Lecture 5B MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

- Review
- Compute posterior distribution for transformed parameters and multiple parameters
- Compute posterior estimates and credible intervals for transformed parameters and multiple parameters.
- Choose a prior distribution.

Review: point estimates

 \bullet Suppose we know the posterior distribution $p(\theta\mid y)$ for a one-dimensional parameter θ computed from

Posterior distribution \propto prior distribution \times likelihood

- We can obtain point estimates of θ by summarising the center of the posterior $p(\theta \mid y)$ using e.g.,
 - mean
 - median
 - mode
- We can also obtain a 1α -probability or credible interval for θ .

Review: Credible or probability intervals

• A $1-\alpha$ -probability or credible interval for θ is an interval (θ_L,θ_U) such that

$$P(\theta_L < \theta < \theta_U) = 1 - \alpha.$$

 The probabilities are calculated from the posterior distribution pmf or pdf

$$p(\theta \mid y)$$

Review: Equal tail intervals or symmetric probability intervals

• A $(1-\alpha)$ %equal-tail or symmetric probability interval is an interval (θ_L, θ_U) such that

$$P(\theta < \theta_L) = \alpha/2$$
$$P(\theta > \theta_U) = \alpha/2$$

• It's symmetric because the amount of probability remaining on either side of the interval is the same, $\alpha/2$.

Review: Highest posterior density (HPD) intervals

- Let $p(\theta|y)$ be a unimodal posterior density for θ .
- A $(1-\alpha)$ % highest posterior density (HPD) interval is an interval (θ_L, θ_U) such that

$$P(\theta_L < \theta < \theta_U) = 1 - \alpha$$
$$p(\theta_L \mid y) = p(\theta_U \mid y)$$

 The interval captures the "most likely" values of the unknown.

Review: Highest posterior density (HPD) intervals

- Of all possible $(1 \alpha)\%$ credible intervals, the HPD interval is the shortest.
- If the density posterior density is unimodal and symmetric then the symmetric interval and the HPD interval coincide. Otherwise they do not.
- Finding a HPD interval in a non-symmetric distribution is not straightforward.

Transformed parameters

- Suppose we have arrived at a posterior distribution $p(\theta \mid y)$ for a parameter θ .
- Let $\psi = g(\theta)$, where g is a monotonic transformation of θ (increasing or decreasing), e.g., $\psi = \log(\theta)$, $\sqrt{\theta}$ or θ^3 .

• Questions:

- How do we make inferences about ψ ?
- Which posterior summary statements about θ carry over to ψ ?
 -E.g. if $\tilde{\theta}$ is the posterior mean for θ , is $g(\tilde{\theta})$ the posterior mean for ψ ?

Transforming random variables

- The shape of a probability density changes under nonlinear monotonic transformations of the random variable.
- Let g be a monotonic function.
- Suppose we have random variables X and Y with Y = g(X).
- Their pdfs are related by

$$f_X(x) = |g'(x)| f_Y(g(x)) \quad \text{or}$$

$$f_Y(y) = \left| \frac{d}{dy} g^{-1}(y) \right| f_X(g^{-1}(y))$$

Example: Posterior of transformed parameters

- ullet Bent coin with probability of success heta
- Flat prior on θ : $p(\theta) = 1$ for all $\theta \in [0, 1]$.
- k=5 heads in n=6 tosses.
- ullet Find the posterior distribution of heta
- Find the posterior distribution of $\psi = \theta^3$.

Mean of transformed parameters

ullet Mean is NOT preserved by the transformation since for a nonlinear g

$$E(g(X)) \neq g(E(X)).$$

- So, if $\hat{\theta}_B$ is the posterior mean of θ , $g(\hat{\theta}_B)$ is NOT the posterior mean of ψ .
- The posterior density changes shape, so the mode is not preserved by the transformation.
- Also the endpoints of the highest posterior density credible intervals are not preserved.

Quantiles of transformed parameters

- Quantiles are preserved under nonlinear monotone transformations. so median is preserved.
- If θ_m be the posterior median for θ , then $g(\theta_m)$ is the posterior median for ψ .
- Similarly, equal tail credible intervals are preserved under increasing, one-to-one transformations
- If $(q_{0.025}, q_{0.975})$ is a 0.95 equal-tail credible intervals for θ , then $(g(q_{0.025}), g(q_{0.975}))$ is a 0.95 equal-tail credible intervals for $\psi = q(\psi)$ for any q monotonic increasing transformations.

F. Solea, QMUI

More than one parameter

- We have covered one-parameter examples so far.
- We have considered conjugate priors the simplest examples have one unknown parameter.
- Computational methods allow models with many parameters.
- And priors don't need to be conjugate.

Multiple parameters

- Let $\theta = (\theta_1, \dots, \theta_K)$ be a vector of parameters.
- Then we can still use Bayes' theorem to compute the joint posterior

$$p(\theta_1, \dots, \theta_K \mid y) \propto p(\theta_1, \dots, \theta_K) p(y \mid \theta_1, \dots, \theta_K)$$

- We still base our estimates on the joint posterior $p(\theta \mid y)$.
- For predictions of future data, we use the entire joint distribution.

Marginal distribution

- For point estimates of individual parameters, we typically use the marginal distribution.
- For example, if $\theta=(\theta_1,\theta_2,\theta_3)$, the marginal posterior distribution for θ_1 is

$$p(\theta_1 \mid y) = \int \int p(\theta_1, \theta_2, \theta_3 \mid y) \ d\theta_2 \ d\theta_3$$

- The computational methods used for Bayesian inference make going from joint to marginal distribution easy.
- No need to explicitly evaluate the integral.

Example: comparing two Binomials

- In a clinical trial, suppose we have n_1 control patients and n_2 treatment patients.
- x_1 control patients survive and x_2 treatment patients survive.
- Then, x_1 and x_2 are independent,

$$x_1 \sim \mathsf{binomial}(n_1, p_1) \quad x_2 \sim \mathsf{binomial}(n_2, p_2)$$

- We want to estimate $\tau = P(p_2 < p_1)$, the survival success for treatment group is lower than the survival success for control group.
- We might want to estimate the difference in proportions $d=p_2-p_2$ or the log-odds $\log(\frac{p_1}{1-p_1})$

Example: comparing two Binomials

- The prior is $f(p_1, p_2) = 1$, $0 < p_1 < 1$, $0 < p_2 < 1$
- By independence of the data, the posterior is

$$f(p_1, p_2|x_1, x_2) \propto p_1^{x_1} (1 - p_1)^{n_1 - x_1} p_2^{x_2} (1 - p_2)^{n_2 - x_2}$$

• Notice that p_1, p_2 live on a square, and that

$$f(p_1, p_2|x_1, x_2) \propto f(p_1|x_1)f(p_2|x_2),$$

where
$$f(p_1|x_1)=p_1^{x_1}(1-p_1)^{n_1-x_1}$$
, $f(p_2|x_2)=p_2^{x_2}(1-p_2)^{n_2-x_2}$.

- Thus, p_1 and p_2 are independent under the posterior
- Also $f(p_1|x_1) \sim \text{beta}(x_1+1,n_1-x_1+1)$, $f(p_2|x_2) \sim \text{beta}(x_2+1,n_2-x_2+1)$

Simulation

- Let P_{11}, \ldots, P_{1B} a random sample from $beta(x_1 + 1, n_1 x_1 + 1)$.
- Let P_{21}, \ldots, P_{2B} a random sample from $beta(x_2+1, n_2-x_2+1)$.
- Then (P_{1i}, P_{2i}) , i = 1, ..., B is a sample from $f(p_1, p_2 | x_1, x_2)$.
- We estimate τ by counting the proportion of pairs (P_{1i},P_{2i}) such that $P_{2i} < P_{1i}$