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Today’s agenda

Today’s lecture will cover

Learn the different types of prior information.

Be able to make a reasonable choice of prior, based on external data.
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Choosing prior

Bayesians make inferences using the posterior and therefore always
need a prior.

Important question: Where does one get the prior p(θ)?

If a prior is not known with certainty the Bayesian must try to make
a reasonable choice. There are many ways to do this and people
might make different choices.

It is a good practice to do a sensitivity analysis to explore how
posterior is affected by differences in prior.
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Uninformative or noninformative prior distributions

Suppose we have no idea of what the prior might be.
In this case, we can define some sort of “noninformative prior" also
known as vague
No unique way of specifying an uninformative prior distribution.
An obvious candidate for a noninformative prior is to use a flat prior,
i.e., uniform over some range

p(θ) ∝ c

where c > 0.

It is flat relative to the likelihood.
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Uninformative or noninformative prior distributions

With a flat prior, the posterior p(θ|y) is proportional to the
likelihood as functions of θ, so they have the same shape (but not
necessarily the same scale)

For some simple problems e.g beta/binomial or normal/normal, a
flat prior gives similar answers to likelihood-based inference (classical
statistics).
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Binomial data uniform prior

Uniform prior density on 0 to 1 for a probability q as an example of a flat
prior. Data is k “successes” out of n trials. Recall the uniform is the
beta(1, 1) density

With uniform prior, posterior mean
for q is

k + 1
n+ 2

This pulls estimates away from 0 or
1 if k is close to 0 or n.
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Example: Uniform prior/binomial likelihood

Bent coin with unknown probability θ.
Flat prior: p(θ) = 1 on [0, 1]
Data: toss 27 times and get 15 heads.

The posterior density beta(16, 13) is proportional to the binomial
likelihood

p(θ|k = 15) ∝ θ15(1− θ)12

As functions of θ, p(θ|k = 15) and the binomial likelihood have the
same shape.
With n large the binomial likelihood becomes symmetric and peaked
around the MLE
With n large the posterior mean approaches to the MLE.
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Example: Uniform prior/binomial likelihood

Left: posterior density, Right: likelihood plotted as functions of θ
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Improper prior distributions

An improper prior is one that doesn’t have a finite integral which
makes it improper density.
Examples are flat priors p(θ) ∝ c on 0 to ∞ since∫ ∞

0

p(θ)dθ = c

∫ ∞
0

1dθ =∞.

In many cases you can still use Bayes theorem and the resulting
“posterior distribution” does have a finite integral.
In general, improper priors are not a problem as long as the resulting
posterior is a well-defined density.
We only use proper priors in this module.
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Flat priors

Suppose a parameter must be
positive, e.g. a standard
deviation σ.

We could choose a uniform prior
on [0, c] for some large c
(otherwise this would lead to an
improper prior)

c would be chosen as larger than
any plausible value for σ.
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What about transformations of θ?

If we specify a uniform prior on [0, c] for σ, what is the prior for e.g.
σ2 = g(σ)?

Recall, the shape of a probability density changes under non-linear
monotonic transformations of the random variable.

Suppose we have continuous random variables X and Y with pdf
fy(x) and fy(y), respectively. Let Y = g(X), where g is a
monotonic function, then

fY (y) =
∣∣∣∣ ddy g−1(y)

∣∣∣∣ fX(g−1(y))
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What about transformations of θ?

So if fX is constant and g is non-linear, then fY is not constant.

Flat priors are not invariant under nonlinear transformations.

A flat prior on θ does not imply a flat prior on ψ = g(θ).
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Example

Uniform prior for σ on [0, c].
The prior for σ2 is not
uniform.
It’s proportional to

1
2
√
σ2

on [0, c2].

⇒ A flat prior on σ does
not imply a flat prior on σ2.
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Example

Uniform prior for σ on [0, c].

The prior for log(σ) is not
uniform
It’s proportional to

elog(σ)

on [−∞, log(c)]. 0.0
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Board question

Let x ∼ Bernoulli(p)
Flat prior: f(p) = 1, p ∈ (0, 1)
This flat prior represents our lack of information about p before the
experiment.
Now, let ψ = log p

1−p , the log of odds.
What is the prior of ψ?

But if we use a flat prior about θ, we would like to use a flat prior
for ψ. So could we use a flat prior for ψ?
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Jeffreys prior

Jeffrey Harrison came up with a rule for creating noninformative
priors that are invariant under nonlinear, smooth and monotonic
transformations g.
Let x data generated from the likelihood, p(x|θ)
The Jeffreys prior, pJ(θ) of θ is a noninformative prior of θ defined by

pJ(θ) = c1

√
I(θ),

where c1 > 0 and I(θ) is the Fisher information function given by
(under some regularity conditions)

I(θ) = −E
[ d2

dθ2
log p(X|θ)

]
and p(X|θ) is the likelihood.
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Jeffreys prior

If
∫
θ

√
I(θ) dθ <∞, then c1 is taken to be

(∫
θ

√
I(θ) dθ

)−1

so that
p(θ) is a proper density.

Otherwise, if the integral is infinite, the constant c1 is left
unspecified and the prior p(θ) is an improper prior pdf of θ.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Jeffreys prior

Jeffreys’ prior is invariant to smooth monotone transformations of
the parameter, ψ = g(θ), since

I(ψ) = I(θ)
(
dθ

dψ

)2

.

Hence, a Jeffreys prior for θ leads to a Jeffreys prior for ψ = g(θ) for
g smooth monotone transformations
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Jeffrey prior for beta/binomial model

Let x ∼ Binomial(n, q),
where q is the probability of
success.
Show that the Jeffreys’ prior
is Beta( 1

2 ,
1
2 ) (similar to

uniform or beta(1,1)),

p(q) ∝ q−1/2(1− q)−1/2

What is the posterior mean
of q under the Binomial
likelihood and Jeffreys
prior?

k + 1/2
n+ 1
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Uniform Beta(0.5, 0.5)
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Board question: Jeffrey prior for beta/binomial model

Bent coin with unknown probability θ.
Jeffreys prior for θ on [0, 1]
Data: toss 27 times and get 15 heads.

What is the posterior distribution and posterior mean of q under the
Binomial likelihood and Jeffreys prior?
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Board question: Jeffreys prior for normal/normal example

Let x1, . . . , xn iid from N(µ, σ2) where σ2 is known.

Show that the Jeffreys prior for the normal likelihood is

p(µ) = c1

√
n/σ2, µ ∈ R

for some constant c1 > 0.
Is this a proper prior or improrer prior?
Derive the posterior density for µ under the normal likelihood
N(µ, σ2) and Jeffreys prior for µ.
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Informative prior

Informative priors include some judgement concerning plausible
values of the parameters based on external information.
Informative priors can be based on pure judgement, a mixture of
data and judgement, or external data alone.
An informative prior distribution os one in which the probability
mass is concentrated in some subset of the possible range for the
parameters.
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Informative prior

There are many ways to build an informative prior. For example,
using summary statistics, published estimates, intervals or standard
errors.

We can match these quantities to the mean, median standard
deviation or percentiles of the prior distribution.
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Example: Building an informative prior

Let t1, . . . , tn ∼ Exp(λ) denote the lifetimes of lightbulbs.
The gamma distribution provides a conjugate prior for λ (failure
rate)
Suppose we have external information from other similar bulbs with
observed failure rates r1, . . . , rK .
Let m and u be the mean and variance of r1, . . . , rK , respectively.
We want to build a gamma(α, β) distribution that for λ using this
prior information.
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Example: Building an informative prior

We can use the method of moments to match the mean and the
variance of the gamma distribution with the corresponding m and u
That is

m = α

β
, u = α

β2

Solve for α and β

β = m

u
, α = m2

u
.

Thus, our prior for λ is gamma(m
2

u ,
m
u ).
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Weakly informative prior distributions

Instead of trying to make the prior completely uniformative, an
alternative is to convey some information about the plausible range
of the parameters, e.g., exclude implausible values.
Otherwise let the data speak for themselves.
For models with large numbers of parameters, adding a little prior
information may help with numerical stability.
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