

MTH5104: Convergence and Continuity 2023–2024 Problem Sheet 5 (Series)

- 1. Prove Lemma 4.6 from the lecture notes, i.e., show that if $\sum_{k=1}^{\infty} x_k = S$ and $c \in \mathbb{R}$ then $\sum_{k=1}^{\infty} cx_k = cS$.
- (a) Which of the following sums exist? Justify your answers, using any results from the lectures/notes.

(i)
$$\sum_{k=1}^{\infty} \frac{1}{k^3}$$

(ii)
$$\sum_{k=1}^{\infty} \frac{1}{k2^k}$$

(i)
$$\sum_{k=1}^{\infty} \frac{1}{k^3}$$
, (ii) $\sum_{k=1}^{\infty} \frac{1}{k2^k}$, (iii) $\sum_{k=1}^{\infty} \frac{1}{3k}$.

(b) Does the sum

$$\sum_{k=1}^{\infty} \left(\frac{1}{k^3} + \frac{1}{k2^k} - \frac{1}{3k} \right)$$

exist? Prove your assertion.

3. Use the ratio test to decide which of the following series exist:

(a)
$$\sum_{k=1}^{\infty} \frac{2^k + 3^k}{2^k + 5^k}.$$

(b)
$$\sum_{k=1}^{\infty} \frac{2^k + 5^k}{2^k + 3^k}.$$

(c)
$$\sum_{k=1}^{\infty} \frac{2^k + 3^k + 5^k}{2^k + 3^k}.$$

4. Compute the value of the following series.

(a)
$$\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)} = \sum_{k=1}^{\infty} \left(\frac{1}{k+1} - \frac{1}{k+2} \right)$$
.

(b)
$$\sum_{k=1}^{\infty} \frac{2}{(k+10)(k+12)}$$
.

5. Prove that the series $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converges for any $\alpha > 1$.

[Hint. Try adapting the proof of Theorem 4.12, aiming this time for an upper bound on the partial sums.]

- 6. Prove or disprove the following statements:
 - (a) If $\sum_{k=1}^{\infty} x_k$ converges absolutely, then $\sum_{k=1}^{\infty} (-1)^k x_k$ exists.
 - (b) If $\sum_{k=1}^{\infty} x_k$ converges absolutely, then $\sum_{k=1}^{\infty} \frac{x_k}{k}$ exists.
 - (c) If $\sum_{k=1}^{\infty} x_k$ converges absolutely, then $\sum_{k=1}^{\infty} k \cdot x_k$ exists.
- 7. In this question, $\sum_{k=1}^{\infty} x_k$ is a series that converges absolutely.
 - (a) Suppose that $|x_k| \leq 1$ for all $k \in \mathbb{N}$. Prove that the series $\sum_{k=1}^{\infty} x_k^2$ converges.
 - (b) Now drop the assumption that $|x_k| \leq 1$ for all $k \in \mathbb{N}$. Prove that it is still the case that the series $\sum_{k=1}^{\infty} x_k^2$ converges.
- 8. What happens in the previous question if we drop the word 'absolutely', so that $\sum_{k=1}^{\infty} x_k$ is a series that merely converges?
- 9. Let $x_k = \frac{2}{k(k+1)(k+2)}$ for all $k \in \mathbb{N}$ and define $S_n = \sum_{k=1}^n x_k$.
 - (a) Evaluate S_n as a function of n.

 Hint. In a similar situation, in the notes and lectures, we used the fact that $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$. Try something similar here, writing $\frac{2}{k(k+1)(k+2)}$ as a difference of two simpler quotients.
 - (b) Evaluate the limit of the sequence $(S_n)_{n=1}^{\infty}$.

Note that the limit from part (b) is by definition $\sum_{n=1}^{\infty} \frac{2}{k(k+1)(k+2)}$.

- 10. Here we study $\sum_{k=1}^{\infty} \frac{2^k}{k!}$.
 - (a) Show that $k! \geq 3^{k-2}$.
 - (b) Deduce that $2^k/k! \le 4 \cdot (2/3)^{k-2}$.
 - (c) Deduce that $\sum_{k=1}^{\infty} \frac{2^k}{k!}$ exists.
- 11. Here we study $\sum_{k=1}^{\infty} \frac{k!}{k^k}$.
 - (a) Prove that $k! \leq k^k$.
 - (b) Prove that $k! \le 2k^{k-2}$.
 - (c) Deduce from (b) that $\sum_{k=1}^{\infty} \frac{k!}{k^k}$ exists.
- 12. Assume that $\sum_{k=1}^{\infty} x_k$ converges and that $(y_k)_{k=1}^{\infty}$ is a bounded sequence.

- (a) Find a counterexample to the statement: " $\sum_{k=1}^{\infty} x_k y_k$ converges."
- (b) Prove that if we additionally assume that $x_k \geq 0$ for all $k \in \mathbb{N}$, then the series $\sum_{k=1}^{\infty} x_k y_k$ converges.
- 13. For which values of $x \in \mathbb{R}$ do the following power series exist? Give a precise answer and justify it.

(a)
$$\sum_{k=1}^{\infty} 2^k x^k$$
 and (b) $\sum_{k=1}^{\infty} \frac{2^k x^k}{k}$.

14. For which values of $x \in \mathbb{R}$ do the following power series exist? Give a precise answer and justify it.

(a)
$$\sum_{k=1}^{\infty} \frac{x^k}{k^2}$$
 and (b) $\sum_{k=1}^{\infty} kx^k$.

exist?

[Hint. One possibility for (b) is to use the easily checked inequality $k \leq \alpha^{-1}(1+\alpha)^k$, valid for all $\alpha > 0$ and $k \in \mathbb{N}$.]