MTH6107 Chaos \& Fractals

Solutions 3

Exercise 1. Show that the notion of topological conjugacy defines an equivalence relation on the set of self-maps of $[-1,1]$.

Recall that f and g are said to be topologically conjugate if there exists a homeomorphism $h:[-1,1] \rightarrow[-1,1]$ such that $h \circ f=g \circ h$

Clearly any f is topologically conjugate to itself: just take h to be the identity map.
The relation is symmetric: if $h \circ f=g \circ h$ then $H \circ g=f \circ H$ where $H=h^{-1}$.
The relation is transitive: if $h \circ f_{1}=f_{2} \circ h$ and $h^{\prime} \circ f_{2}=f_{3} \circ h^{\prime}$, then setting $H=h^{\prime} \circ h$ we see that

$$
H \circ f_{1}=h^{\prime} \circ h \circ f_{1}=h^{\prime} \circ f_{2} \circ h=f_{3} \circ h^{\prime} \circ h=f_{3} \circ H .
$$

Therefore topological conjugacy is an equivalence relation.
Exercise 2. Use the map $h(x)=\sin (\pi x / 2)$ to show that the map $f:[-1,1] \rightarrow[-1,1]$ defined by $f(x)=1-2|x|$ is topologically conjugate to the Ulam map $g:[-1,1] \rightarrow$ $[-1,1]$ given by $g(x)=1-2 x^{2}$.

First observe that $h:[-1,1] \rightarrow[-1,1]$ defined by $h(x)=\sin (\pi x / 2)$ is indeed a homeomorphism.

We will show that $h \circ f=g \circ h$.
Firstly, if $x \in[-1,0]$ then $h(f(x))=\sin ((2 x+1) \pi / 2)=\sin (\pi / 2+\pi x)=\cos (\pi x)$, and if $x \in[0,1]$ then $h(f(x))=\sin ((1-2 x) \pi / 2)=\sin (\pi / 2-\pi x)=\cos (\pi x)$.

Secondly, $g(h(x))=1-2 \sin ^{2}(\pi x / 2)=\cos \pi x$.
So $g(h(x))=h(f(x))$, as required.
Exercise 3. Determine whether the map $F:[-1,1] \rightarrow[-1,1]$ given by $F(x)=1-|x|$ is topologically conjugate to the map $G:[-1,1] \rightarrow[-1,1]$ given by $G(x)=1-x^{2}$.

The two maps are not topologically conjugate.
Justification: Every point in $[0,1]$ has prime period 2 under F, whereas G only has a single orbit of prime period 2 (namely $\{0,1\}$), therefore the maps cannot be topologically conjugate.

Henceforth let $D:[0,1) \rightarrow[0,1)$ be the doubling map $D(x)=2 x(\bmod 1)$, in other words

$$
D(x)= \begin{cases}2 x & \text { for } x \in[0,1 / 2) \\ 2 x-1 & \text { for } x \in[1 / 2,1)\end{cases}
$$

Exercise 4. For the map D, determine all its periodic points of period ≤ 5.

In general a point x has period n for the doubling map if and only if $x=j /\left(2^{n}-1\right)$ for some integer j with $0 \leq j \leq 2^{n}-2$.

The only fixed point is at 0 .
The points of prime period 2 are $1 / 3$ and $2 / 3$.
The points of prime period 3 are $1 / 7,2 / 7,3 / 7,4 / 7,5 / 7,6 / 7$.
The points of prime period 4 are those points of the form $j / 15$ which are not a fixed point or of prime period 2 ; in other words, $1 / 15,2 / 15,1 / 5,4 / 15,2 / 5,7 / 15,8 / 15,3 / 5$, $11 / 15,4 / 5,13 / 15,14 / 15$.

The points of prime period 5 are those points of the form $j / 31$ for integers j with $1 \leq j \leq 30$.

Exercise 5. Write down the binary digit expansions for all the periodic points of D of period ≤ 5.

If x is periodic with $x=\sum_{k=1}^{\infty} b_{k} / 2^{k}$, where each $b_{k} \in\{0,1\}$, then the binary digit sequence $\left(b_{k}\right)_{k=1}^{\infty}$ is periodic (see Exercise 9), so it suffices to give the corresponding periodic word.

The fixed point 0 corresponds to periodic word 0 .
The period-2 point $1 / 3$ corresponds to periodic word 01 (i.e. $1 / 3=.010101 \ldots$), and the period- 2 point $2 / 3$ corresponds to periodic word 10 (i.e. $2 / 3=.101010 \ldots$).

The period- 3 point $1 / 7$ corresponds to periodic word 001 (i.e. $1 / 7=.001001001 \ldots$), the period- 3 point $2 / 7$ corresponds to periodic word 010 (i.e. $2 / 7=.010010010 \ldots$), and the period-3 point $4 / 7$ corresponds to periodic word 100 (i.e. $4 / 7=.100100100 \ldots$).

The period-4 points $1 / 5,2 / 5,3 / 5,4 / 5$ correspond, respectively, to periodic words 0011, 0110, 1001, 1100.

The period-4 points $1 / 15,2 / 15,4 / 15,8 / 15$ correspond, respectively, to periodic words 0001, 0010, 0100, 1000.

The period-4 points $7 / 15,11 / 15,13 / 15,14 / 15$ correspond, respectively, to periodic words 0111, 1011, 1101, 1110.

The period-5 points $j / 31(1 \leq j \leq 30)$ correspond to the 30 length- 5 words on the alphabet $\{0,1\}$ which contain at least one 0 and at least one 1 . For example $1 / 31$ corresponds to 00001 (i.e. $1 / 31=.000010000100001 \ldots$), etc.

Exercise 6. Determine the period-5 orbit of D which is contained in the interval [3/20, 13/20].

The unique such orbit is $\{5 / 31,10 / 31,20 / 31,9 / 31,18 / 31\}$.
Exercise 7. Determine the periodic orbit of D which is contained in the interval [3/10, 4/5].

The unique such orbit is $\{1 / 3,2 / 3\}$.
Exercise 8. For all prime numbers $3 \leq p \leq 19$, determine the period (under the map D) of the point $1 / p$.
$1 / 3$ has prime period 2 .
$1 / 5$ has prime period 4 .
$1 / 7$ has prime period 3 .
$1 / 11$ has prime period 10 .
$1 / 13$ has prime period 12 .
$1 / 17$ has prime period 8 .
$1 / 19$ has prime period 18 .
Exercise 9. Given $x \in[0,1)$, with binary expansion $x=\sum_{k=1}^{\infty} b_{k} / 2^{k}$ where each $b_{k} \in\{0,1\}$, show that x is periodic under D if and only if the binary digit sequence $\left(b_{k}\right)_{k=1}^{\infty}$ is periodic.

Applying the doubling map D corresponds to a (left) shift of the binary digit sequence, so if

$$
x=. b_{1} b_{2} \ldots b_{T} b_{1} b_{2} \ldots b_{T} \ldots
$$

is such that the digit sequence has period T, then $D^{T}(x)=x$, so x is periodic under D.
Conversely, if x is periodic with period T, then $x=D^{T}(x)=2^{T} x(\bmod 1)$, so $x\left(2^{T}-1\right)=: m \in\left\{1,2, \ldots, 2^{T}-2\right\}$, therefore

$$
x=\frac{m}{2^{T}-1}=\frac{m}{2^{T}} \frac{1}{1-2^{-T}}=\frac{m}{2^{T}}\left(1+2^{-T}+2^{-2 T}+2^{-3 T}+\ldots\right) .
$$

Now let $b_{1}, \ldots, b_{T} \in\{0,1\}$ be such that

$$
m=b_{1} 2^{T-1}+b_{2} 2^{T-2}+\ldots+b_{T} 2^{0}
$$

so

$$
\frac{m}{2^{T}}=\frac{b_{1}}{2}+\frac{b_{2}}{2^{2}}+\ldots+\frac{b_{T}}{2^{T}},
$$

therefore

$$
x=\left(\frac{b_{1}}{2}+\frac{b_{2}}{2^{2}}+\ldots+\frac{b_{T}}{2^{T}}\right)\left(1+2^{-T}+2^{-2 T}+2^{-3 T}+\ldots\right),
$$

in other words

$$
x=. b_{1} b_{2} \ldots b_{T} b_{1} b_{2} \ldots b_{T} \ldots,
$$

so the digit sequence is periodic.
Let $T:[0,1) \rightarrow[0,1)$ be the tripling map $T(x)=3 x(\bmod 1)$, in other words

$$
T(x)= \begin{cases}3 x & \text { for } x \in[0,1 / 3) \\ 3 x-1 & \text { for } x \in[1 / 3,2 / 3) \\ 3 x-2 & \text { for } x \in[2 / 3,1)\end{cases}
$$

Exercise 10. Determine whether or not D and T are topologically conjugate.
D and T are not topologically conjugate. To see this, note for example that D has a single fixed point in $[0,1$) (namely at 0), whereas T has two fixed points in $[0,1$) (namely 0 and $1 / 2$), and that if D and T were topologically conjugate then they would have had the same number of fixed points.

Exercise 11. Identify, with justification, those points of prime period 4 for D which are also of prime period 4 for T.

For D there are 3 orbits of prime period 4 , namely $\{1 / 15,2 / 15,4 / 15,8 / 15\},\{1 / 5,2 / 5,4 / 5,3 / 5\}$, and $\{7 / 15,14 / 15,13 / 15,11 / 15\}$.

Under T, the orbit $\{1 / 5,2 / 5,4 / 5,3 / 5\}$ has prime period 4 , because $T(1 / 5)=3 / 5$, $T(3 / 5)=4 / 5, T(4 / 5)=2 / 5, T(2 / 5)=1 / 5$. Under T the points in $\{1 / 15,2 / 15,4 / 15,8 / 15\}$ or $\{7 / 15,14 / 15,13 / 15,11 / 15\}$ are pre-periodic but not periodic.

So the points with prime period 4 under both D and T are precisely $1 / 5,2 / 5,4 / 5,3 / 5$.

