Lecture 6A MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture will cover

- Learn the different types of prior information.
- Be able to make a reasonable choice of prior, based on external data.

Choosing prior

- Bayesians make inferences using the posterior and therefore always need a prior.
- **Important question:** Where does one get the prior $p(\theta)$?
- If a prior is not known with certainty the Bayesian must try to make a reasonable choice. There are many ways to do this and people might make different choices.
- It is a good practice to do a sensitivity analysis to explore how posterior is affected by differences in prior.

Uninformative or noninformative prior distributions

- Suppose we have no idea of what the prior might be.
- In this case, we can define some sort of "noninformative prior" also known as vague
- No unique way of specifying an uninformative prior distribution.
- An obvious candidate for a noninformative prior is to use a flat prior,
 i.e., uniform over some range

$$p(\theta) \propto c$$

where c > 0.

It is flat relative to the likelihood.

Uninformative or noninformative prior distributions

$$p[O(y)] \approx p(O(x p(y)O), p(O) = C$$

$$= c \times p(y)O(y)$$

$$= c \times p(y)O(y)$$

- With a flat prior, the posterior $p(\theta|y)$ is proportional to the likelihood as functions of θ , so they have the same shape (but not necessarily the same scale)
- For some simple problems e.g beta/binomial or normal/normal, a flat prior gives similar answers to likelihood-based inference (classical statistics).

Binomial data uniform prior

Uniform prior density on 0 to 1 for a probability q as an example of a flat prior. Data is k "successes" out of n trials. Recall the uniform is the beta(1,1) density

 With uniform prior, posterior mean for q is

$$\frac{k+1}{n+2}$$

• This pulls estimates away from 0 or 1 if k is close to 0 or n.

Example: Uniform prior/binomial likelihood

Bent coin with unknown probability θ .

Flat prior: $p(\theta) = 1$ on [0, 1]

Data: toss 27 times and get 15 heads.

• The posterior density beta(16,13) is proportional to the binomial likelihood

$$p(\theta|k=15) \propto \theta^{15} (1-\theta)^{12}$$

- \bullet As functions of θ , $p(\theta|k=15)$ and the binomial likelihood have the same shape.
- ullet With n large the binomial likelihood becomes symmetric and peaked

Example: Uniform prior/binomial likelihood

Left: posterior density, Right: likelihood plotted as functions of θ

Improper prior distributions

- An improper prior is one that doesn't have a finite integral which makes it improper density.
- Examples are flat priors $p(\theta) \propto c$ on 0 to ∞ since

$$\int_0^\infty p(\theta)d\theta = c \int_0^\infty 1d\theta = \infty.$$

- In many cases you can still use Bayes theorem and the resulting "posterior distribution" does have a finite integral.
- In general, improper priors are not a problem as long as the resulting posterior is a well-defined density.
 - We only use proper priors in this module.

Flat priors

JE (OIO)

- Suppose a parameter must be positive, e.g. a standard deviation σ .
- We could choose a uniform prior on [0,c] for some large c (otherwise this would lead to an improper prior)
- c would be chosen as larger than any plausible value for σ .

What about transformations of θ ?

- If we specify a uniform prior on [0,c] for $\sigma,$ what is the prior for e.g. $\sigma^2=g(\sigma)$?
- Recall, the shape of a probability density changes under non-linear monotonic transformations of the random variable.
- Suppose we have continuous random variables X and Y with pdf $f_y(x)$ and $f_y(y)$, respectively. Let Y = g(X), where g is a monotonic function, then

$$\left(f_Y(y) = \left| \frac{d}{dy} g^{-1}(y) \right| f_X(g^{-1}(y)) \right)$$

What about transformations of θ ?

$$f_{Y}[y] = \begin{bmatrix} dg^{-1}(y) \\ dy \end{bmatrix} \cdot f_{X}(g^{-1}(y)) \propto \begin{bmatrix} dg^{-1}(y) \\ dy \end{bmatrix}$$
 mutant $f_{X}[x] = C + X$

- ullet So if f_X is constant and g is non-linear, then f_Y is not constant.
- Flat priors are not invariant under nonlinear transformations.
- ullet A flat prior on heta does not imply a flat prior on $\psi=g(heta)$.

Example

- Uniform prior for σ on [0, c].
- The prior for σ^2 is not uniform.
- It's proportional to

 \Rightarrow A flat prior on σ does not imply a flat prior on σ^2 .

 $\theta = \sigma$ $\sigma \in [0, c]$ $\psi = \sigma^2 = g(\theta)$ g(x|=x2 is increasing with range [oic] Thus $\psi = g(0) = 0^a$ so the inverse is $g'(\gamma) = \gamma^{7/2}$ $\frac{dg^{-1}(\gamma)}{(1-\gamma)^{2}} = \frac{1}{2} \psi^{-1/2}$ Thus, the prior of y=52 15 Py (γ) = \$\frac{1}{2} \partial \frac{1}{2} \cdot \text{Po} (g^{-1}(\psi)) But PO(0)=C) & DE [OIC]. Thus,

Example

- Uniform prior for σ on [0,c].
- The prior for $\log(\sigma)$ is not uniform
- It's proportional to

on $[-\infty, \log(c)]$.

Board question

- Let $x \sim \mathsf{Bernoulli}(p)$
- Flat prior: f(p) = 1, $p \in (0,1)$
- ullet This flat prior represents our lack of information about p before the experiment.
- Now, let $\psi = \log \binom{p}{1-p}$ the log of odds. What is the prior of ψ ?
- \bullet But if we use a flat prior about θ , we would like to use a flat prior for ψ . So could we use a flat prior for ψ ?

we have f[p] = 1 for all $p \in [0,1]$ solve wrt Solution We want to find the prior of $\psi = \log(\frac{p}{(-p)}) = g(p)$ The function is monotone with inverse $g^{-1}(\gamma) = \frac{\exp(\gamma)}{1 + \exp(\gamma)}$ \Rightarrow the logistic The derivative of 5'(4) 13 $\frac{dg'(\psi)}{d\psi} = \frac{\exp(\psi)}{(1 + \exp(\psi))^2}$ (using the product rule of derivatives) Thus $P_{\psi}(\psi) = \frac{dg^{r}(\psi)}{dw} - 1$ $= \frac{\exp(\psi)}{(1+\exp(\psi))^2}$

=> A uniform prior on p does not imply a uniform prior on y

Jeffreys prior

- Jeffrey Harrison came up with a rule for creating noninformative priors that are invariant under nonlinear, smooth and monotonic transformations g.
- Let x data generated from the likelihood $p(x|\theta)$
- The Jeffreys prior $(p_J(\theta))$ of θ is a noninformative prior of θ defined by

$$p_J(\theta) \neq c_1 \sqrt{I(\theta)},$$

where $c_1 > 0$ and $I(\theta)$ is the Fisher information function given by (under some regularity conditions)

$$I(\theta) = -E\left[\frac{d^2}{d\theta^2}\log p(X|\theta)\right]$$

and $p(X|\theta)$ is the likelihood.

15 rondom vovable

Jeffreys prior

- If $\int_{\theta} \sqrt{I(\theta)} \, d\theta < \infty$, then c_1 is taken to be $\left(\int_{\theta} \sqrt{I(\theta)} \, d\theta\right)^{-1}$ so that $p(\theta)$ is a proper density.
- Otherwise, if the integral is infinite, the constant c_1 is left unspecified and the prior $p(\theta)$ is an improper prior pdf of θ .

Jeffreys prior

• Jeffreys' prior is invariant to smooth monotone transformations of the parameter, $\psi = g(\theta)$, since

$$I(\psi) = I(\theta) \left(\frac{d\theta}{d\psi}\right)^2.$$

• Hence, a Jeffreys prior for θ leads to a Jeffreys prior for $\psi=g(\theta)$ for g smooth monotone transformations

Jeffrey prior for beta/binomial model

- Let $x \sim \text{Binomial}(n, q)$, where q is the probability of success.
- Show that the Jeffreys' prior is $Beta(\frac{1}{2}, \frac{1}{2})$ (similar to uniform or beta(1,1)),

$$p(q) \propto q^{-1/2} (1-q)^{-1/2}$$

• What is the posterior mean of q under the Binomial likelihood and Jeffreys prior?

$$\frac{k+1/2}{n+1}$$

Board question: Jeffrey prior for beta/binomial model

Bent coin with unknown probability θ . Jeffreys prior for θ on [0,1] Data: toss 27 times and get 15 heads.

ullet What is the posterior distribution and posterior mean of q under the Binomial likelihood and Jeffreys prior?

Board question: Jeffreys prior for normal/normal example

Let x_1, \ldots, x_n iid from $N(\mu, \sigma^2)$ where σ^2 is known.

Show that the Jeffreys prior for the normal likelihood is

$$p(\mu) = c_1 \sqrt{n/\sigma^2}, \quad \mu \in \mathbb{R}$$

for some constant $c_1 > 0$.

- Is this a proper prior or improrer prior?
- Derive the posterior density for μ under the normal likelihood $N(\mu, \sigma^2)$ and Jeffreys prior for μ .

Informative prior

- Informative priors include some judgement concerning plausible values of the parameters based on external information.
- Informative priors can be based on pure judgement, a mixture of data and judgement, or external data alone.
- An informative prior distribution os one in which the probability mass is concentrated in some subset of the possible range for the parameters.

Informative prior

- There are many ways to build an informative prior. For example, using summary statistics, published estimates, intervals or standard errors.
- We can match these quantities to the mean, median standard deviation or percentiles of the prior distribution.

Example: Building an informative prior

- Let $t_1, \ldots, t_n \sim \mathsf{Exp}(\lambda)$ denote the lifetimes of lightbulbs.
- The gamma distribution provides a conjugate prior for λ (failure rate)
- Suppose we have external information from other similar bulbs with observed failure rates r_1, \ldots, r_K .
- Let m and u be the mean and variance of r_1, \ldots, r_K , respectively.
- We want to build a gamma (α, β) distribution that for λ using this prior information.

Example: Building an informative prior

- ullet We can use the method of moments to match the mean and the variance of the gamma distribution with the corresponding m and u
- That is

$$m = \frac{\alpha}{\beta}, \quad u = \frac{\alpha}{\beta^2}$$

ullet Solve for lpha and eta

$$\beta = \frac{m}{u}, \quad \alpha = \frac{m^2}{u}.$$

• Thus, our prior for λ is gamma $(\frac{m^2}{u}, \frac{m}{u})$.

Weakly informative prior distributions

- Instead of trying to make the prior completely uniformative, an alternative is to convey some information about the plausible range of the parameters, e.g., exclude implausible values.
- Otherwise let the data speak for themselves.
- For models with large numbers of parameters, adding a little prior information may help with numerical stability.