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Today's lecture will cover

@ Learn the different types of prior information.

@ Be able to make a reasonable choice of prior, based on external data.
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Choosing prior

@ Bayesians make inferences using the posterior and therefore always
need a prior.

o Important question: Where does one get the prior p(4)?

@ If a prior is not known with certainty the Bayesian must try to make
a reasonable choice. There are many ways to do this and people
might make different choices.

@ It is a good practice to do a sensitivity analysis to explore how
posterior is affected by differences in prior.
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Uninformative or noninformative prior distributions

@ Suppose we have no idea of what the prior might be.

@ In this case, we can define some sort of “noninformative prior" also
known as vague

@ No unique way of specifying an uninformative prior distribution.

@ An obvious candidate for a noninformative prior is to use a flat prior,
i.e., uniform over some range

p(0) x ¢

where ¢ > 0.

o It is flat relative to the likelihood.
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Uninformative or noninformative prior distributions

olOlylaw p(lx plylo), plol=¢

=c & plylo)
o ply|0)

o With a flat prior, the posterior p(f|y) is proportional to the
likelihood as functions of 6, so they have the same shape (but not
necessarily the same scale)c\

@ For some simple problems e.g beta/binomial or normal/normal, a
: . . TR . ; :
flat prior gives similar answers to likelihood-based inference (classical
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statistics).
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Binomial data uniform prior

Uniform prior density on () to 1 for a probability ¢ as an example of a flat
prior. Data is k “successes” out of n trials. Recall the uniform is the

-
beta(1, 1) density
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@ With uniform prior, posterior mean
for q is
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@ This pulls estimates away from 0 or
1 if k£ is close to 0 or n.

Probability density
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Example: Uniform prior/binomial likelihood

Bent coin with unknown probability 6.

Flat prior: p(6) =1 on [0, 1]
Data: toss imes and get 15 heads.

=l

@ The posterior density beta(16, 13) is proportional to the binomial

likelihood
( §g9|k = 15) x 0"°(1 — 6)">

@ As functions of 6, p(8|k = 15) and the binomial likelihood have the

same shape.
@ With n large the binomial likelihood becomes symmetric and peaked

around the MLE ZA__._ x _ 5

. N e F
@ With n large the posterior mean approaches to the MLE.
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-: Uniform prior/binomial likelihood

Left: posterior density, Right: likelihood plotted as functions of 6
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Improper prior distributions

Q An@pﬂ_p@s one that doesn’t have a finite integral which

makes it improper density.

o Examples are flat prlors@mce
?/ 0)do = c/ 1df =
0

\,_/——\/\/_\i-/’
o In many cases you can still use Bayes theorem and the resulting
“posterior distribution” does have a finite integral.

-
In general,Wre not a problem as long as the resulting
posterior is a well-defined density.

@ We only use proper priors in this module.
— - —
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Flat priors

0C (0/ OB)

@ Suppose a parameter must be

positive, e.g. a standard

deviation o.

@ We could choose a uniform prior
/4m T N—— —_
on or some large c
(otherwise this would lead to an
improper prior)

o@xvould be chosen as larger than
any plausible value for o.
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What about transformations of 67

o If we specify a uniform prior onor o, what is the prior for e.g.
Ay _ s gy

o° =g(o)?

o

@ Recall, the shape of a probability density changes under non-linear
monotonic transformations of the random variable.

@ Suppose we have continupus random variables X and Y with pdf
f,(x) and f,(y), respectively. Let Y = g(X), where g is a
monotonic function, then
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-about transformations of 67
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@ So if fx is constant and g is non-linear, then fy is not constant.
o~ — ’ —

@ Flat priors are not invariant under nonlinear transformations.
———— .ﬁ/‘ ~ —

@ A flat prior on 6 does not imply a flat prior on ¢ = g(0).
——— - -
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o Uniform prior for o on [0 4f.
o The prior forg_2 is not
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o Uniform prior for,o on [0, ¢]. 0.8-
~9(8)

@ The prior for.@s not
uniform V 7—(65(5\

@ It's proportional to

_—

0.6+

0.4+

Probability density

on [—oo, log(c)]. 0.0 . . . .
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Board question

o Let x ~ Bernoulli(p)
o Flat prior: f(p) =1, € (0,1)

_——
@ This flat prior represents our lack of information about p before the

experiment.
@ Now, let 1 = logé%p) the log of odds.
@ What is the prior of 17

@ But if we use a flat prior about 6, we would like to use a flat prior
for 1. So could we use a flat prior for )7
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Jeffreys prior

o (Jeffrey Harrisodcame up with a rule for creating noninformative
priors that are invarianf under nonlinear, smooth and monotonic
transformations g.

o Let@data generated from the likelihood( p(a:|9)
e —

@ The Jeffreys prior@ of 6 is a noninformative prior of 6 defined by

pJ(e) I(@),

_@

where ¢, > 0 and I(0) is theFisher information function given by

(under some regularity conditions)

1(6) = —E[

and p(X|0) is the likelihood.
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Jeffreys prior

o If | \/1(#)dh < oo, then ¢, is taken to be (fe V1(0) d@)_l so that

p(0) is a proper density.

o Otherwise, if the integral is infinite, the constant ¢, is left
unspecified and the prior p(#) is an improper prior pdf of 6.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



@ Jeffreys’ prior is invariant to smooth monotone transformations of
the parameter, ¢ = g(6), since

1w =10 (57)

@ Hence, a Jeffreys prior for 6 leads to a Jeffreys prior for ) = g(6) for
g smooth monotone transformations
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Jeffrey prior for beta/binomial model

o Let x ~ Binomial(n,q),
where ¢ is the probability of

SuUcCcCess. Uniform ——  Beta(0.5, 0.5) ——
@ Show that the Jeffreys' prior
is Beta(4, 1) (similar to 3]
uniform or beta(1,1)), z
=
S 27
p(g) oc g *(L—q)~"" z
%
@ What is the posterior mean 5 1 _
o™
of ¢ under the Binomial
likelihood and Jeffreys 0 | | | | ,
prior? 0.0 0.2 0.4 0.6 0.8 1.0
q
k+1/2
n+1
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Board question: Jeffrey prior for beta/binomial model

Bent coin with unknown probability 6.
Jeffreys prior for 6 on [0, 1]
Data: toss 27 times and get 15 heads.

@ What is the posterior distribution and posterior mean of ¢ under the
Binomial likelihood and Jeffreys prior?

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Board question: Jeffreys prior for normal/normal example

Let x,,...,x, iid from N(u,o?) where ¢ is known.

@ Show that the Jeffreys prior for the normal likelihood is

p(p) = cry/nfo?, peR

for some constant ¢, > 0.
@ Is this a proper prior or improrer prior?

@ Derive the posterior density for 1 under the normal likelihood
N(p,0?) and Jeffreys prior for pu.
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Informative prior

@ Informative priors include some judgement concerning plausible
values of the parameters based on external information.

@ Informative priors can be based on pure judgement, a mixture of
data and judgement, or external data alone.

@ An informative prior distribution os one in which the probability
mass is concentrated in some subset of the possible range for the
parameters.
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Informative prior

@ There are many ways to build an informative prior. For example,
using summary statistics, published estimates, intervals or standard
errors.

@ We can match these quantities to the mean, median standard
deviation or percentiles of the prior distribution.
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Example: Building an informative prior

o Let t,,...,t, ~ Exp(A) denote the lifetimes of lightbulbs.

@ The gamma distribution provides a conjugate prior for A (failure

rate)

@ Suppose we have external information from other similar bulbs with
observed failure rates r,,...,rx.

@ Let m and u be the mean and variance of r,, ..., 7y, respectively.

o We want to build a gamma(a, ) distribution that for A using this
prior information.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Example: Building an informative prior

@ We can use the method of moments to match the mean and the
variance of the gamma distribution with the corresponding m and u

@ That is
L« o«
R
@ Solve for o and
g =™
u u

2

@ Thus, our prior for A is gamma(™~, ™).

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Weakly informative prior distributions

@ Instead of trying to make the prior completely uniformative, an
alternative is to convey some information about the plausible range
of the parameters, e.g., exclude implausible values.

@ Otherwise let the data speak for themselves.

@ For models with large numbers of parameters, adding a little prior
information may help with numerical stability.
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