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-y's agenda

Today's lecture

Review

©

©

Compute posterior distribution for transformed parameters and
multiple parameters

Compute posterior estimates and credible intervals for transformed
parameters and multiple parameters.

©

©

Choose a prior distribution.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



.?eview: point estimates

@ Suppose we know the posterior distribution p(6 | y) for a
one-dimensional parameter § computed from

Posterior distribution oc prior distribution x likelihood )

@ We can obtain point estimates of 6 by summarising the center of the
posterior p(f | y) using e.g.,

o mean
o median
o mode

o We can also obtain a 1 — a-probability or credible interval for 6.
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-redible or probability intervals

@ A 1 — a-probability or credible interval for € is an interval (61,,0y)
such that

PO, <0<by)=1-a.

o The probabilities are calculated from the posterior distribution pmf
or pdf
p(0|y)
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Review: Equal tail intervals or symmetric probability

intervals
o A (1-a)%equal-tail or 0.25-
symmetric probability
interval is an interval 0.201
(9[”9[]) such that é 1-a
2 015
PO <6r)=a/2 2
PO >0y)=a/2 g 0.101
3
o It's symmetric because the < 0.054
amount of probability
remaining on either side of 0.00 | |
the interval is the same, G o
/2. a
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Review: Highest posterior density (HPD) intervals

o Let p(f]y) be a unimodal

) ; 0.257
posterior density for 6.
0.201
o A (1-a)% highest posterior S la
density (HPD) interval is an é 0.15+
interval (6, 60y) such that 3
2 0.0
P(9L<9<9U):1_a 2
[
p(0L [ y) = p(bu | y) 0.051
@ The interval captures the 0.00 q Qo
“most likely” values of the q

unknown.
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Review: Highest posterior density (HPD) intervals

o Of all possible (1 — «)% credible intervals, the HPD interval is the
shortest.

o If the density posterior density is unimodal and symmetric then the
symmetric interval and the HPD interval coincide. Otherwise they
do not.

o Finding a HPD interval in a non-symmetric distribution is not
straightforward.
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Transformed parameters

o Suppose we have arrived at a posterior distribution p(6 | y) for a
parameter 6.

o Let ¢ = g(0), where g is a monotonic transformation of 6
(increasing or decreasing), e.g., ¥ = log(), v/ or 6.

o Questions:

o How do we make inferences about ?
o Which posterior summary statements about 6 carry over to ?
-E.g. if 6 is the posterior mean for 6, is g(6) the posterior mean for

?
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.ransforming random variables

@ The shape of a probability density changes under nonlinear
monotonic transformations of the random variable.

o Let g be a monotonic function.
o Suppose we have random variables X and Y with Y = g(X).
@ Their pdfs are related by

fx( z)| fy(g(z)) or
Ix(g7' ()
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-ple: Posterior of transformed parameters

o Bent coin with probability of success 6

o Flat prior on 6: p(8) =1 for all 6 € [0,1].
o k=5 heads in n = 6 tosses.

@ Find the posterior distribution of 6

o Find the posterior distribution of ¢ = 6°.
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Mean of transformed parameters

© Mean is NOT preserved by the transformation since for a nonlinear g
E(g(X)) # g(E(X)).

@ So, if 6, is the posterior mean of 6, g(éB) is NOT the posterior
mean of .

@ The posterior density changes shape, so the mode is not preserved
by the transformation.

o Also the endpoints of the highest posterior density credible intervals
are not preserved.
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Quantiles of transformed parameters

o Quantiles are preserved under nonlinear monotone transformations,
so median is preserved.

o If 6,, be the posterior median for 8, then g(0,,) is the posterior
median for .

@ Similarly, equal tail credible intervals are preserved under increasing,
one-to-one transformations

0 If (go.025, Go.075) is @ 0.95 equal-tail credible intervals for 6, then
(9(Go.025), 9(go.075)) is @ 0.95 equal-tail credible intervals for
1 = g(v) for any g monotonic increasing transformations.
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.Iore than one parameter

o We have covered one-parameter examples so far.

@ We have considered conjugate priors - the simplest examples have
one unknown parameter.

o Computational methods allow models with many parameters.

@ And priors don't need to be conjugate.
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.ultiple parameters

o Let 6 = (0,,...,0,) be a vector of parameters.

@ Then we can still use Bayes' theorem to compute the joint posterior

POy, ... 0k |y) ocp(Oy,....0k)p(y | Or,...,0k)

o We still base our estimates on the joint posterior p(6 | y).

o For predictions of future data, we use the entire joint distribution.
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Marginal distribution

o For point estimates of individual parameters, we typically use the
marginal distribution.

o For example, if § = (6,02, 65), the marginal posterior distribution
for 01 is

p(01|y) = //p(01,02,03 | y) dfs dbs

o The computational methods used for Bayesian inference make going
from joint to marginal distribution easy.

@ No need to explicitly evaluate the integral.
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Example: comparing two Binomials

o In a clinical trial, suppose we have n, control patients and n,
treatment patients.

@ x, control patients survive and z, treatment patients survive.

@ Then, x; and x, are independent,
x, ~ binomial(n,,p,) x, ~ binomial(n,,p,)

o We want to estimate 7 = P(p, < p,), the survival success for
treatment group is lower than the survival success for control group.

o We might want to estimate the difference in proportions d = p, — p,

or the log-odds log(724-)
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Example: comparing two Binomials

o The prioris f(p,,p.) =1, 0<p; <1,0<p, <1

o By independence of the data, the posterior is
f(ps palzy, w2) oc pit (1 —po)™ 7" py2 (1 — py) ™27
o Notice that p,, p, live on a square, and that
f(Pr,pa|@s, @2) o f(pi|z) f(palz2),

where f(p,|z,) = pi* (1 —pi)™ 7", f(pal7s) = p3° (1 — po)"27"2.
@ Thus, p, and p, are independent under the posterior

o Also f(p,|z,) ~ beta(z, + 1,n, —x, + 1),
f(py|x,) ~ beta(z, + 1,0, — x5, + 1)
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o Let P,,..., P,z a random sample from beta(xz, + 1,n, — z, + 1).
o Let P,,,..., P,z a random sample from beta(xz, + 1,n, — 2, + 1).
o Then (P, Py;), i =1,...,B is a sample from f(p,,ps|x,,x,).

o We estimate 7 by counting the proportion of pairs (P,;, P,;) such
that P,, < Py,
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