SOLUTION OF ASSESSED COURSEWORK 1

Q1. Find the solutions for the following simultaneous congruences:

$$
\begin{gathered}
x \equiv 2 \bmod 3 \\
5 x \equiv 1 \bmod 4, \\
3 x \equiv 4 \bmod 5
\end{gathered}
$$

A1. We would like to use CRT (Theorem 9).
Proposition 8 in the notes shows that the congruence equation

$$
a x \equiv b \bmod n
$$

is soluble if and only if $\operatorname{gcd}(a, n)=1$. The proof of Proposition 8 is indeed constructive: if $\operatorname{gcd}(a, n)=1$, there exist r, s in \mathbb{Z} such that $a r+n s=\operatorname{gcd}(a, n)=1$ by Euclid's algorithm. It therefore follows that

$$
a r \equiv 1
$$

$\bmod n$. Hence

$$
x \equiv r a x \equiv r b .
$$

Applying the argument for $(a, b, n)=(5,1,4)$ and $(3,4,5)$, we are reduced to solving the simultaneous congruences

$$
\begin{aligned}
& x \equiv 2 \bmod 3, \\
& x \equiv 1 \bmod 4, \\
& x \equiv 3 \bmod 5
\end{aligned}
$$

Of course, there are much simpler ways of doing this sort of thing. For example, one can simply subtract $4 x \equiv 0 \bmod 4$ from $5 x \equiv 1 \bmod 4$ to get $x \equiv 1 \bmod 4$.

The CRT twice then proves that $x \equiv 53 \bmod 60$. How to solve a system of 'monic' congruence equations was indeed explained in the lectures/in the notes (Example immediately after Theorem 10).

Q2. Let $(\mathbb{Z} / 18 \mathbb{Z})^{\times}$be the subgroup of units in $\mathbb{Z} / 18 \mathbb{Z}$. Determine the least positive integer N such that $[g]^{N}=[1]$ holds for any element $[g]$ in $(\mathbb{Z} / 18 \mathbb{Z})^{\times}$.

A2. If $[z]$ is an element of $\mathbb{Z} / 18 \mathbb{Z}$, then it lies in $(\mathbb{Z} / 18 \mathbb{Z})^{\times}$if and only if $\operatorname{GCD}(z, 18)=1$. Hence $(\mathbb{Z} / 18 \mathbb{Z})^{\times}=\{[1],[5],[7],[11],[13],[17]\}$. Proposition 14 asserts that $\left|(\mathbb{Z} / 18 \mathbb{Z})^{\times}\right|=$ $\phi(18)=\phi\left(2 \cdot 3^{2}\right)=\phi(2) \phi\left(3^{2}\right)=(2-1) 3(3-1)=6$. We simply compute their orders mod 18:

Date: November 6, 2023.

	order $\bmod 18$
1	1
5	6
7	3
11	6
13	3
17	2

In computing the order, we may use Proposition 20 to deduce that it has to be a divisor of $\phi(18)=6$, i.e., it is either $1,2,3$ or 6 . From the table, we conclude that $N=6$.

Q3. Is 20964 a quadratic residue mod 1987 ?

An exercise in quadratic reciprocity. For example,

$$
\begin{aligned}
&\left(\frac{20964}{1987}\right) \\
&=\left(\frac{1094}{1987}\right) \\
&=\left(\frac{547}{1987}\right)\left(\frac{2}{1987}\right) \\
&=-\left(\frac{547}{1987}\right) \\
&=\left(\frac{1987}{547}\right) \\
&=\left(\frac{346}{547}\right) \\
&=\left(\frac{173}{547}\right)\left(\frac{2}{547}\right) \\
&=-\left(\frac{173}{547}\right) \\
&=-\left(\frac{547}{173}\right) \\
&=-\left(\frac{28}{173}\right) \\
&=-\left(\frac{2}{173}\right)\left(\frac{7}{173}\right) \\
&=-\left(\frac{7}{173}\right) \\
&=-\left(\frac{173}{7}\right) \\
&=-\left(\frac{5}{7}\right) \\
&=-\left(\frac{7}{5}\right) \\
&=-\left(\frac{2}{5}\right) \\
&=(-1)(-1) \\
&=1
\end{aligned}
$$

