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EEEVe ogend:

Today's lecture will cover

o Learn the different types of prior information.

o Be able to make a reasonable choice of prior, based on external data.
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Choosing prior

o Bayesians make inferences using the posterior and therefore always
need a prior.

o Important question: Where does one get the prior p(6)?

o If a prior is not known with certainty the Bayesian must try to make
a reasonable choice. There are many ways to do this and people
might make different choices.

o It is a good practice to do a sensitivity analysis to explore how
posterior is affected by differences in prior.
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Uninformative or noninformative prior distributions

Suppose we have no idea of what the prior might be.

©

In this case, we can define some sort of “noninformative prior" also
known as vague

©

No unique way of specifying an uninformative prior distribution.

©

An obvious candidate for a noninformative prior is to use a flat prior,
i.e., uniform over some range

©

p(0) x ¢

where ¢ > 0.

It is flat relative to the likelihood.

©
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Uninformative or noninformative prior distributions

o With a flat prior, the posterior p(f|y) is proportional to the
likelihood as functions of 6, so they have the same shape (but not
necessarily the same scale)

o For some simple problems e.g beta/binomial or normal/normal, a
flat prior gives similar answers to likelihood-based inference (classical
statistics).
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Binomial data uniform prior

Uniform prior density on 0 to 1 for a probability ¢ as an example of a flat
prior. Data is k “successes” out of n trials. Recall the uniform is the
beta(1,1) density

@ With uniform prior, posterior mean z
for q is g
E+1 g1 !
n+2 :; i
o This pulls estimates away from 0 or B |
1if k is close to 0 or n. i
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Example: Uniform prior/binomial likelihood

Bent coin with unknown probability 6.
Flat prior: p(f) =1 on [0,1]
Data: toss 27 times and get 15 heads.

o The posterior density beta(16, 13) is proportional to the binomial
likelihood

p(Olk = 15) o 0°(1 — 0)*2

@ As functions of 8, p(6|k = 15) and the binomial likelihood have the
same shape.

@ With n large the binomial likelihood becomes symmetric and peaked
around the MLE

@ With n large the posterior mean approaches to the MLE.
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-Jniform prior /binomial likelihood

Left: posterior density, Right: likelihood plotted as functions of 8
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Improper prior distributions

@ An improper prior is one that doesn’t have a finite integral which
makes it improper density.

o Examples are flat priors p(#) o ¢ on 0 to oo since

/ p(6)do = c/ 1df = c.

@ In many cases you can still use Bayes theorem and the resulting
“posterior distribution” does have a finite integral.

@ In general, improper priors are not a problem as long as the resulting
posterior is a well-defined density.

@ We only use proper priors in this module.
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@ Suppose a parameter must be
positive, e.g. a standard
deviation o.

o
o
o

@ We could choose a uniform prior
on [0, ¢] for some large ¢
(otherwise this would lead to an
improper prior)

Probability density

o ¢ would be chosen as larger than 20 30 40 50

any plausible value for o.
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What about transformations of 67

o If we specify a uniform prior on [0, ¢| for o, what is the prior for e.g.
o =g(0)?

o Recall, the shape of a probability density changes under non-linear
monotonic transformations of the random variable.

@ Suppose we have continuous random variables X and Y with pdf
f,(x) and f,(y), respectively. Let Y = g(X), where g is a
monotonic function, then

Fr(n = [0 )| fxta~ )
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-t transformations of 67

o So if fx is constant and g is non-linear, then fy is not constant.
o Flat priors are not invariant under nonlinear transformations.

o A flat prior on 6 does not imply a flat prior on 1 = g(0).
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0.004
o Uniform prior for o on [0, ¢].
o The prior for 2 is not
uniform. = 0.0031
o It's proportional to g
£ 0.0021
1 35
e
AV 2
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1.0+
o Uniform prior for o on [0, ¢]. 0.8
2
. . g
@ The prior for log(o) is not 3 0.6
uniform =
, . ] 04-
o It's proportional to 2
a
elos(e) 0.2
on [—o0,log(c)]. 0.0 ‘ ‘ ‘ ‘
[~o0.log() —
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.oard question

Let = ~ Bernoulli(p)

Flat prior: f(p)=1, pe(0,1)
This flat prior represents our lack of information about p before the
experiment.

©

©

©

©

Now, let ¢ = log ﬁ, the log of odds.
What is the prior of 7

©

o But if we use a flat prior about 8, we would like to use a flat prior
for 9. So could we use a flat prior for ¥?
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Jeffreys prior

o Jeffrey Harrison came up with a rule for creating noninformative
priors that are invariant under nonlinear, smooth and monotonic
transformations g.

o Let x data generated from the likelihood, p(z|9)
o The Jeffreys prior, p,(0) of 8 is a noninformative prior of 6 defined by

where ¢, > 0 and I(0) is the Fisher information function given by
(under some regularity conditions)

d2
1(0) = ~E| - logp(X[0)]
and p(X|0) is the likelihood.
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REIEYs pricr

o If [ \/I(0)df < oo, then c, is taken to be (fe \1(0) (10)71 so that

p(0) is a proper density.

o Otherwise, if the integral is infinite, the constant ¢, is left
unspecified and the prior p(6) is an improper prior pdf of 6.
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REIEYs pricr

o Jeffreys’ prior is invariant to smooth monotone transformations of
the parameter, 1) = g(6), since

1w =10 ()

o Hence, a Jeffreys prior for 0 leads to a Jeffreys prior for ¢ = g(6) for
g smooth monotone transformations

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Jeffrey prior for beta/binomial model

o Let  ~ Binomial(n, q),
where ¢ is the probability of
success.

o Show that the Jeffreys' prior
is Beta(3, 3) (similar to
uniform or beta(1,1)),

)"

@ What is the posterior mean
of ¢ under the Binomial
likelihood and Jeffreys
prior?

plg) o< g *(1 —

k+1/2
n+1
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Uniform Beta(0.5, 0.5) ——

3A

Probability density

0.2 0.4 0.6 0.8 1.0
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Board question: Jeffrey prior for beta/binomial model

Bent coin with unknown probability 6.
Jeffreys prior for 6 on [0, 1]
Data: toss 27 times and get 15 heads.

© What is the posterior distribution and posterior mean of ¢ under the
Binomial likelihood and Jeffreys prior?
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Board question: Jeffreys prior for normal /normal example

Let 2,,...,x, iid from N(u,c?) where o is known.

o Show that the Jeffreys prior for the normal likelihood is

p(p) =cv/njfo?, peR

for some constant ¢, > 0.
o Is this a proper prior or improrer prior?

o Derive the posterior density for © under the normal likelihood
N(u,0?) and Jeffreys prior for p.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Informative prior

@ Informative priors include some judgement concerning plausible
values of the parameters based on external information.

@ Informative priors can be based on pure judgement, a mixture of
data and judgement, or external data alone.

@ An informative prior distribution os one in which the probability
mass is concentrated in some subset of the possible range for the
parameters.
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-'native prior

@ There are many ways to build an informative prior. For example,
using summary statistics, published estimates, intervals or standard
errors.

o We can match these quantities to the mean, median standard
deviation or percentiles of the prior distribution.
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Example: Building an informative prior

o Let ty,...,t, ~ Exp(\) denote the lifetimes of lightbulbs.

o The gamma distribution provides a conjugate prior for A (failure

rate)

@ Suppose we have external information from other similar bulbs with
observed failure rates r,, ..., 7.

o Let m and u be the mean and variance of 7y, ..., 7, respectively.

o We want to build a gamma(«, ) distribution that for A using this
prior information.
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-1ple: Building an informative prior

o We can use the method of moments to match the mean and the
variance of the gamma distribution with the corresponding m and u

o That is
me® 4ol
B’ p?
o Solve for o and 8
p= 0=
U U
2
ik

@ Thus, our prior for A is gamma("-,
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Weakly informative prior distributions

o Instead of trying to make the prior completely uniformative, an
alternative is to convey some information about the plausible range
of the parameters, e.g., exclude implausible values.

@ Otherwise let the data speak for themselves.

@ For models with large numbers of parameters, adding a little prior
information may help with numerical stability.
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