximal	
model. \checkmark	
The null model against the glm	
fit.	
The null model against the max-	
imal model.	
To compare all three: null, glm	
and maximal models.	
None of the stated comparisons.	

(2) **Poisson**

Embedded answers penalty 0.10

Consider data 5, 1, 3, 5, 5, 4, 3, 2 which are assumed to be independent realizations of the Poisson distribution with expectation μ . We want to test $H_0: \mu = \mu_0$ with $\mu_0 = 2$.

A) Write the log-likelihood for the data under H_0 .

NUMERICAL	marked out of 1
-----------	-----------------

$-18.4091 \pm 5e-2 (0\%)$	
---------------------------	--

B) Write the likelihood ratio $\Lambda(y)$ for testing H_0 .

NUMERICAL marked out of 1

 $0.0255 \pm 5e-2$ (0%)

C) Use Wilks' theorem to approximate the distribution of $-2\log \Lambda(y)$ and write the pvalue for testing H_0 .

NUMERICAL marked out of 1

 $0.0067 \pm 5e-1 (0\%)$

D) Using the pvalue you obtained and the usual $\alpha = 0.05$, select from below as conclusion from your analysis.

MULTIPLE CHOICE	marked out of 1	One answer only	Shuffle
Reject the null hypothesis. \checkmark			

Reject the null hypothesis. \checkmark	
Do not reject the null hypothe-	
sis.	
The test is not conclusive, we	
need more data.	
None of the other conclusions.	

Total of marks: 13