Lecture 5B
 MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture will

- Compute posterior distribution for transformed parameters and multiple parameters
- Compute posterior estimates and intervals for transformed parameters and multiple parameters.

Transformed parameters

- Suppose we have arrived at a posterior distribution $p(\theta \mid y)$ for a parameter θ.
- Let $\psi=g(\theta)$ be a monotonic, increasing transformation of θ, e.g., $\psi=\log (\theta), \sqrt{\theta}$ or θ^{3}.
- Questions:
- How do we make inferences about ψ ?
- Which posterior summary statements about θ carry over to ψ ?
-E.g. if $\tilde{\theta}$ is the posterior mean for θ, is $g(\tilde{\theta})$ the posterior mean for ψ ?

Transforming random variables

- The shape of a probability density changes under nonlinear transformations of the random variable.
- Let g be a monotonic function.
- Suppose we have random variables X and Y with $Y=g(X)$.
- Their pdfs are related by

$$
f_{X}(x)=\left|g^{\prime}(x)\right| f_{Y}(g(x))
$$

Example: Posterior of transformed parameters

- Bent coin with probability of success θ
- Flat prior on $\theta: p(\theta)=1$ for all $\theta \in[0,1]$.
- $k=5$ heads in $n=6$ tosses.
- Find the posterior distribution of θ
- Find the posterior distribution of $\psi=\theta^{3}$.

Mean of transformed parameters

- Mean is not preserved by the transformation since for a nonlinear g

$$
E(g(X)) \neq g(E(X))
$$

- The posterior density changes shape, so the mode is not preserved by the transformation.
- Also the endpoints of the highest posterior density credible intervals are not preserved.

Quantiles of transformed parameters

- Quantiles are preserved under nonlinear monotone transformations, so median is preserved.
- If θ_{m} be the posterior median for θ, then $g\left(\theta_{m}\right)$ is the posterior median for ψ.
- Similarly, equal tail credible intervals are preserved
- If $\left(q_{0.025}, q_{0.975}\right)$ is a 0.95 -credible intervals for θ, then $\left(g\left(q_{0.025}, g\left(q_{0.975}\right)\right)\right.$ is a 0.95 -credible intervals for ψ.

More than one parameter

- We have covered one-parameter examples so far.
- We have considered conjugate priors - the simplest examples have one unknown parameter.
- Computational methods allow models with many parameters.
- And priors don't need to be conjugate.

Multiple parameters

- Let $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$ be a vector of parameters.
- Then we can still use Bayes' theorem to compute the joint posterior

$$
p\left(\theta_{1}, \ldots, \theta_{K} \mid y\right) \propto p\left(\theta_{1}, \ldots, \theta_{K}\right) p\left(y \mid \theta_{1}, \ldots, \theta_{K}\right)
$$

- We still base our estimates on the joint posterior $p(\theta \mid y)$.
- For predictions of future data, we use the entire joint distribution.

Marginal distribution

- For point estimates of individual parameters, we typically use the marginal distribution.
- For example, if $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$, the marginal posterior distribution for θ_{1} is

$$
p\left(\theta_{1} \mid y\right)=\iint p\left(\theta_{1}, \theta_{2}, \theta_{3} \mid y\right) d \theta_{2} d \theta_{3}
$$

- The computational methods used for Bayesian inference make going from joint to marginal distribution easy.
- No need to explicitly evaluate the integral.

Example: comparing two Binomials

- In a clinical trial, suppose we have n_{1} control patients and n_{2} treatment patients.
- x_{1} control patients survive and x_{2} treatment patients survive.
- Then

$$
X_{1} \sim \operatorname{binomial}\left(n_{1}, p_{1}\right) \quad X_{2} \sim \operatorname{binomial}\left(n_{2}, p_{2}\right)
$$

- We want to estimate $\tau=P\left(p_{2}<p_{1}\right)$.

Example: comparing two Binomials

- The prior is $f\left(p_{1}, p_{2}\right)=1, \quad 0<p_{1}<1,0<p_{2}<1$
- The posterior is

$$
f\left(p_{1}, p_{2} \mid x_{1}, x_{2}\right) \propto p_{1}^{x_{1}}\left(1-p_{1}\right)^{n_{1}-x_{1}} p_{2}^{x_{2}}\left(1-p_{2}\right)^{n_{2}-x_{2}}
$$

- Notice that p_{1}, p_{2} live on a square, and that

$$
f\left(p_{1}, p_{2} \mid x_{1}, x_{2}\right) \propto f\left(p_{1} \mid x_{1}\right) f\left(p_{2} \mid x_{2}\right),
$$

where $f\left(p_{1} \mid x_{1}\right)=p_{1}^{x_{1}}\left(1-p_{1}\right)^{n_{1}-x_{1}}, f\left(p_{2} \mid x_{2}\right)=p_{2}^{x_{2}}\left(1-p_{2}\right)^{n_{2}-x_{2}}$.

- Thus, p_{1} and p_{2} are independent under the posterior

Simulation

- Notice that $f\left(p_{1} \mid x_{1}\right) \sim \operatorname{beta}\left(x_{1}+1, n_{1}-x_{1}+1\right)$, $f\left(p_{2} \mid x_{2}\right) \sim \operatorname{beta}\left(x_{2}+1, n_{2}-x_{2}+1\right)$
- Let $P_{11}, \ldots, P_{1 B}$ a random sample from beta $\left(x_{1}+1, n_{1}-x_{1}+1\right)$
- Let $P_{21}, \ldots, P_{2 B}$ a random sample from beta $\left(x_{2}+1, n_{2}-x_{2}+1\right)$
- Then $\left(P_{1 i}, P_{2 i}\right), i=1, \ldots, B$ is a sample from $f\left(p_{1}, p_{2} \mid x_{1}, x_{2}\right)$.
- We estimate τ by counting the proportion of pairs $\left(P_{1 i}, P_{2 i}\right)$ such that $P_{2 i}<P_{1 i}$

