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Today's lecture will

o Compute posterior distribution for transformed parameters and
multiple parameters

o Compute posterior estimates and intervals for transformed
parameters and multiple parameters.
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Transformed parameters

o Suppose we have arrived at a posterior distribution p(6 | y) for a
parameter 6.

o Let ¢y = g(#) be a monotonic, increasing transformation of 6, e.g.,

¥ = log(#), V8 or 6°.

@ Questions:

o How do we make inferences about 1?7
o Which posterior summary statements about 6 carry over to ?
-E.g. if 6 is the posterior mean for 6, is g(0) the posterior mean for

W?
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.ransforming random variables

o The shape of a probability density changes under nonlinear
transformations of the random variable.

o Let g be a monotonic function.
@ Suppose we have random variables X and Y with Y = g(X).
o Their pdfs are related by

fx (@) = 1g'(x)| fy (9(2))
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-ple: Posterior of transformed parameters

o Bent coin with probability of success 6

o Flat prior on 6: p(8) =1 for all 6 € [0,1].
o k=5 heads in n = 6 tosses.

@ Find the posterior distribution of 6

o Find the posterior distribution of ¢ = 6°.
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Mean of transformed parameters

@ Mean is not preserved by the transformation since for a nonlinear g

E(9(X)) # g(E(X)).

@ The posterior density changes shape, so the mode is not preserved
by the transformation.

o Also the endpoints of the highest posterior density credible intervals
are not preserved.
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Quantiles of transformed parameters

o Quantiles are preserved under nonlinear monotone transformations,
so median is preserved.

o If 6,, be the posterior median for 6, then g(0,,) is the posterior
median for .

o Similarly, equal tail credible intervals are preserved

0 If (go.025, Go.075) is @ 0.95-credible intervals for 6, then
(9(qo.025,9(qo.o75)) is a 0.95-credible intervals for ).
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.Iore than one parameter

o We have covered one-parameter examples so far.

@ We have considered conjugate priors - the simplest examples have
one unknown parameter.

o Computational methods allow models with many parameters.

@ And priors don't need to be conjugate.
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.ultiple parameters

o Let 6 = (0,,...,0,) be a vector of parameters.

@ Then we can still use Bayes' theorem to compute the joint posterior

POy, ... 0k |y) ocp(Oy,....0k)p(y | Or,...,0k)

o We still base our estimates on the joint posterior p(6 | y).

o For predictions of future data, we use the entire joint distribution.
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Marginal distribution

o For point estimates of individual parameters, we typically use the
marginal distribution.

o For example, if § = (6,02, 65), the marginal posterior distribution
for 01 is

p(01|y) = //p(01,02,03 | y) dfs dbs

o The computational methods used for Bayesian inference make going
from joint to marginal distribution easy.

@ No need to explicitly evaluate the integral.
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-1ple: comparing two Binomials

@ In a clinical trial, suppose we have n, control patients and n,
treatment patients.

@ x, control patients survive and x, treatment patients survive.
@ Then

X, ~ binomial(n,,p,) X, ~ binomial(n,, p,)

o We want to estimate 7 = P(p, < p,).
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-1ple: comparing two Binomials

o The prioris f(p,,p.) =1, 0<p; <1,0<p, <1

o The posterior is
f(py,polwy, 2) oc pit (1= py)™ 771 pg2 (1 — pa)"2 772
o Notice that p,, p, live on a square, and that
f(puspalws, w2) oc fpala) f(pa]ae),

where f(p:[z,) = pi* (1 —pi)" =1, f(palzs) = pa* (1 —po)m2o2.
@ Thus, p, and p, are independent under the posterior
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o Notice that f(p,|x,) ~ beta(z, + 1,n, — 2, + 1),

f(py|x,) ~ beta(z, + 1,0, — 2, + 1)
o Let Py,,..., P,; a random sample from beta(z, + 1,n, — 2, + 1)
o Let P,,,..., P,; a random sample from beta(z, + 1,n, — 2, + 1)
o Then (P,;, P,;), i=1,...,B is a sample from f(p,, p,|x,,x,).

o We estimate 7 by counting the proportion of pairs (P,;, P,;) such
that P,, < Py;
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