
MTH5104: Convergence and Continuity 2023–2024

Problem Sheet 3 (Sequences 1)

1. Recall the Demon game arising from the definition of a sequence converging
to 0: “Demon chooses ε > 0, we choose N ∈ N, Demon chooses n > N ,
. . .”. Suppose the Demon chooses ε = 1/10 in the first round. For each of the
sequences below, state, with a brief justification, a winning N for us to choose
in the second round:

(a) (xn)∞n=1, where xn = 1/n for all n.

(b) (xn)∞n=1, where xn = cos(nπ)/n for all n.

(c) (xn)∞n=1, where xn = 1/
√
n for all n.

(d) (xn)∞n=2, where xn = 1/ log2 n for all n ≥ 2.

Solution.

(a) We could choose N = 10. The Demon must choose n > N . Then,
|xn| = 1/n < 1/N = 1/10 = ε, and we win since |xn| < ε.

(b) We could again choose N = 10. The Demon must choose n > N . Then,
|xn| = | cos(nπ)|/n ≤ 1/n < 1/N = 1/10 = ε, and we again win since
|xn| < ε.

(c) We could choose N = 100. The Demon must choose n > N . Then,
|xn| = 1/

√
n < 1/

√
N = 1/10 = ε, and we win since |xn| < ε.

(d) We could choose N = 1024. The Demon must choose n > N . Then,
|xn| = 1/ log2 n < 1/ log2N = 1/10 = ε, and we win since |xn| < ε.

2. As for Question 1, but now give a winning choice for the Demon in the first
round, for the following sequences (xn)∞n=1 (this means that the sequence does
not converge to 0). Again, briefly justify your answer.

(a) xn = 1
4 − 1/n,

(b) xn = 1
4 cos(nπ), and

(c) xn =

{
1, if n is a perfect cube;

0, otherwise.
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Solution.

(a) The Demon could choose ε = 1
8 . We must choose some N , and the Demon

chooses n = max{N, 8}. Then |xn| = 1
4−1/n > 1

4−1/N > 1
4−

1
8 = 1

8 = ε,
and the Demon wins since |xn| ≥ ε.

(b) The Demon could choose ε = 1
4 . We must choose some N , and the Demon

chooses some n > N . Then |xn| = 1
4 | cos(nπ)| = 1

4 | ± 1| = 1
4 = ε, and the

Demon wins since |xn| ≥ ε.
(c) The Demon could choose ε = 1. We must choose some N , and the Demon

chooses some perfect cube n > N , e.g., (N + 1)3. Then |xn| = 1 = ε, and
the Demon wins since |xn| ≥ ε.

3. For each of the following sequences state whether or not it converges to zero,
and prove your answer. Your proofs should be from “first principles”: you
should only use the definition of convergence as given in this course (Defini-
tion 3.1). You must not assume any other results or techniques concerning
sequences from this course, or from Calculus I or II. You are allowed to use
the facts about real numbers proved in Chapter 2, such as the Archimedean
property. If it helps, you should think first of the Demon game corresponding
to convergence of the sequence, and who has the winning strategy.

(a) (xn)∞n=1 given by xn = 3
n for all n.

(b) (xn)∞n=1 given by xn = 3 for all n.

(c) (xn)∞n=1 given by xn = 5
2n−1 for all n.

(d) (xn)∞n=1 given by xn = 3n+1
n2+1

for all n.

(e) (xn)∞n=1 given by xn = 1
10 sin(nπ/2) for all n.

(f) (xn)∞n=1 given by xn =

{
1, if n is a power of 2;

0, otherwise.

(g) (xn)∞n=2 given by xn = 1/ log2 n for all n ≥ 2.

Solution.

(a) The sequence (xn)∞n=1 given by xn = 3
n converges to zero.

Proof. Given ε > 0 letN ∈ N withN > 3/ε (this exists by the Archimedean
principle). This implies 3

N < ε. Then for n > N we have

| 3
n
| = 3

n
<

3

N
< ε. .

This is equivalent to the following winning strategy for the Demon game:

Suppose the Demon picks ε > 0.
We pick N ∈ N with N ≥ 3

ε .
Then suppose the Demon picks n > N .
Then |xn| < 3/N < ε so we win.
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(c) The sequence (xn)∞n=1 given by xn = 5
2n−1 converges to zero.

Proof. Given ε > 0, let N = d5/εe (so N ≥ 5/ε, and 5/N ≤ ε). Now, for
all n > N we have |xn| = 5/(2n− 1) < 5/(2n−n) = 5/n < 5/N ≤ ε.

This is equivalent to the following winning strategy for the Demon game:

Suppose the demon picks ε > 0.
We pick N = d5/εe (so N ≥ 5/ε, so 5/N ≤ ε).
Then suppose the demon picks n > N .
Then |xn| < 5/n < 5/N ≤ ε so we win.

(e) The sequence (xn)∞n=1 given by xn = 1
10 sin(nπ/2) does not converge to

zero.

Proof. Let ε = 1/10. Given any natural number N , let n = 4N + 1, and
note that n > N . Then

|xn| = 1
10 sin((4N + 1)π/2) = 1

10 sin(2Nπ + π/2) = 1
10 sin(π/2) = 1

10 ≥ ε.

This proof is equivalent to the following winning strategy for the negated
Demon game:

We pick ε = 1/10.
Then suppose the demon picks N .
We pick n = 4N + 1.
Then |xn| = 1/10 ≥ ε so we win (the negated game).

(f) The sequence (xn)∞n=1 with xn = 1 when n is a power of 2, and 0 otherwise,
does not converge to 0.

Proof. Let ε = 1. Given N ∈ N, let n be some power of 2 that is greater
than N , e.g., n = 2N . Then |xn| = 1 ≥ ε, since n is a power of 2.

Equivalent winning strategy for Demon game:

We pick ε > 0.
The demon picks N ∈ N.
We pick n = 2N (so n > N and xn = 1).
Now |xn| = 1 ≥ ε, so we win.

(g) The sequence (xn)∞n=2 given by xn = 1/ log2 n converges to zero.

Proof. Given ε > 0, let N =
⌈
21/ε

⌉
(so N ≥ 21/ε and hence log2N ≥ 1/ε).

Now for all n > N we have |xn| = 1/ log2 n < 1/ log2N ≤ ε.

Equivalent winning strategy for Demon game:

Suppose the demon picks ε > 0.
We pick N =

⌈
21/ε

⌉
(so N ≥ 21/ε and hence log2N ≥ 1/ε. Then

suppose the demon picks n > N .
Now |xn| = 1/ log2 n < 1/ log2N ≤ ε, so we win.

3
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4. Let (xn)∞n=1 and (yn)∞n=1 be two sequences which converge to zero and let
(zn)∞n=1 be a sequence which does not converge to zero. We define the new
sequences (x̃n)∞n=1, (ỹn)∞n=1, and (z̃n)∞n=1 as follows

x̃n =

{
100 if n ≤ 10,
xn if n > 10,

ỹn =

{
n3 if n ≤ 1000,
yn if n > 1000.

z̃n =

{
1/n if n ≤ 1010,
zn if n > 1010.

Prove that (x̃n)∞n=1 and (ỹn)∞n=1 converge to zero and that (z̃n)∞n=1 does not
converge to zero.

Solution. If you could not solve this, study the solution to the first part and
then try to go back and solve the other parts in a similar fashion!

As (xn) converges to zero, we know (by definition) that for every ε > 0 there
exists some Nx ∈ N such that ∀n > Nx : |xn| < ε. We now claim that (x̃n)
converges to zero.

Proof. Given ε > 0, let N = max{Nx, 10}. Then ∀n > N we have n > 10 so
x̃n = xn. Moreover, we have n > Nx, so |x̃n| = |xn| < ε.

As (yn) converges to zero, we know (by definition) that for every ε > 0 there
exists some Ny ∈ N such that ∀n > Ny : |yn| < ε. We now claim that (ỹn)
converges to zero.

Proof. Given ε > 0, let N = max{Ny, 1000}. Then ∀n > N we have n > 1000
so ỹn = yn. Moreover, we have n > Ny, so |ỹn| = |yn| < ε.

Remark. Note that we don’t even see in the proof to which value we changed
the first 10 (or 1000) elements of the sequence.

As (zn) does not converge to zero, we know that there exists ε > 0 such that
∀N ∈ N ∃n > N : |zn| ≥ ε. We now claim that (z̃n) does not converge to
zero.

Proof. First, we pick the same ε > 0 as above. Then, given any N ∈ N (by
the Demon) we set Ñ = max{N, 1010}. From the fact that (yn) does not
converge to zero, if we would have been given this Ñ by the Demon, we could
have found some n0 > Ñ such that |yn0 | ≥ ε. We pick exactly this n0. As
n0 > Ñ ≥ N , this is allowed. Moreover, as n0 > Ñ ≥ 1010, we have ỹn0 = yn0 ,
so |ỹn0 | = |yn0 | ≥ ε.
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5. For each of the following sequences state whether or not it converges to zero,
and prove your answer. You may use any result from the lectures, provided
you state it clearly.

(a) (xn)∞n=1 given by xn = 5n+17
n2+3n

.

(b) (xn)∞n=1 given by xn = 1
n+10 cos(πn) .

(c) (xn)∞n=1 given by xn = 5n2+17
n2+3n

.

Solution.

(a) Observe that xn = yn + zn, where yn = 5n/(n2 + 3n) and zn = 17/(n2 +
3n). Now |yn| = yn < 5n/n2 = 5/n, and |zn| = zn < 17/n2 = 17/n.
We know that the sequence (1/n)∞n=1 converges to 0, and we deduce from
Corollary 3.7 that (yn)∞n=1 and (zn)∞n=1 do so to. Then (xn)∞n=1 converges
to 0, by Theorem 3.9.

(b) As an aside, note that the sequence is well defined. For any n the denom-
inator is either n− 10, or n+ 10. So the denominator is non-zero except
possibly at n = 10. But when n = 10 the denominator is actually 20.

Given ε > 0, let N = d1/εe+ 10 (so 1/(N − 10) ≤ ε). Then for all n > N
we have

|xn| =
1

n+ 10 cos(πn)
≤ 1

n− 10
<

1

N − 10
≤ ε

(since −1 ≤ cos(πn) ≤ 1).

(c) Note that |xn| = xn > 5n2/(n2 + 3n) ≥ 5n2/(n2 + 3n2) = 5
4 > 1. But

(1)∞n=1 does not converge to zero and hence, by Corollary 3.5, (xn)∞n=1

does not converge to 0 either.

6. Suppose (xn)∞n=1 and (yn)∞n=1 are sequences, and that (xn)∞n=1 converges to 0
and that (yn)∞n=1 does not. Let zn = xnyn for all n ∈ N. By giving two
examples, show that (zn)∞n=1 may or may not converge to 0. (You do not need
to justify your examples as thoroughly as in the previous questions.)

Solution. Let xn = 1/n and yn = 1 for all n ∈ N. Note that (xn)∞n=1

converges to 0, and (yn)∞n=1 does not. Then zn = 1/n and (zn)∞n=1 converges
to 0. Now keep xn as before, but let yn = n for all n ∈ N. Then zn = 1 for all
n ∈ N and (zn)∞n=1 does not converge to 0.

7. Suppose (xn)∞n=1 and (yn)∞n=1 are bounded sequences. Show that the sequence
(zn)∞n=1 is bounded, where zn = xn + yn for all n ∈ N.
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Solution. Since (xn)∞n=1 is bounded, there exists Mx ∈ R, Mx > 0, such
that |xn| < Mx for all n ∈ N. Similarly, there exists My ∈ R, My > 0, such
that |yn| < My for all n ∈ N. Set M = Mx + My. Then |zn| = |xn + yn| ≤
|xn|+ |yn| < Mx +My = M . So (zn)∞n=1 is bounded.

8. For each of (a)–(d) give a sequence (xn)∞n=1 with the stated properties. In
each case, the sequence (yn)∞n=1 is defined by yn = 2xnn for all n ∈ N. Briefly
explain your answers with respect to results and examples from the course.

(a) (xn) converges to some x 6= 0, and (yn) converges to some y 6= 0.

(b) (xn) is bounded, but (yn) does not converge.

(c) (xn) does not converge (to any x ∈ R), but (yn) converges to zero.

(d) (xn) does not converge (to any x ∈ R), but (yn) converges to y 6= 0.

Solution.

(a) E.g., let xn = 1 for all n. The constant sequence (1)∞n=1 converges to 1
(Example 3.25(i)). The sequence (yn) given by yn = 2 × 1n = 2 is also
constant and converges to 2.

(b) E.g., let xn = 2 for all n. The constant sequence (2)∞n=1 is bounded
above and below by 2. The geometric sequence (2n)∞n=1 does not converge
(Theorem 3.14) and so (yn) does not converge (Corollary 3.8).

(c) Let xn = 1
2(−1)n−1. The sequence does not converge (to any x ∈ R).

This can be seen from first principles or, more easily, by noting that the
difference between consecutive terms is zn = xn+1 − xn = ±1 and (zn)
does not converge to zero. Now note that yn = 2(−1)n(n−1)(12)n = 2(12)n.
The geometric sequence ((12)n)∞n=1 converges to 0 (Theorem 3.14), and so
does (yn) (Lemma 3.6).

(d) Let xn = (−1)n−1. As before, this sequence does not converge (to any
x ∈ R). However, yn = 2(−1)n(n−1) = 2, so (yn) is a constant series
converging to 2. In contrast to the previous part, it is essential to let xn
equal (−1)n−1 (equivalently (−1)n+1) here and not (−1)n!

9. Challenge. Suppose that the sequence (xn)∞n=1 converges to x 6= 0, and that
xn 6= 0 for all n ∈ N. Prove that (1/xn)∞n=1 converges to 1/x.

Solution. We remark that the condition xn 6= 0 for all n ∈ N is just there
to ensure that the sequence (xn)∞n=1 is well defined. Given ε > 0, let δ =
min{12 |x|,

1
2εx

2}. Choose N ∈ N such that |xn − x| < δ for all n > N . Note
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that this inequality implies |xn| > 1
2 |x| and |xn − x| < 1

2εx
2 for all n > N .

Then ∣∣∣∣ 1

xn
− 1

x

∣∣∣∣ =

∣∣∣∣x− xnxnx

∣∣∣∣ =
|x− xn|
|xn| |x|

<
1
2εx

2

1
2x

2
= ε,

for all n > N . Hence (1/xn)∞n=1 converges to 1/x,

10. Show how to deduce part (iv) of Theorem 3.24 from Question 9.

Solution. Let zn = xn × y−1n . We know from Question 5 that (y−1n )∞n=1

converges to y=1. Then, by Theorem 3.24, part (iii), (xny
−1
n )∞n=1 converges to

xy−1 as required.
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