Queen Mary
 University of London

MTH5104: Convergence and Continuity 2023-2024 Problem Sheet 5 (Series)

1. Prove Lemma 4.6 from the lecture notes, i.e., show that if $\sum_{k=1}^{\infty} x_{k}=S$ and $c \in \mathbb{R}$ then $\sum_{k=1}^{\infty} c x_{k}=c S$.
2. (a) Which of the following sums exist? Justify your answers, using any results from the lectures/notes.
(i) $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$,
(ii) $\sum_{k=1}^{\infty} \frac{1}{k 2^{k}}$,
(iii) $\sum_{k=1}^{\infty} \frac{1}{3 k}$.
(b) Does the sum

$$
\sum_{k=1}^{\infty}\left(\frac{1}{k^{3}}+\frac{1}{k 2^{k}}-\frac{1}{3 k}\right)
$$

exist? Prove your assertion.
3. Use the ratio test to decide which of the following series exist:
(a) $\sum_{k=1}^{\infty} \frac{2^{k}+3^{k}}{2^{k}+5^{k}}$.
(b) $\sum_{k=1}^{\infty} \frac{2^{k}+5^{k}}{2^{k}+3^{k}}$.
(c) $\sum_{k=1}^{\infty} \frac{2^{k}+3^{k}+5^{k}}{2^{k}+3^{k}}$.
4. Compute the value of the following series.
(a) $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}=\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+2}\right)$.
(b) $\sum_{k=1}^{\infty} \frac{2}{(k+10)(k+12)}$.
5. Prove that the series $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converges for any $\alpha>1$.
[Hint. Try adapting the proof of Theorem 4.12, aiming this time for an upper bound on the partial sums.]
6. Prove or disprove the following statements:
(a) If $\sum_{k=1}^{\infty} x_{k}$ converges absolutely, then $\sum_{k=1}^{\infty}(-1)^{k} x_{k}$ exists.
(b) If $\sum_{k=1}^{\infty} x_{k}$ converges absolutely, then $\sum_{k=1}^{\infty} \frac{x_{k}}{k}$ exists.
(c) If $\sum_{k=1}^{\infty} x_{k}$ converges absolutely, then $\sum_{k=1}^{\infty} k \cdot x_{k}$ exists.
7. In this question, $\sum_{k=1}^{\infty} x_{k}$ is a series that converges absolutely.
(a) Suppose that $\left|x_{k}\right| \leq 1$ for all $k \in \mathbb{N}$. Prove that the series $\sum_{k=1}^{\infty} x_{k}^{2}$ converges.
(b) Now drop the assumption that $\left|x_{k}\right| \leq 1$ for all $k \in \mathbb{N}$. Prove that it is still the case that the series $\sum_{k=1}^{\infty} x_{k}^{2}$ converges.
8. What happens in the previous question if we drop the word 'absolutely', so that $\sum_{k=1}^{\infty} x_{k}$ is a series that merely converges?
9. Let $x_{k}=\frac{2}{k(k+1)(k+2)}$ for all $k \in \mathbb{N}$ and define $S_{n}=\sum_{k=1}^{n} x_{k}$.
(a) Evaluate S_{n} as a function of n.

Hint. In a similar situation, in the notes and lectures, we used the fact that $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$. Try something similar here, writing $\frac{2}{k(k+1)(k+2)}$ as a difference of two simpler quotients.
(b) Evaluate the limit of the sequence $\left(S_{n}\right)_{n=1}^{\infty}$.

Note that the limit from part (b) is by definition $\sum_{n=1}^{\infty} \frac{2}{k(k+1)(k+2)}$.
10. Here we study $\sum_{k=1}^{\infty} \frac{2^{k}}{k!}$.
(a) Show that $k!\geq 3^{k-2}$.
(b) Deduce that $2^{k} / k!\leq 4 \cdot(2 / 3)^{k-2}$.
(c) Deduce that $\sum_{k=1}^{\infty} \frac{2^{k}}{k!}$ exists.
11. Here we study $\sum_{k=1}^{\infty} \frac{k!}{k^{k}}$.
(a) Prove that $k!\leq k^{k}$.
(b) Prove that $k!\leq 2 k^{k-2}$.
(c) Deduce from (b) that $\sum_{k=1}^{\infty} \frac{k!}{k^{k}}$ exists.
12. Assume that $\sum_{k=1}^{\infty} x_{k}$ converges and that $\left(y_{k}\right)_{k=1}^{\infty}$ is a bounded sequence.
(a) Find a counterexample to the statement: " $\sum_{k=1}^{\infty} x_{k} y_{k}$ converges."
(b) Prove that if we additionally assume that $x_{k} \geq 0$ for all $k \in \mathbb{N}$, then the series $\sum_{k=1}^{\infty} x_{k} y_{k}$ converges.
13. For which values of $x \in \mathbb{R}$ do the following power series exist? Give a precise answer and justify it.
(a) $\sum_{k=1}^{\infty} 2^{k} x^{k} \quad$ and
(b) $\sum_{k=1}^{\infty} \frac{2^{k} x^{k}}{k}$.
14. For which values of $x \in \mathbb{R}$ do the following power series exist? Give a precise answer and justify it.
(a) $\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}} \quad$ and
(b) $\sum_{k=1}^{\infty} k x^{k}$.
exist?
[Hint. One possibility for (b) is to use the easily checked inequality $k \leq$ $\alpha^{-1}(1+\alpha)^{k}$, valid for all $\alpha>0$ and $k \in \mathbb{N}$.]

