Which of the following ODEs on \mathbb{R} give a phase portrait which is qualitatively the same as the one illustrated below?

Select one or more:$\dot{x}=x^{4}(x-2)(x-3)(x-4)$$\dot{x}=+x^{4}(x-1)(x-2)(3-x)$$\dot{x}=x(x-1)(x-2)(x-3)$None of these.$\dot{x}=-x^{2}(x-1)(x-2)(x-3)$$\dot{x}=-x^{2}(x-2)(x-3)(x-4)$

The fixed point at $x=0$ of the ODE $\dot{x}=x^{4}$ is
Select one:both stable and unstablenone of theseasymptotically stableunstablestable

Consider the ODE on the circle \mathbb{S} given by $\dot{\theta}=\sin ^{2}(\theta)$. The fixed point at $\theta=0$
Select one or more:a. asymptotically stableb. has a non-trivial basin of attractionc. stabled. unstablee. neither stable nor unstablef. None of these.

$\rightarrow-\mathrm{O} \longrightarrow-\mathrm{C} \rightarrow \longrightarrow_{x}$

Which of the following ODEs on \mathbb{R} give a phase portrait which is qualitatively the same as the one illustrated above?

Select one or more:
$\square \dot{x}=(1+x) x^{2}(x+2)^{2}(x+4)$
$\square \dot{x}=x(x-1)^{2}(x-2)(x-5)^{2}$
$\square \dot{x}=x(x-1)(x-2)(x-3)$
$\square \dot{x}=(x+2)(x+1)^{2}(x-1)(x-2)^{2}$
$\square \dot{x}=-(x+1)(x+2)(x+3)^{2}(x+4)^{2}$
\square None of the other answers.

Which of the following ODEs on \mathbb{R} give a phase portrait which is qualitatively the same as the one illustrated below?

Select one or more:$\dot{x}=x(x-1)^{2}(x-2)(x-3)$$\dot{x}=-x^{2}(x-2)(x-3)(x-4)^{3}$$\dot{x}=+x^{2}(x-1)(x-2)^{3}(3-x)$$\dot{x}=-x^{4}(x-1)(x-2)(x-3)$None of these.$\dot{x}=x^{4}(x-2)(x-3)(x-4)$

Identify as to whether the following statements are true or false:
An asymptotically stable fixed point of a linear system on the plane is also stable
A stable fixed point of a linear system is always asymptotically stable \square
A basin of attraction of a fixed point of a linear system can be one dimensional -

A fixed point of a linear system on the plane is asymptotically stable if all orbits asymptotically converge to the fixed point as
$t \rightarrow \infty$ \square
A fixed point of a system on the circle is asymptotically stable if all orbits asymptotically converge to the fixed point as $t \rightarrow \infty$
\square

See below for choices!

\forall nisyp

ing 'uilod paxy alqers -
jugod paxy aqpejsun -

\ddagger
गrenim - \& nimp
H.
$\sum_{6}^{\frac{\pi}{5}}$

- stable
fo mov -
ग"reparm -

rac
muna
08
ह
stable
gann
ypun

