QUIZ ANSWERS Out 30th 2022

Q1 on \mathbb{R}
(a) $\dot{x}=x^{4}(x-2)(x-3)(x-4)$
(b) $\dot{x}=x^{4}(x-1)(x-2)(3-x)$

$$
2-x^{7} \quad 4
$$

(c) $x=x(x-1)(x-2)(x-3)$
(d) $\quad i=-x^{2}(x-1)(x-2)(x-3) \quad-x^{5} \quad 2 \quad 1 \quad 1 \quad 1$
(k) $x=-x^{2}(x-2)(x-3)(x-4) \quad-x^{5} \quad 21$

Q2 On $\mathbb{R} \quad x=x^{c}$
x both stable and unstable
x asymptotically stable
\checkmark unstable
\times stable

Q3 $\dot{\theta}=\sin ^{2}(\theta)$, fixed pt $\theta=0$
x asymptotically stable
\checkmark has a nou-trivial basin of attraction (S')
x table
\checkmark unstable
x nether stable nor unstable
QU

$$
\left.\begin{array}{l}
\times \dot{x}=x(x-1)^{2}(x-2)(x-3) \sim+x^{5} \\
V \dot{x}=-x^{2}(x-2)(x-3)(x-4)^{3} \sim-x^{7} \\
V \\
V
\end{array}\right) 1
$$

Q5 - asymptotically stable is also stäble

- stable fixed point of a linear sysam is always axymptorially stable (on the plane)
- a basin of a linear sÿsten la be one dimensional (anime and plane)
- a fixed point of a linear system ar the plane is asfempfotically stable is all ooluts converge asymptotically to the fixed point (1)
- a fixed point of a system on the cole is asymptotically stable if all orbits asynppitically converge to the fixed point (F)

Qb
$\dot{x}=y, \dot{y}=-4 x \quad$ stable, but not AS
$\dot{x}=-2, \dot{y}=-3 y \quad$ AS $(\therefore$ also stable $)$
$\dot{x}=0, \dot{y}=0 \quad$ stable, but not AS
$\dot{x}=0, \dot{y}=y \quad$ unstable
$\dot{\theta}=1-\cos \theta$, unstable, unstable with $B(\theta=0)=S^{1}$
$\dot{\theta}=\sin ^{2}(2 \theta)$, unstable, "none of these."
not stable, not $B(\theta=0)=S^{1}$

