In the problem sheet solutions, I usually write in quite a lot of detail giving lots of explanation and links to other material from the module. Since this is an assessment I have written thes solutions in a somewhat terser style. You can think of these as the minimum needed for the marker to give full marks with no hesitation. Of course you might get away with a bit less detail. Also there are often several ways to do a question, so your answer may not look like mine but still be worth full marks. I will give brief individual feedback along with marking and you are welcome to ask about your work by email or in a learning support hour.

1.

(a)

(0.45)	0.45	0.09	0.01
0.2	0.8	0	0
0.5	0	0	0.5
0	0	0	1 /

- (b) In Markov chain terms, this is asking for the expectation of the number of visits to state 1 before absorption in state 4. We can calculate this using first-step analysis (Theorem 3.2).
- (c) Let w(1) = 1, w(2) = w(3) = 0 and Let $V = \sum_{t=0}^{T-1} w(X_t)$ be the number of visits to state 1. Let $b_i = \mathbb{E}(V \mid X_0 = i)$ be the expected number of visits to state 1 given that we start in state *i*. Clearly $b_4 = 0$ and using Theorem 3.2 (or conditioning on the first step) we get:

$$b_1 = 1 + 0.45b_1 + 0.45b_2 + 0.09b_3$$

$$b_2 = 0.2b_1 + 0.8b_2$$

$$b_3 = 0.5b_1$$

From the second equation $0.2b_2 = 0.2b_1$ so $b_1 = b_2$. Using this and the third equation in the first equation:

$$b_1 = 1 + \frac{9}{20}b_1 + \frac{9}{20}b_1 + \frac{9}{200}b_1$$

So $\frac{11}{200}b_1 = 1$ and $b_1 = \frac{200}{11}$.

(d) This says that for the lifetime of the machine up to when it explodes, the machine spends more days running smoothly than it does running with adjustments needed.

2.

- (a) This Markov chain is regular as there is a 2-step path between any two states (equivalently, the square of the transition matrix has no 0 entries). So by Theorem 4.7 it has a limiting distribution. Now that we know the limiting distribution exists, Theorem 4.6 tells us that it is also the unique equilibrium distribution so we can find it by solving $\mathbf{w}P = \mathbf{w}$ (where P is the transition matrix).
- (b) The matrix equation $\mathbf{w}P = \mathbf{w}$ gives:

$$w_{1} = \frac{1}{2}w_{1} + \frac{1}{7}w_{2}$$

$$w_{2} = \frac{1}{2}w_{1} + \frac{1}{3}w_{3} + \frac{2}{3}w_{4}$$

$$w_{3} = \frac{3}{7}w_{2} + \frac{1}{3}w_{3} + \frac{1}{6}w_{4}$$

$$w_{4} = \frac{3}{7}w_{2} + \frac{1}{3}w_{3} + \frac{1}{6}w_{4}$$

From the last two equations $w_3 = w_4$. From the first equation $w_2 = \frac{7}{2}w_1$. From these and the second equation

$$\frac{7}{2}w_1 = \frac{1}{2}w_1 + w_3$$

and so $w_3 = 3w_1$. So the limiting distribution has the form

$$\begin{pmatrix} w_1 & \frac{7}{2}w_1 & 3w_1 & 3w_1 \end{pmatrix}$$

Since **w** must be a probability vector we have $\frac{21}{2}w_1 = 1$ so $w_1 = \frac{2}{21}$. So

$$\mathbf{w} = \begin{pmatrix} \frac{2}{21} & \frac{7}{21} & \frac{6}{21} & \frac{6}{21} \end{pmatrix} = \begin{pmatrix} \frac{2}{21} & \frac{1}{3} & \frac{2}{7} & \frac{2}{7} \end{pmatrix}$$

- (c) By the definition of a limiting distribution $p_{1,1}^{(t)}$ and $p_{2,1}^{(t)}$ both tend to $w_1 = \frac{2}{21}$ as $t \to \infty$. So these two probabilities will both be very close to $\frac{2}{21}$.
- (d) The chance of the economy being in recession many months in the future will be very close to $\frac{2}{21}$. Knowing the state of the economy now will not affect this prediction.

(e) If we observe the economy for a long time then we expect the proportion of months for which it is in recession to be about $\frac{2}{21}$. (This is a consequence of Theorem 4.9.)

(An alternative answer (this time using Theorem 5.3) would be: Suppose that the economy is in recession, the expectation of the number of months until it is in recession again is $\frac{21}{2}$.

3. This question is really too individual to give a model answer for; I'm interested to read what you picked out. Here are a few things that might occur as mathematical tips.

- Draw a transition graph to see what is going on.
- Do a special case first (eg t = 1 rather than all t).
- Make sure that you understand the definitions of all mathematical terms in the question.
- Look up relevant background material in your first and/or second year notes.
- ... many other possibilities.

Please let me know if you have any comments or corrections

Robert Johnson r.johnson@qmul.ac.uk