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Today’s agenda

Today’s lecture will

Compute posterior distribution for transformed parameters and
multiple parameters

Compute posterior estimates and intervals for transformed
parameters and multiple parameters.
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Transformed parameters

Suppose we have arrived at a posterior distribution p(θ | y) for a
parameter θ.
Let ψ = g(θ) be a monotonic, increasing transformation of θ, e.g.,
ψ = log(θ),

√
θ or θ3.

Questions:
How do we make inferences about ψ?
Which posterior summary statements about θ carry over to ψ?
-E.g. if θ̃ is the posterior mean for θ, is g(θ̃) the posterior mean for
ψ?
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Transforming random variables

The shape of a probability density changes under nonlinear
transformations of the random variable.
Let g be a monotonic function.
Suppose we have random variables X and Y with Y = g(X).
Their pdfs are related by

fX(x) = |g′(x)| fY (g(x))
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Example: Posterior of transformed parameters

Bent coin with probability of success θ
Flat prior on θ: p(θ) = 1 for all θ ∈ [0, 1].
k = 5 heads in n = 6 tosses.
Find the posterior distribution of θ
Find the posterior distribution of ψ = θ3.
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Mean of transformed parameters

Mean is not preserved by the transformation since for a nonlinear g

E(g(X)) 6= g(E(X)).

The posterior density changes shape, so the mode is not preserved
by the transformation.

Also the endpoints of the highest posterior density credible intervals
are not preserved.
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Quantiles of transformed parameters

Quantiles are preserved under nonlinear monotone transformations,
so median is preserved.

If θm be the posterior median for θ, then g(θm) is the posterior
median for ψ.

Similarly, equal tail credible intervals are preserved
If (q0.025, q0.975) is a 0.95-credible intervals for θ, then
(g(q0.025, g(q0.975)) is a 0.95-credible intervals for ψ.
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More than one parameter

We have covered one-parameter examples so far.
We have considered conjugate priors - the simplest examples have
one unknown parameter.
Computational methods allow models with many parameters.
And priors don’t need to be conjugate.
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Multiple parameters

Let θ = (θ1, . . . , θK) be a vector of parameters.
Then we can still use Bayes’ theorem to compute the joint posterior

p(θ1, . . . , θK | y) ∝ p(θ1, . . . , θK) p(y | θ1, . . . , θK)

We still base our estimates on the joint posterior p(θ | y).
For predictions of future data, we use the entire joint distribution.
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Marginal distribution

For point estimates of individual parameters, we typically use the
marginal distribution.
For example, if θ = (θ1, θ2, θ3), the marginal posterior distribution
for θ1 is

p(θ1 | y) =
∫ ∫

p(θ1, θ2, θ3 | y) dθ2 dθ3

The computational methods used for Bayesian inference make going
from joint to marginal distribution easy.
No need to explicitly evaluate the integral.
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Example: comparing two Binomials

In a clinical trial, suppose we have n1 control patients and n2

treatment patients.
x1 control patients survive and x2 treatment patients survive.
Then

X1 ∼ binomial(n1, p1) X2 ∼ binomial(n2, p2)

We want to estimate τ = P (p2 < p1).
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Example: comparing two Binomials

The prior is f(p1, p2) = 1, 0 < p1 < 1, 0 < p2 < 1
The posterior is

f(p1, p2|x1, x2) ∝ px1
1 (1− p1)n1−x1px2

2 (1− p2)n2−x2

Notice that p1, p2 live on a square, and that

f(p1, p2|x1, x2) ∝ f(p1|x1)f(p2|x2),

where f(p1|x1) = px1
1 (1− p1)n1−x1 , f(p2|x2) = px2

2 (1− p2)n2−x2 .
Thus, p1 and p2 are independent under the posterior
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Simulation

Notice that f(p1|x1) ∼ beta(x1 + 1, n1 − x1 + 1),
f(p2|x2) ∼ beta(x2 + 1, n2 − x2 + 1)
Let P11, . . . , P1B a random sample from beta(x1 + 1, n1 − x1 + 1)
Let P21, . . . , P2B a random sample from beta(x2 + 1, n2 − x2 + 1)
Then (P1i, P2i), i = 1, . . . , B is a sample from f(p1, p2|x1, x2).
We estimate τ by counting the proportion of pairs (P1i, P2i) such
that P2i < P1i
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