Machine Learning with Python MTH786U/P 2023/24

Lecture 6: Regression with Neural Networks

Nicola Perra, Queen Mary University of London (QMUL)

Deep learning is everywhere

Deep learning pioneers Bengio, Hinton, LeCun have been awarded the Turing Award 2018

Deep learning is everywhere

Many great successes in

- Image classification
- Speech recognition
- Image captioning
- Natural language processing
- Text generation
- and many many more

Neural networks

Neural networks

 immediate or even medium TERM."

Source

Companies

sponsoring NeurIPS

201日
Neural Information Processing Systems Thanks Our Diamond Sponsors

facebook	ELEMENT ${ }^{\text {AI }}$	IBM Research AI
amazon.com	- Microsoft	GRAFHCORE
	stradigi ${ }^{\text {w }}$	nVIDIA.
(intel Al	salesforce	MTL

Source

Deep learning is everywhere

However, many successful strategies are black-boxes with little to no guarantees Adversarial examples in image classification:

"panda"
57.7\% confidence

noise

"gibbon"
99.3\% confidence

This is why we need mathematics to better understand deep learning

Deep learning is everywhere

Large Language Models and generative Al are super popular

Deep learning is everywhere

Large Language Models and generative Al are super popular

ChatGPT made a real splash and opened this world to everyone

ChatGPT: An Overview for Data Analytics Students

ChatGPT is an advanced artificial intelligence (Al) model that falls under the category of Natural Language Processing (NLP). Developed by OpenAl, it is designed to understand and generate human-like text based on the input it receives. Here's how it works:

1. Training Data: ChatGPT has been trained on an extensive dataset containing a wide range of text from the internet. This data includes books, articles, websites, and more. This extensive training allows ChatGPT to understand and generate text on a vast array of topics.
2. Transformers Architecture: ChatGPT uses a deep learning architecture called a "transformer." This architecture is particularly well-suited for NLP tasks. It allows the model to process and generate text in a context-aware manner, which means it can understand and generate text that takes into account the surrounding context.
3. Chat-Based Interaction: Users can interact with ChatGPT by providing text-based input. They can ask questions, seek explanations, or request information on various topics. ChatGPT responds with text-based answers or information.
4. Language Generation: ChatGPT is not just about answering questions but also generating human-like text. This makes it versatile for tasks like generating content, summarizing text, and even engaging in creative writing
5. Limitations: It's essential to be aware of ChatGPT's limitations. While it's a powerful tool, it may generate incorrect or biased information, so users need to critically evaluate the responses. It can also be sensitive to how questions are framed, and its responses \boldsymbol{m} \checkmark Regenerate

ChatGPT in Data Analytics

ChatGPT is an AI model designed for natural language understanding and generation. It's a valuable tool in data analytics, helping analysts with data queries and reports. However, it's important to verify the accuracy of its responses and be aware of potential biases. done using libraries like Matplotlib and ipywidgets. You would need to have these libraries installed. Here's a basic example of how you can create a simple widget for visualizing the bias-variance tradeoff:

```
python
`Copy code
    import numpy as np
    import matplotlib.pyplot as plt
    import ipywidgets as widgets
    from ipywidgets import interactive
    # Generate some sample data
    np.random.seed(0)
    X = np.linspace(0, 1, 100)
    y_true = X**2
    y_noise = np.random.normal(0, 0.1, 100)
    y = y_true + y_noise
    # Function to plot bias-variance tradeoff
    def plot_bias_variance(degree):
        # Fit a polynomial of the selected degree
        p = np.polyfit(X, y, degree)
        y_pred = np.polyval(p, X)
```


Deep learning motivation

Biological neuron has dendrites to receive signals, a cell body to process them, and an axon to send signals out to other neurons

Deep learning motivation

Artificial neuron has a number of input channels, a processing stage, and one output that can fan out to multiple other artificial neurons.

Perceptron

McCulloch, Pitts, Rosenblatt, 1950s - 60s

Binary inputs x_{1}, x_{2}, x_{3}
Weights w_{1}, w_{2}, w_{3}

Rosenblatt:

$$
\text { output }= \begin{cases}0 & \text { if } \sum_{j=1}^{3} w_{j} x_{j} \leq \text { threshold } \\ 1 & \text { if } \sum_{j=1}^{3} w_{j} x_{j}>\text { threshold }\end{cases}
$$

Perceptron

Example*:

Download festival is approaching $\&$ we really like Tool (the band)

Perceptron

Example*:

Download festival is approaching \& we really like Tool (the band)
Now we try to decide whether to go or not

Perceptron

Example*:

Download festival is approaching $\&$ we really like Tool (the band) Now we try to decide whether to go or not

We make our decision by weighing up three factors:

Perceptron

Example*:

Download festival is approaching \& we really like Tool (the band) Now we try to decide whether to go or not

We make our decision by weighing up three factors:

- Is the weather good?

Perceptron

Example*:

Download festival is approaching $\&$ we really like Tool (the band) Now we try to decide whether to go or not

We make our decision by weighing up three factors:

- Is the weather good?
- Does our partner want to accompany us?

Perceptron

Example*:

Download festival is approaching \& we really like Tool (the band) Now we try to decide whether to go or not

We make our decision by weighing up three factors:

- Is the weather good?
- Does our partner want to accompany us?
- Is the festival near public transit (we don't own a car)?

Perceptron

We make our decision by weighing up three factors:

- Is the weather good?
$x_{1} \in\{0,1\}$
- Does our partner want to accompany us?
$x_{2} \in\{0,1\}$
- Is the festival near public transit (we don't own a car)?
$x_{3} \in\{0,1\}$

$$
(1=\text { yes }, \quad 0=\text { no })
$$

Perceptron

We make our decision by weighing up three factors:

- Is the weather good?

$$
x_{1} \in\{0,1\}
$$

- Does our partner want to accompany us?
$x_{2} \in\{0,1\}$
- Is the festival near public transit (we don't own a car)?
$x_{3} \in\{0,1\}$

$$
(1=\text { yes, } \quad 0=\text { no })
$$

Suppose we like Tool so much that we would see them without our partner, but we really loathe bad weather

Perceptron

We make our decision by weighing up three factors:

- Is the weather good?

$$
\begin{aligned}
& x_{1} \in\{0,1\} \\
& x_{2} \in\{0,1\}
\end{aligned}
$$

- Does our partner want to accompany us?
- Is the festival near public transit (we don't own a car)? $x_{3} \in\{0,1\}$

$$
(1=\text { yes, } \quad 0=n o)
$$

We can model decision processes like this with perceptrons:

$$
w_{1}=6, w_{2}=2, w_{3}=2
$$

$$
\text { threshold }=5
$$

Perceptron

We make our decision by weighing up three factors:

- Is the weather good?

$$
\begin{aligned}
& x_{1} \in\{0,1\} \\
& x_{2} \in\{0,1\} \\
& x_{3} \in\{0,1\}
\end{aligned}
$$

- Does our partner want to accompany us?
- Is the festival near public transit (we don't own a car)?

$$
\text { output }= \begin{cases}0 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3} \leq 5 \\ 1 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3}>5\end{cases}
$$

Perceptron

We make our decision by weighing up three factors:

- Is the weather good?

$$
\begin{aligned}
& x_{1} \in\{0,1\} \\
& x_{2} \in\{0,1\} \\
& x_{3} \in\{0,1\}
\end{aligned}
$$

- Does our partner want to accompany us?
- Is the festival near public transit (we don't own a car)?

$$
\text { output }= \begin{cases}0 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3} \leq 5 \\ 1 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3}>5\end{cases}
$$

Example: the weather is bad, our partner wants to accompany us and the festival is near public transit

$$
x_{1}=0, x_{2}=1, x_{3}=1 \quad \Rightarrow \quad \text { output }=0
$$

Perceptron

We make our decision by weighing up three factors:

- Is the weather good?

$$
\begin{aligned}
& x_{1} \in\{0,1\} \\
& x_{2} \in\{0,1\} \\
& x_{3} \in\{0,1\}
\end{aligned}
$$

- Does our partner want to accompany us?
- Is the festival near public transit (we don't own a car)?

$$
\text { output }= \begin{cases}0 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3} \leq 5 \\ 1 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3}>5\end{cases}
$$

Example: the weather is good, our partner does not want to accompany us and the festival is not near public transit

$$
x_{1}=1, x_{2}=0, x_{3}=0 \quad \Rightarrow \quad \text { output }=1
$$

Perceptron

A perceptron with n inputs can be modelled mathematically as

$$
f\left(x_{1}, \ldots, x_{n}\right):= \begin{cases}0 & \text { if } \sum_{j=1}^{n} w_{j} x_{j} \leq-b \\ 1 & \text { if } \sum_{j=1}^{n} w_{j} x_{j}>-b\end{cases}
$$

Perceptron

A perceptron with n inputs can be modelled mathematically as

$$
f\left(x_{1}, \ldots, x_{n}\right):= \begin{cases}0 & \text { if } \sum_{j=1}^{n} w_{j} x_{j} \leq-b \\ 1 & \text { if } \sum_{j=1}^{n} w_{j} x_{j}>-b\end{cases}
$$

$$
-b=\text { threshold }
$$

Perceptron

A perceptron with n inputs can be modelled mathematically as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sigma\left(w^{\top} x+b\right):= \begin{cases}0 & \text { if } \sum_{j=1}^{n} w_{j} x_{j} \leq-b \\ 1 & \text { if } \sum_{j=1}^{n} w_{j} x_{j}>-b\end{cases}
$$

$$
-b=\text { threshold }
$$

Perceptron

A perceptron with n inputs can be modelled mathematically as

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right)=\sigma\left(w^{\top} x+b\right):= \begin{cases}0 & \text { if } \sum_{j=1}^{n} w_{j} x_{j} \leq-b \\
1 & \text { if } \sum_{j=1}^{n} w_{j} x_{j}>-b\end{cases} \\
& -b=\text { threshold } \\
& w^{\top}=\left(\begin{array}{lll}
w_{1} & \cdots & w_{n}
\end{array}\right), x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \\
& \sigma(t)=\text { Heaviside function }
\end{aligned}
$$

Perceptron

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sigma\left(w^{\top} x+b\right)
$$

Weights:

Bias: b

Activation function: σ

Multi-class perceptron

Extend perceptron to also have multiple outputs

$$
f(x)=\sigma\left(W^{\top} x+b\right) \quad W \in \mathbb{R}^{n \times m} \quad b \in \mathbb{R}^{m}
$$

Multi-layer perceptron

Multiple neurons communicating:

Weights: $\quad W^{1}, W^{2}$

Bias: b^{1}, b^{2}

Activation function: σ

2-layer perceptron:

$$
f(x)=\sigma\left(\left(W^{2}\right)^{\top} \sigma\left(\left(W^{1}\right)^{\top} x+b^{1}\right)+b^{2}\right)
$$

Multi-layer perceptron

Multiple neurons communicating:
Weights: $\quad W^{1} W^{2}, \ldots, W^{L}$

Bias: $\quad b^{1}, b^{2}, \ldots, b^{L}$

Activation function: σ

$$
f(x)=\sigma\left(\left(W^{L}\right)^{\top} \sigma\left(\left(W^{L-1}\right)^{\top} \sigma\left(\ldots \sigma\left(\left(W^{1}\right)^{\top} x+b^{1}\right) \ldots\right)+b^{L-1}\right)+b^{L}\right)
$$

Artificial neural network

Multiple neurons communicating:
Weights: $W^{1} W^{2} \ldots, W^{L}$ Bias: $b^{1}, b^{2} \ldots, b^{L}$
Activation function: σ No. of layers: L

$$
f(x)=\sigma\left(\left(W^{L}\right)^{\top} \sigma\left(\left(W^{L-1}\right)^{\top} \sigma\left(\ldots \sigma\left(\left(W^{1}\right)^{\top} x+b^{1}\right) \ldots\right)+b^{L-1}\right)+b^{L}\right)
$$

Notation: $f^{1}(x):=\sigma\left(\left(W^{1}\right)^{\top} x+b^{1}\right), f^{l}(x):=\sigma\left(\left(W^{l}\right)^{\top} x+b^{l}\right)$ and $f(x):=f^{L}(x)$

Artificial feed-forward neural networks

Summary:

$$
x^{l}=\sigma\left(\left(W^{l}\right)^{\top} x^{l-1}+b^{l}\right)
$$

Artificial feed-forward neural networks

Summary:

$$
x^{l}=\sigma\left(\left(W^{l}\right)^{\top} x^{l-1}+b^{l}\right)
$$

This can be written as

$$
x^{l}=f^{l}\left(x^{l-1}\right) \quad \text { for } \quad f^{l}(x):=\sigma\left(\left(W^{l}\right)^{\top} x+b^{l}\right)
$$

Artificial feed-forward neural networks

Summary:

$$
x^{l}=\sigma\left(\left(W^{l}\right)^{\top} x^{l-1}+b^{l}\right)
$$

This can be written as $\quad x^{l}=f^{l}\left(x^{l-1}\right) \quad$ for $\quad f^{l}(x):=\sigma\left(\left(W^{l}\right)^{\top} x+b^{l}\right)$

Then the overall neural network reads as

$$
y=f(x):=f^{L} \circ \cdots \circ f^{2} \circ f^{1}(x)
$$

where the composition \circ is defined as

$$
\begin{aligned}
& x=\text { input } \\
& y=\text { output }
\end{aligned}
$$

$L=$ total no. of layers

$$
(f \circ g)(x):=f(g(x))
$$

Artificial neural network

How many layers L do we choose?

How do we estimate the parameters?

How do we estimate the parameters?

$w_{1}=6, w_{2}=2, w_{3}=2$
threshold $=5$

How do we estimate the parameters?

Choose

$$
\begin{gathered}
w_{1}=6, w_{2}=2, w_{3}=2 \\
\text { threshold }=5
\end{gathered}
$$

$$
\text { Define } f(x):=\left\{\begin{array}{ll}
0 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3} \leq 5 \\
1 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3}>5
\end{array} \text { for } x=\left(x_{1}, x_{2}, x_{3}\right)\right.
$$

How do we estimate the parameters?

Choose

$$
\begin{gathered}
w_{1}=6, w_{2}=2, w_{3}=2 \\
\text { threshold }=5
\end{gathered}
$$

Define $f(x):=\left\{\begin{array}{ll}0 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3} \leq 5 \\ 1 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3}>5\end{array}\right.$ for $x=\left(x_{1}, x_{2}, x_{3}\right)$
Generate outputs $y_{i}=f\left(x_{i}\right)$ for inputs $x_{1}, x_{2}, \ldots, x_{s}$

How do we estimate the parameters?

Choose

$$
\begin{gathered}
w_{1}=6, w_{2}=2, w_{3}=2 \\
\text { threshold }=5
\end{gathered}
$$

$$
\text { Define } f(x):=\left\{\begin{array}{ll}
0 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3} \leq 5 \\
1 & \text { if } 6 x_{1}+2 x_{2}+2 x_{3}>5
\end{array} \text { for } x=\left(x_{1}, x_{2}, x_{3}\right)\right.
$$

Generate outputs $y_{i}=f\left(x_{i}\right)$ for inputs $x_{1}, x_{2}, \ldots, x_{s}$

This is a forward problem:
Weights, threshold

How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:

How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:
Model inputs x_{i} and outputs y_{i}
Weights, threshold

How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:

Model inputs x_{i} and outputs y_{i}

Imagine we have some ground truth data that tells us the preferences of potential attendees and we know if they went or no to the concert

Weights, threshold
"Learn" the weights and threshold

How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:
Model inputs x_{i} and outputs y_{i}
Weights, threshold

Imagine we have some ground truth data that tells us the preferences of potential attendees and we know if they went or no to the concert

This might help us train the model and predict what other people might do

How do we estimate the parameters?

How do we solve such an inverse problem?

Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{s}, y_{s}\right)$, find optimal parameters $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$

Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{s}, y_{s}\right)$, find optimal parameters $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$

Hence a nonlinear regression problem:

$$
\min _{W^{1}, \ldots, W^{L}, b^{1}, \ldots, b^{L}} \frac{1}{s} \sum_{i=1}^{s}\left\|f\left(x_{i}\right)-y_{i}\right\|^{2}
$$

Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{s}, y_{s}\right)$, find optimal parameters $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$

Hence a nonlinear regression problem:

$$
\min _{W^{1}, \ldots, W^{L}, b^{1}, \ldots, b^{L}} \frac{1}{s} \sum_{i=1}^{s} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

$$
\ell=\text { loss-function }
$$

Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{s}, y_{s}\right)$, find optimal parameters $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$

Hence a nonlinear regression problem:

$$
\min _{W^{1}, \ldots, W^{L}, b^{1}, \ldots, b^{L}} \frac{1}{s} \sum_{i=1}^{s} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

$$
\ell=\text { loss-function }
$$

Potentially lots of unknowns! It is crucial to set the problem based on the amount of data available

Training neural networks

Supervised training of neural networks is basically like all other supervised training that we have encountered in the module.

Training neural networks

Supervised training of neural networks is basically like all other supervised training that we have encountered in the module.

We formulate cost function and minimise it for pairs of input/output training data

Training neural networks

Supervised training of neural networks is basically like all other supervised training that we have encountered in the module.

We formulate cost function and minimise it for pairs of input/output training data

Example: MSE cost function

$$
E:=\frac{1}{2 s} \sum_{i=1}^{s}\left\|f\left(x_{i}\right)-y_{i}\right\|^{2}
$$

Training neural networks

Supervised training of neural networks is basically like all other supervised training that we have encountered in the module.

We formulate cost function and minimise it for pairs of input/output training data

Example: MSE cost function

$$
E:=\frac{1}{2 s} \sum_{i=1}^{s}\left\|f\left(x_{i}\right)-y_{i}\right\|^{2}
$$

Optimise for parameters $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$

Training neural networks

$$
\begin{aligned}
E & :=\frac{1}{2 s} \sum_{i=1}^{s}\left\|f\left(x_{i}\right)-y_{i}\right\|^{2} \\
& =\frac{1}{2 s} \sum_{i=1}^{s}\left\|f^{L} \circ \cdots \circ f^{2} \circ f^{1}\left(x_{i}\right)-y_{i}\right\|^{2}
\end{aligned}
$$

How do we determine the optimal parameters $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$?

Training neural networks

$$
\begin{aligned}
E & :=\frac{1}{2 s} \sum_{i=1}^{s}\left\|f\left(x_{i}\right)-y_{i}\right\|^{2} \\
& =\frac{1}{2 s} \sum_{i=1}^{s}\left\|f^{L} \circ \cdots \circ f^{2} \circ f^{1}\left(x_{i}\right)-y_{i}\right\|^{2}
\end{aligned}
$$

How do we determine the optimal parameters $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$?

Let's assume f is differentiable, i.e. ∇f exists
Then we can for example perform gradient descent

Training neural networks

So our variables are $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$

Training neural networks

So our variables are $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

Training neural networks

So our variables are $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

$$
W_{k}^{1}=W_{k-1}^{1}-\tau \nabla E\left(W_{k-1}^{1}\right)
$$

Training neural networks

So our variables are $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

$$
W_{k}^{1}=W_{k-1}^{1}-\tau \nabla E\left(W_{k-1}^{1}\right)
$$

Training neural networks

So our variables are $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

$$
\begin{gathered}
W_{k}^{1}=W_{k-1}^{1}-\tau \nabla E\left(W_{k-1}^{1}\right) \\
\vdots \\
W_{k}^{L}=W_{k-1}^{L}-\tau \nabla E\left(W_{k-1}^{L}\right)
\end{gathered}
$$

Training neural networks

So our variables are $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

$$
\begin{gathered}
W_{k}^{1}=W_{k-1}^{1}-\tau \nabla E\left(W_{k-1}^{1}\right) \\
\vdots \\
W_{k}^{L}=W_{k-1}^{L}-\tau \nabla E\left(W_{k-1}^{L}\right) \\
b_{k}^{1}=b_{k-1}^{1}-\tau \nabla E\left(b_{k-1}^{1}\right)
\end{gathered}
$$

Training neural networks

So our variables are $W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

$$
\begin{gathered}
W_{k}^{1}=W_{k-1}^{1}-\tau \nabla E\left(W_{k-1}^{1}\right) \\
\vdots \\
W_{k}^{L}=W_{k-1}^{L}-\tau \nabla E\left(W_{k-1}^{L}\right) \\
b_{k}^{1}=b_{k-1}^{1}-\tau \nabla E\left(b_{k-1}^{1}\right)
\end{gathered}
$$

Training neural networks

So our variables are $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

$$
\begin{gathered}
W_{k}^{1}=W_{k-1}^{1}-\tau \nabla E\left(W_{k-1}^{1}\right) \\
\vdots \\
W_{k}^{L}=W_{k-1}^{L}-\tau \nabla E\left(W_{k-1}^{L}\right) \\
b_{k}^{1}=b_{k-1}^{1}-\tau \nabla E\left(b_{k-1}^{1}\right) \\
\vdots \\
b_{k}^{L}=b_{k-1}^{L}-\tau \nabla E\left(b_{k-1}^{L}\right)
\end{gathered}
$$

Training neural networks

So our variables are $\quad W^{1}, W^{2}, \ldots, W^{L}, b^{1}, b^{2}, \ldots, b^{L}$
Hence gradient descent means

$$
\begin{gathered}
W_{k}^{1}=W_{k-1}^{1}-\tau \nabla E\left(W_{k-1}^{1}\right) \\
\vdots \\
W_{k}^{L}=W_{k-1}^{L}-\tau \nabla E\left(W_{k-1}^{L}\right) \\
b_{k}^{1}=b_{k-1}^{1}-\tau \nabla E\left(b_{k-1}^{1}\right) \\
\vdots \\
b_{k}^{L}=b_{k-1}^{L}-\tau \nabla E\left(b_{k-1}^{L}\right)
\end{gathered}
$$

So, we need to compute lots of partial derivatives!

Backpropagation algorithm

Backpropagation algorithm

For simplicity let's consider a simple linear case, without activation function

Backpropagation algorithm

For simplicity let's consider a simple linear case, without activation function

Desired output y

Backpropagation algorithm

For simplicity let's consider a simple linear case, without activation function

Backpropagation algorithm

Backpropagation algorithm

Desired output
y

Backpropagation algorithm

Desired output y

Imagine that the input is $X^{L-1}=\frac{3}{2}$

Backpropagation algorithm

Desired output y

Imagine that the input is $X^{L-1}=\frac{3}{2}$
The desired output $y=\frac{1}{2}$

Backpropagation algorithm

Desired output
y

Imagine that the input is $X^{L-1}=\frac{3}{2}$
The desired output $y=\frac{1}{2}$
We can initialise gradient descent by setting $w_{0}^{L}=0.8$ and $b_{0}^{L}=1$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

We know that

$$
x^{L}=w^{L} x^{L-1}+b^{L}
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

We know that

$$
x^{L}=w^{L} x^{L-1}+b^{L}
$$

Hence with the initial values of w and b we get

Backpropagation algorithm

Desired output

$$
y=0.5
$$

We know that

$$
x^{L}=w^{L} x^{L-1}+b^{L}
$$

Hence with the initial values of w and b we get

$$
x^{L}=w^{L} x^{L-1}+b^{L}=0.8 \times 1.5+1=2.2
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

We know that

$$
x^{L}=w^{L} x^{L-1}+b^{L}
$$

Hence with the initial values of w and b we get

$$
x^{L}=w^{L} x^{L-1}+b^{L}=0.8 \times 1.5+1=2.2
$$

We are far from the desired value

Backpropagation algorithm

Desired output

$$
y=0.5
$$

We know that

$$
x^{L}=w^{L} x^{L-1}+b^{L}
$$

Hence with the initial values of w and b we get

$$
x^{L}=w^{L} x^{L-1}+b^{L}=0.8 \times 1.5+1=2.2
$$

We are far from the desired value

We need to apply gradient descent!

Backpropagation algorithm

The variables are w and b and the gradient is then

Backpropagation algorithm

Desired output

$$
y=0.5
$$

The variables are w and b and the gradient is then

$$
\nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top}
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

The variables are w and b and the gradient is then

$$
\nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top} \quad E=\left(x^{L}-y\right)^{2}
$$

Backpropagation algorithm

The variables are w and b and the gradient is then

$$
\nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top} \quad E=\left(x^{L}-y\right)^{2} \quad x^{L}=w^{L} x^{L-1}+b^{L}
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

The variables are w and b and the gradient is then

$$
\begin{aligned}
\nabla E & =\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top} \\
\frac{\partial E}{\partial w^{L}} & =\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}
\end{aligned}
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

The variables are w and b and the gradient is then

$$
\begin{aligned}
& \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top} \quad E=\left(x^{L}-y\right)^{2} \quad x^{L}=w^{L} x^{L-1}+b^{L} \\
& \frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1}
\end{aligned}
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

The variables are w and b and the gradient is then

$$
\begin{gathered}
\nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top} \quad E=\left(x^{L}-y\right)^{2} \quad x^{L}=w^{L} x^{L-1}+b^{L} \\
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \\
\frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}}
\end{gathered}
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

The variables are w and b and the gradient is then

$$
\begin{aligned}
& \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top} \quad E=\left(x^{L}-y\right)^{2} \quad x^{L}=w^{L} x^{L-1}+b^{L} \\
& \frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}} \quad=2\left(x^{L}-y\right)
\end{aligned}
$$

Backpropagation algorithm

Desired output

$$
y=0.5
$$

The variables are w and b and the gradient is then

$$
\begin{array}{crl}
\nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial b^{L}}\right)^{\top} & E=\left(x^{L}-y\right)^{2} & x^{L}=w^{L} x^{L-1}+b^{L} \\
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} & \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}} & =2\left(x^{L}-y\right)
\end{array}
$$

Backpropagation algorithm

$$
\begin{gathered}
x^{L-1}=1.5 \\
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{x^{L}}=\frac{\partial E}{\partial b^{L}} \frac{\partial x^{L}}{\partial b^{L}} \quad=2\left(x^{L}-y\right)
\end{gathered}
$$

Backpropagation algorithm

$$
\begin{gathered}
x^{L-1}=1.5 \\
\frac{\partial E}{\partial w^{L}}=\frac{w^{L}}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{x^{L}}=\frac{\partial E}{\partial b^{L}} \frac{\partial x^{L}}{\partial x^{L}} \frac{\text { Desired output }}{\partial b^{L}}=2\left(x^{L}-y\right)
\end{gathered}
$$

Note how

Backpropagation algorithm

$$
\begin{gathered}
x^{L^{L-1}=1.5} \\
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{x^{L}}=\frac{\partial E}{\partial b^{L}}=\frac{\partial x^{L}}{\partial x^{L}} \quad=2\left(x^{L}-y\right)
\end{gathered}
$$

Note how

1) To compute the gradient we need the value x

Backpropagation algorithm

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}} \quad=2\left(x^{L}-y\right)
$$

Note how

1) To compute the gradient we need the value x
2) Hence the first step of the back propagation is the so called forward pass where, given the initial values of w and b, we compute relative inputs and outputs

Backpropagation algorithm

Desired output

$$
y=\frac{1}{2}
$$

We are ready to update the initial values of the parameters! Let us set $\tau=0.1$

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}} \quad=2\left(x^{L}-y\right)
$$

Backpropagation algorithm

Desired output

$$
y=\frac{1}{2}
$$

We are ready to update the initial values of the parameters! Let us set $\tau=0.1$

$$
\begin{aligned}
\frac{\partial E}{\partial w^{L}} & =\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \\
& w_{1}^{L}=w_{0}^{L}-\tau \nabla E\left(w_{0}^{L}\right)
\end{aligned} \quad \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}}=2\left(x^{L}-y\right) ~ 子
$$

Backpropagation algorithm

Desired output

$$
y=\frac{1}{2}
$$

We are ready to update the initial values of the parameters! Let us set $\tau=0.1$

$$
\begin{aligned}
& \frac{\partial E}{\partial w^{L}}= \frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}}=2\left(x^{L}-y\right) \\
& w_{1}^{L}=w_{0}^{L}-\tau \nabla E\left(w_{0}^{L}\right) \\
& w_{1}^{L}= 0.8-\frac{2}{10}\left(2.2-\frac{1}{2}\right) \frac{3}{2}=0.29
\end{aligned}
$$

Backpropagation algorithm

Desired output

$$
y=\frac{1}{2}
$$

We are ready to update the initial values of the parameters! Let us set $\tau=0.1$

$$
\begin{array}{rlr}
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} & \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}}=2\left(x^{L}-y\right) \\
& w_{1}^{L}=w_{0}^{L}-\tau \nabla E\left(w_{0}^{L}\right) & b_{1}^{L}=b_{0}^{L}-\tau \nabla E\left(b_{0}^{L}\right) \\
w_{1}^{L}= & 0.8-\frac{2}{10}\left(2.2-\frac{1}{2}\right) \frac{3}{2}=0.29 &
\end{array}
$$

Backpropagation algorithm

Desired output

$$
y=\frac{1}{2}
$$

We are ready to update the initial values of the parameters! Let us set $\tau=0.1$

$$
\begin{array}{rr}
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}=2\left(x^{L}-y\right) x^{L-1} & \frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}} \quad=2\left(x^{L}-y\right) \\
w_{1}^{L}=w_{0}^{L}-\tau \nabla E\left(w_{0}^{L}\right) & b_{1}^{L}=b_{0}^{L}-\tau \nabla E\left(b_{0}^{L}\right) \\
w_{1}^{L}=0.8-\frac{2}{10}\left(2.2-\frac{1}{2}\right) \frac{3}{2}=0.29 & b_{1}^{L}=1-\frac{2}{10}\left(2.2-\frac{1}{2}\right)=0.66
\end{array}
$$

Backpropagation algorithm

Desired output

$$
y=\frac{1}{2}
$$

We can progress with the calculation going to the next iteration

k	w_{k}^{L}	b_{k}^{L}	x^{L}
1	0.29	0.66	2.20
2	0.11	0.54	1.09
3	0.05	0.50	0.71
4	0.03	0.48	0.57
5	0.02	0.48	0.53
6	0.02	0.48	0.51
7	0.02	0.48	0.50

Backpropagation algorithm

$$
x^{L-1}=\frac{3}{2} \quad x^{L}
$$

Desired output

$$
y=\frac{1}{2}
$$

We can progress with the calculation going to the next iteration

$$
10.290 .662 .20
$$

$$
20.110 .541 .09
$$

$$
30.050 .500 .71
$$

$$
\begin{array}{llll}
4 & 0.03 & 0.48 & 0.57
\end{array}
$$

$$
50.020 .480 .53
$$

$$
60.020 .48 \quad 0.51
$$

$$
70.020 .480 .50
$$

Backpropagation algorithm

What happens if we add a layer?

Desired output y

Backpropagation algorithm

What happens if we add a layer?

$$
x^{L}=w^{L} x^{L-1}+b^{L}
$$

Desired output y

Backpropagation algorithm

What happens if we add a layer?

Desired output y

$$
\begin{aligned}
& x^{L}=w^{L} x^{L-1}+b^{L} \\
& x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{aligned}
$$

Backpropagation algorithm

What happens if we add a layer?

$$
\begin{aligned}
x^{L} & =w^{L} x^{L-1}+b^{L} \\
x^{L-1} & =w^{L-1} x^{L-2}+b^{L-1} \\
E & =\left(x^{L}-y\right)^{2}
\end{aligned}
$$

Desired output y

Backpropagation algorithm

What happens if we add a layer?

Now we are dealing with 4 parameters!

$$
\begin{aligned}
& x^{L}=w^{L} x^{L-1}+b^{L} \\
& x^{L-1}=w^{L-1} x^{L-2}+b^{L-1} \\
& E=\left(x^{L}-y\right)^{2}
\end{aligned}
$$

Backpropagation algorithm

What happens if we add a layer?

Desired output y

$$
\begin{aligned}
& x^{L}=w^{L} x^{L-1}+b^{L} \\
& x^{L-1}=w^{L-1} x^{L-2}+b^{L-1} \\
& E=\left(x^{L}-y\right)^{2}
\end{aligned}
$$

$$
\nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)^{\top}
$$

Backpropagation algorithm

What happens if we add a layer?

Desired output y

Backpropagation algorithm

What happens if we add a layer?

Despite the number of parameters, the approach is exactly the same:

Backpropagation algorithm

What happens if we add a layer?

Despite the number of parameters, the approach is exactly the same:

1) forward pass to compute the values of the inputs/outputs

Backpropagation algorithm

What happens if we add a layer?

Desired output y

Despite the number of parameters, the approach is exactly the same:

1) forward pass to compute the values of the inputs/outputs
2) Backpropagation to get gradients

Backpropagation algorithm

What happens if we add a layer?

Despite the number of parameters, the approach is exactly the same:

1) forward pass to compute the values of the inputs/outputs
2) Backpropagation to get gradients
3) Compute iteration of gradient descent

Backpropagation algorithm

Desired output

$$
\begin{array}{ll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad E=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)^{\top}
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{ll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad E=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)^{\top}
$$

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}}
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{ll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad E=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)^{\top}
$$

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}} \quad=2\left(x^{L}-y\right) x^{L-1}
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{lll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad \nabla=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)
$$

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}} \quad=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial w^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial w^{L-1}}
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{lll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad \nabla=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)
$$

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}} \quad=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial w^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial w^{L-1}}=2\left(x^{L}-y\right) w^{L} x^{L-2}
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{ll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad E=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)^{\top}
$$

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}} \quad=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial w^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial w^{L-1}}=2\left(x^{L}-y\right) w^{L} x^{L-2}
$$

$$
\frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}}
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{ll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad \nabla=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)
$$

$$
\frac{\partial E}{\partial w^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}} \quad=2\left(x^{L}-y\right) x^{L-1} \quad \frac{\partial E}{\partial w^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial w^{L-1}}=2\left(x^{L}-y\right) w^{L} x^{L-2}
$$

$$
\frac{\partial E}{\partial b^{L}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}}=2\left(x^{L}-y\right)
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{ll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad \nabla=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w^{L}} & =\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}} & =2\left(x^{L}-y\right) x^{L-1} & \frac{\partial E}{\partial w^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial w^{L-1}}=2\left(x^{L}-y\right) w^{L} x^{L-2} \\
\frac{\partial E}{\partial b^{L}} & =\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}} & =2\left(x^{L}-y\right) & \frac{\partial E}{\partial b^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial b^{L-1}}
\end{aligned}
$$

Backpropagation algorithm

Desired output

$$
\begin{array}{ll}
x^{L}=w^{L} x^{L-1}+b^{L} \\
x^{L-1}=w^{L-1} x^{L-2}+b^{L-1}
\end{array} \quad \nabla=\left(x^{L}-y\right)^{2} \quad \nabla E=\left(\frac{\partial E}{\partial w^{L}}, \frac{\partial E}{\partial w^{L-1}}, \frac{\partial E}{\partial b^{L}}, \frac{\partial E}{\partial b^{L-1}}\right)
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w^{L}} & =\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial w^{L}} & =2\left(x^{L}-y\right) x^{L-1} & \frac{\partial E}{\partial w^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial w^{L-1}}=2\left(x^{L}-y\right) w^{L} x^{L-2} \\
\frac{\partial E}{\partial b^{L}} & =\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial b^{L}} & =2\left(x^{L}-y\right) & \frac{\partial E}{\partial b^{L-1}}=\frac{\partial E}{\partial x^{L}} \frac{\partial x^{L}}{\partial x^{L-1}} \frac{\partial x^{L-1}}{\partial b^{L-1}}=2\left(x^{L}-y\right) w^{L}
\end{aligned}
$$

Backpropagation algorithm

Desired output y

We can now perform gradient descent!

Backpropagation algorithm

Desired output y

We can now perform gradient descent!

$$
\begin{aligned}
& w_{1}^{L}=w_{0}^{L}-\tau \nabla E\left(w_{0}^{L}\right) \\
& b_{1}^{L}=b_{0}^{L}-\tau \nabla E\left(b_{0}^{L}\right)
\end{aligned}
$$

$$
\begin{aligned}
& w_{1}^{L-1}=w_{0}^{L-1}-\tau \nabla E\left(w_{0}^{L-1}\right) \\
& b_{1}^{L-1}=b_{0}^{L-1}-\tau \nabla E\left(b_{0}^{L-1}\right)
\end{aligned}
$$

Backpropagation algorithm

Backpropagation algorithm

Desired output

$$
y=\frac{1}{2}
$$

Initialising

$$
w_{0}^{L-1}=0.8, w_{0}^{L}=0.8, b_{0}^{L-1}=1, b_{0}^{L}=1, \tau=\frac{1}{10}
$$

Backpropagation algorithm

Initialising

$$
\begin{aligned}
& \begin{array}{r}
w_{0}^{L-1}=0.8, \\
w_{0}^{L}=0.8, \\
k \quad w_{k}^{L} \quad b_{k}^{L-1}=1, w_{k}^{L-1} b_{k}^{L-1} x^{L}
\end{array} \\
& 1-0.19 \quad 0.55 \quad 0.260 .64 \quad 0.35 \\
& 2-0.16 \quad 0.580 .250 .630 .41 \\
& 3-0.150 .60 \quad 0.240 .630 .45 \\
& 4-0.14 \quad 0.61 \quad 0.24 \quad 0.63 \quad 0.47 \\
& 5-0.130 .610 .240 .630 .48 \\
& 6-0.13 \quad 0.61 \quad 0.240 .630 .49 \\
& \begin{array}{llllll}
7 & -0.12 & 0.62 & 0.24 & 0.63 & 0.49
\end{array} \\
& \begin{array}{llllll}
8 & -0.12 & 0.62 \quad 0.24 & 0.63 \quad 0.50
\end{array}
\end{aligned}
$$

Backpropagation algorithm

We can add the activation function

Desired output y

Backpropagation algorithm

We can add the activation function

Desired output
y

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

Backpropagation algorithm

We can add the activation function

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

$$
z^{L}=w^{L} x^{L-1}+b^{L}
$$

Backpropagation algorithm

We can add the activation function

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

$$
z^{L}=w^{L} x^{L-1}+b^{L}
$$

Cost function for a single sample

$$
E_{0}=\left(x^{L}-y\right)^{2}
$$

Backpropagation algorithm

Desired output

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

$$
E_{0}=\left(x^{L}-y\right)^{2}
$$

Backpropagation algorithm

Desired output

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

$$
E_{0}=\left(x^{L}-y\right)^{2}
$$

$$
E_{0}
$$

Backpropagation algorithm

Desired output

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

$$
E_{0}=\left(x^{L}-y\right)^{2}
$$

Backpropagation algorithm

Desired output

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

$$
E_{0}=\left(x^{L}-y\right)^{2}
$$

Backpropagation algorithm

$$
x^{L-1}
$$

x^{L}

Desired output

$$
y
$$

$$
x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
$$

$$
E_{0}=\left(x^{L}-y\right)^{2}
$$

Backpropagation algorithm

$$
x^{L-1}
$$

x^{L}

Desired output
y

Backpropagation algorithm

Desired output
y
To apply gradient descent we need to compute $\frac{\partial}{\partial w^{L}} E_{0}$

Backpropagation algorithm

$$
x^{L-1}
$$

$$
x^{L}
$$

Desired output

$$
y
$$

To apply gradient descent we need to compute $\frac{\partial}{\partial w^{L}} E_{0}$
Which means to evaluate how sensitive is E_{0} with respect to w^{L} ?

Backpropagation algorithm

$$
x^{L-1}
$$

$$
x^{L}
$$

Desired output

$$
y
$$

To apply gradient descent we need to compute $\frac{\partial}{\partial w^{L}} E_{0}$
Which means to evaluate how sensitive is E_{0} with respect to w^{L} ?

By construction, variations in w will affect z which will affect E

Backpropagation algorithm

Desired output

$$
\frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}}
$$

Chain rule

Backpropagation algorithm

Desired output

$$
\frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}}
$$

Chain rule

Backpropagation algorithm

Desired output

$$
\frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}}
$$

Chain rule

It goes backwards: backpropagation!

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right)
\end{aligned}
$$

$$
\frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}}
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L} \\
& \quad \frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right)
\end{aligned}
$$

$$
\frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}}
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L} \\
& \frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}} \\
& \frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right) \\
& \frac{\partial x^{L}}{\partial z^{L}}=\sigma^{\prime}\left(z^{L}\right)
\end{aligned}
$$

Backpropagation algorithm

$$
\begin{aligned}
E_{0} & =\left(x^{L}-y\right)^{2} \\
x^{L} & =\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
z^{L} & =w^{L} x^{L-1}+b^{L}
\end{aligned}
$$

$$
\frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}}
$$

$$
\frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right) \quad \frac{\partial x^{L}}{\partial z^{L}}=\sigma^{\prime}\left(z^{L}\right) \quad \frac{\partial z^{L}}{\partial w^{L}}=x^{L-1}
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L} \\
& \frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right) \\
& \frac{\partial x^{L}}{\partial z^{L}}=\sigma^{\prime}\left(z^{L}\right) \\
& \frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}} \\
& \underbrace{}_{0}=2 x^{L-1} \sigma^{\prime}\left(z^{L}\right)\left(x^{L}-y\right)
\end{aligned}
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L}
\end{aligned}
$$

$$
\frac{\partial}{\partial w^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial w^{L}}
$$

$$
\frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right) \quad \frac{\partial x^{L}}{\partial z^{L}}=\sigma^{\prime}\left(z^{L}\right) \quad \frac{\partial z^{L}}{\partial w^{L}}=x^{L-1}
$$

$$
\frac{\partial}{\partial w^{L}} E_{0}=2 x^{L-1} \sigma^{\prime}\left(z^{L}\right)\left(x^{L}-y\right) \rightarrow \frac{\partial}{\partial w^{L}} E=\frac{1}{s} \sum_{i=0}^{s-1} \frac{\partial}{\partial w^{L}} E_{i}
$$

Backpropagation algorithm

Desired output

Backpropagation algorithm

$$
x^{L-1}
$$

$$
x^{L}
$$

Desired output

$$
y
$$

To apply gradient descent we need to compute $\frac{\partial}{\partial b^{L}} E_{0}$

Backpropagation algorithm

$$
x^{L-1}
$$

$$
x^{L}
$$

Desired output

$$
y
$$

To apply gradient descent we need to compute $\frac{\partial}{\partial b^{L}} E_{0}$ Which means to evaluate how sensitive is E_{0} with respect to b^{L} ?

Backpropagation algorithm

$$
x^{L-1}
$$

$$
x^{L}
$$

Desired output

$$
y
$$

To apply gradient descent we need to compute $\frac{\partial}{\partial b^{L}} E_{0}$
Which means to evaluate how sensitive is E_{0} with respect to b^{L} ?

By construction, variations in b will affect z which will affect E

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L}
\end{aligned}
$$

$$
\frac{\partial}{\partial b^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial b^{L}}
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L}
\end{aligned}
$$

$$
\frac{\partial}{\partial b^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial b^{L}}
$$

$$
\frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right)
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L}
\end{aligned}
$$

$$
\frac{\partial}{\partial b^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial b^{L}}
$$

$$
\frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right)
$$

$$
\frac{\partial x^{L}}{\partial z^{L}}=\sigma^{\prime}\left(z^{L}\right)
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L}
\end{aligned} \quad \frac{\partial}{\partial b^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial b^{L}}
$$

$$
\frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right)
$$

$$
\frac{\partial x^{L}}{\partial z^{L}}=\sigma^{\prime}\left(z^{L}\right)
$$

$$
\frac{\partial z^{L}}{\partial b^{L}}=1
$$

Backpropagation algorithm

$$
\begin{aligned}
& E_{0}=\left(x^{L}-y\right)^{2} \\
& x^{L}=\sigma\left(w^{L} x^{L-1}+b^{L}\right)=\sigma\left(z^{L}\right) \\
& z^{L}=w^{L} x^{L-1}+b^{L}
\end{aligned}
$$

$$
\frac{\partial}{\partial b^{L}} E_{0}=\frac{\partial E_{0}}{\partial x^{L}} \frac{\partial x^{L}}{\partial z^{L}} \frac{\partial z^{L}}{\partial b^{L}}
$$

$$
\frac{\partial E_{0}}{\partial x^{L}}=2\left(x^{L}-y\right)
$$

$$
\frac{\partial x^{L}}{\partial z^{L}}=\sigma^{\prime}\left(z^{L}\right)
$$

$$
\frac{\partial z^{L}}{\partial b^{L}}=1
$$

$$
\frac{\partial}{\partial b^{L}} E_{0}=2 \sigma^{\prime}\left(z^{L}\right)\left(x^{L}-y\right) \rightarrow \frac{\partial}{\partial b^{L}} E=\frac{1}{s} \sum_{i=0}^{s-1} \frac{\partial}{\partial b^{L}} E_{i}
$$

What about a general neural network?!

Backpropagation algorithm

Backpropagation algorithm

Desired output

Backpropagation algorithm

Backpropagation algorithm

Desired output

$$
\begin{aligned}
y_{j} \quad & =\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} \\
z_{j}^{L} & =\sum w_{j v}^{L} x_{v}^{L-1}+b_{j}^{L}
\end{aligned}
$$

Backpropagation algorithm

Desired output

$$
\begin{aligned}
y_{j} \quad E_{0} & =\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} \\
z_{j}^{L} & =\sum_{v} w_{j v}^{L} x_{v}^{L-1}+b_{j}^{L} \\
x_{j}^{L} & =\sigma\left(z_{j}^{L}\right)
\end{aligned}
$$

Backpropagation algorithm

As before we need to compute the gradients

Backpropagation algorithm

As before we need to compute the gradients
For the last layer, for example, before we computed

Backpropagation algorithm

As before we need to compute the gradients

For the last layer, for example, before we computed

$$
\frac{\partial E}{\partial w^{L}}
$$

Backpropagation algorithm

As before we need to compute the gradients
For the last layer, for example, before we computed

$$
\frac{\partial E}{\partial w^{L}} \quad \text { Now } w \text { is a matrix! }
$$

Backpropagation algorithm

As before we need to compute the gradients
For the last layer, for example, before we computed

$$
\frac{\partial E}{\partial w^{L}} \quad \text { Now w is a matrix! } \quad \frac{\partial E}{\partial w^{L}} \rightarrow \frac{\partial E}{\partial w_{i j}^{L}}
$$

Backpropagation algorithm

As before we need to compute the gradients
For the last layer, for example, before we computed

$$
\frac{\partial E}{\partial w^{L}} \quad \text { Now } w \text { is a matrix! } \quad \frac{\partial E}{\partial w^{L}} \rightarrow \frac{\partial E}{\partial w_{i j}^{L}}
$$

We also need to consider the bias

Backpropagation algorithm

As before we need to compute the gradients
For the last layer, for example, before we computed

$$
\frac{\partial E}{\partial w^{L}} \quad \text { Now } w \text { is a matrix! } \quad \frac{\partial E}{\partial w^{L}} \rightarrow \frac{\partial E}{\partial w_{i j}^{L}}
$$

We also need to consider the bias

Backpropagation algorithm

As before we need to compute the gradients
For the last layer, for example, before we computed

$$
\frac{\partial E}{\partial w^{L}} \quad \text { Now w is a matrix! } \quad \frac{\partial E}{\partial w^{L}} \rightarrow \frac{\partial E}{\partial w_{i j}^{L}}
$$

We also need to consider the bias

Backpropagation algorithm

As before we need to compute the gradients
For the last layer, for example, before we computed

$$
\frac{\partial E}{\partial w^{L}} \quad \text { Now w is a matrix! } \quad \frac{\partial E}{\partial w^{L}} \rightarrow \frac{\partial E}{\partial w_{i j}^{L}}
$$

We also need to consider the bias

$$
\frac{\partial E}{\partial b^{L}} \quad \text { Now the bias is now a vector! } \quad \frac{\partial E}{\partial b^{L}} \rightarrow \frac{\partial E}{\partial \mathbf{b}^{L}}
$$

Interested in seeing how these gradients are computed? Interested in seeing how backprogation works for real?

Make your choice!

Interested in seeing how these gradients are computed? Interested in seeing how backprogation works for real?

Make your choice!

If the answer is no skip to slide 73

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right)
$$

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L}
$$

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before We start the derivation by defining δ_{j}^{L} as

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before We start the derivation by defining δ_{j}^{L} as

$$
\frac{\partial E}{\partial z_{j}^{L}}=\delta_{j}^{L}
$$

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before We start the derivation by defining δ_{j}^{L} as

$$
\frac{\partial E}{\partial z_{j}^{L}}=\delta_{j}^{L}=\frac{\partial E}{\partial x_{j}^{L}} \frac{\partial x_{j}^{L}}{\partial z_{j}^{L}}
$$

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before We start the derivation by defining δ_{j}^{L} as

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before We start the derivation by defining δ_{j}^{L} as

$$
\frac{\partial E}{\partial z_{j}^{L}}=\delta_{j}^{L}=\frac{\partial E}{\partial x_{j}^{L}} \frac{\partial x_{j}^{L}}{\partial z_{j}^{L}}=\left(x_{j}^{L}-y_{j}\right)
$$

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before
We start the derivation by defining δ_{j}^{L} as

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before
We start the derivation by defining δ_{j}^{L} as

Backpropagation algorithm

In the last layer we have

$$
x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

To compute the gradients we need the chain rule as before We start the derivation by defining δ_{j}^{L} as

Backpropagation algorithm

$$
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

Backpropagation algorithm

$$
z_{j}^{L}=\sum_{v} w_{v i}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

What is the value of delta in any previous layer??

Backpropagation algorithm

$$
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

What is the value of delta in any previous layer??

$$
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l} \quad \text { for all } l=L-1, \ldots, 1
$$

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus
Idea: we can compute the delta value in each generic layer by looking at the layer before!

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus
Idea: we can compute the delta value in each generic layer by looking at the layer before!

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus
Idea: we can compute the delta value in each generic layer by looking at the layer before!

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus
Idea: we can compute the delta value in each generic layer by looking at the layer before!

Backpropagation algorithm

$$
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

Backpropagation algorithm

$$
z_{j}^{L}=\sum_{v} w_{v y_{i}^{L} L_{i}^{-1}+b_{j}^{L}} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{j}\right)^{2}
$$

$$
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l}
$$

Backpropagation algorithm

$$
z_{j}^{L}=\sum_{v} w_{v i v}^{L} x_{i}^{L_{i}^{-1}}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

$$
\frac{\partial E}{\partial z_{j}}=\delta_{j}^{\prime}=\sum_{v} \frac{\partial E}{\partial z_{2}+\frac{\partial z^{\prime}+1}{t z_{j}^{\prime}}}
$$

Backpropagation algorithm

$$
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2}
$$

$$
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l}=\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}
$$

Backpropagation algorithm

$$
\begin{aligned}
& z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} \\
& \frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l}=\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}
\end{aligned}
$$

Backpropagation algorithm

$$
\begin{aligned}
& z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} \\
& \frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l}=\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} \\
&=\sum_{v} \delta_{v}^{l+1}
\end{aligned}
$$

Backpropagation algorithm

$$
\begin{aligned}
& z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} \\
& \frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l}=\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} \\
&=\sum_{v} \delta_{v}^{l+1} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}
\end{aligned}
$$

Backpropagation algorithm

$$
\begin{array}{rlr}
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} & \\
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l} & =\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} & z_{v}^{l+1}=\sum_{i} w_{i v}^{l+1} x_{i}^{l}+b_{v}^{l+1} \\
& =\sum_{v} \delta_{v}^{l+1} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} &
\end{array}
$$

Backpropagation algorithm

$$
\begin{array}{rlr}
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} & \\
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l} & =\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} & z_{v}^{l+1}=\sum_{i} w_{i v}^{l+1} x_{i}^{l}+b_{v}^{l+1} \\
& =\sum_{v} \delta_{v}^{l+1} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} &
\end{array}
$$

$$
\frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}
$$

Backpropagation algorithm

$$
\begin{array}{rlr}
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} & \\
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l} & =\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} & z_{v}^{l+1}=\sum_{i} w_{i v}^{l+1} x_{i}^{l}+b_{v}^{l+1} \\
& =\sum_{v} \delta_{v}^{l+1} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} &
\end{array}
$$

$$
\frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}=\sum_{i} w_{i v}^{l+1} \frac{\partial x_{i}^{l}}{\partial z_{j}^{l}}
$$

Backpropagation algorithm

$$
\begin{array}{rlr}
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} & \\
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l} & =\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} & z_{v}^{l+1}=\sum_{i} w_{i v}^{l+1} x_{i}^{l}+b_{v}^{l+1} \\
& =\sum_{v} \delta_{v}^{l+1} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} &
\end{array}
$$

$$
\frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}=\sum_{i} w_{i v}^{l+1} \frac{\partial x_{i}^{l}}{\partial z_{j}^{l}}=w_{j v}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
$$

Backpropagation algorithm

$$
\begin{array}{rlr}
z_{j}^{L}=\sum_{v} w_{v j}^{L} x_{v}^{L-1}+b_{j}^{L} \quad x_{j}^{L}=\sigma\left(z_{j}^{L}\right) \quad E_{0}=\frac{1}{2} \sum_{i}\left(x_{i}^{L}-y_{i}\right)^{2} & \\
\frac{\partial E}{\partial z_{j}^{l}}=\delta_{j}^{l} & =\sum_{v} \frac{\partial E}{\partial z_{v}^{l+1}} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}} & z_{v}^{l+1}=\sum_{i} w_{i v}^{l+1} x_{i}^{l}+b_{v}^{l+1} \\
& =\sum_{v} \delta_{v}^{l+1} \frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}=\sigma\left(z_{i}^{l}\right)
\end{array}
$$

$$
\frac{\partial z_{v}^{l+1}}{\partial z_{j}^{l}}=\sum_{i} w_{i v}^{l+1} \frac{\partial x_{i}^{l}}{\partial z_{j}^{l}}=w_{j v}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
$$

Backpropagation algorithm

So, we got

$$
\delta_{j}^{l}=\sum w_{j v}^{l+1} \delta_{v}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
$$

Backpropagation algorithm

So, we got

$$
\delta_{j}^{l}=\sum w_{j v}^{l+1} \delta_{v}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
$$

In matrix form we get

Backpropagation algorithm

So, we got

$$
\delta_{j}^{l}=\sum_{v} w_{j v}^{l+1} \delta_{v}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
$$

In matrix form we get

$$
\boldsymbol{\delta}^{l}=\mathbf{w}^{l+1} \boldsymbol{\delta}^{l+1} \odot \sigma\left(\mathbf{z}^{\mathbf{l}}\right)
$$

Backpropagation algorithm

So, we got

$$
\delta_{j}^{l}=\sum_{v} w_{j v}^{l+1} \delta_{v}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
$$

In matrix form we get

$$
\boldsymbol{\delta}^{l}=\mathbf{w}^{l+1} \boldsymbol{\delta}^{l+1} \odot \sigma\left(\mathbf{z}^{\mathbf{l}}\right) \quad \odot=\text { Hadamard product }
$$

(Element-wise multiplication)

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial w_{i j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial w_{i j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial w_{i j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial w_{i j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} x_{i}^{l-1}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial w_{i j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} x_{i}^{l-1}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

In matrix form

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial w_{i j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial w_{i j}^{l}}=\delta_{j}^{l} x_{i}^{l-1}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

In matrix form

$$
\frac{\partial E}{\partial \mathbf{w}^{l}}=\mathbf{x}^{l-1}\left(\boldsymbol{\delta}^{l}\right)^{\top}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial b_{j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial b_{j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial b_{j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial b_{j}^{l}}=\frac{\partial E}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial b_{j}^{l}}=\frac{\partial E}{\partial z} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

In matrix form

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function for w ans b!

$$
\frac{\partial E}{\partial b_{j}^{l}}=\frac{\partial E}{\partial z z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}}=\delta_{j}^{l}
$$

$$
\begin{array}{r}
z_{j}^{l}=\sum_{i} w_{i j}^{l} x_{i}^{l-1}+b_{j}^{l} \\
x_{j}^{l}=\sigma\left(z_{j}^{l}\right)
\end{array}
$$

In matrix form

$$
\frac{\partial E}{\partial \mathbf{b}^{l}}=\delta^{l}
$$

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic algorithm in machine learning!

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic algorithm in machine learning!

$$
\boldsymbol{\delta}^{L}=\left(\mathbf{x}^{L}-\mathbf{y}\right) \odot \sigma^{\prime}\left(\mathbf{z}^{L}\right)
$$

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic algorithm in machine learning!

$$
\begin{aligned}
\boldsymbol{\delta}^{L} & =\left(\mathbf{x}^{L}-\mathbf{y}\right) \odot \sigma^{\prime}\left(\mathbf{z}^{L}\right) \\
\boldsymbol{\delta}^{l} & =\mathbf{w}^{l+1} \boldsymbol{\delta}^{l+1} \odot \sigma\left(\mathbf{z}^{\mathbf{l}}\right)
\end{aligned}
$$

$$
\text { for all } l=L-1, \ldots, 1
$$

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic algorithm in machine learning!

$$
\begin{aligned}
& \boldsymbol{\delta}^{L}=\left(\mathbf{x}^{L}-\mathbf{y}\right) \odot \sigma^{\prime}\left(\mathbf{z}^{L}\right) \\
& \boldsymbol{\delta}^{l}=\mathbf{w}^{l+1} \boldsymbol{\delta}^{l+1} \odot \sigma\left(\mathbf{z}^{\mathbf{l}}\right) \\
& \frac{\partial E}{\partial \mathbf{w}^{l}}=\mathbf{x}^{l-1}\left(\boldsymbol{\delta}^{l}\right)^{\top}
\end{aligned}
$$

for all $l=L-1, \ldots, 1$.

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic algorithm in machine learning!

$$
\begin{gathered}
\boldsymbol{\delta}^{L}=\left(\mathbf{x}^{L}-\mathbf{y}\right) \odot \sigma^{\prime}\left(\mathbf{z}^{L}\right) \\
\boldsymbol{\delta}^{l}=\mathbf{w}^{l+1} \boldsymbol{\delta}^{l+1} \odot \sigma\left(\mathbf{z}^{\mathbf{l}}\right) \\
\frac{\partial E}{\partial \mathbf{w}^{l}}=\mathbf{x}^{l-1}\left(\boldsymbol{\delta}^{l}\right)^{\top} \\
\frac{\partial E}{\partial \mathbf{b}^{l}}=\boldsymbol{\delta}^{l}
\end{gathered}
$$

$$
\text { for all } l=L-1, \ldots, 1
$$

For more details please check "Deep learning: an introduction for applied mathematicians" by Catherine F. Higham and Desmond J. Higham, Section 5

ACTIVATION FUNCTIONS

Popular activation functions

Activation function examples:

Popular activation functions

Activation function examples: $\quad \sigma(x)=\operatorname{Heaviside}(x)$

Popular activation functions

Activation function examples: $\quad \sigma(x)=\operatorname{Heaviside}(x)$

Output, binary

Popular activation functions

Activation function examples: Rectifier: $\quad \sigma(x)=\max (0, x)$

Popular activation functions

Activation function examples: Rectifier: $\quad \sigma(x)=\max (0, x)$

Rectified linear unit (ReLU):
$\Rightarrow f^{\prime}(x)=\max \left(0,\left(W^{l}\right)^{\top} x^{l-1}+b^{l}\right)$

Popular activation functions

Activation function examples: Rectifier: $\quad \sigma(x)=\max (0, x)$

Rectified linear unit (ReLU):
$\Rightarrow f^{\prime}(x)=\max \left(0,\left(W^{l}\right)^{\top} x^{l-1}+b^{l}\right)$
(component-wise application)

Popular activation functions

Activation function examples: Rectifier:

$$
\sigma(x)=\max (0, x)
$$

Eliminates negative values

Rectified linear unit (ReLU):
$\Rightarrow f^{\prime}(x)=\max \left(0,\left(W^{l}\right)^{\top} x^{l-1}+b^{l}\right)$
(component-wise application)

Popular activation functions

Many other activation functions possible:

Smooth heavyside

Popular activation functions

Many other activation functions possible:

$$
\sigma(x)=\frac{\exp x}{1+\exp x}=\frac{1}{1+\exp (-x)}
$$

(Sigmoid/logistic function)

Smooth heavyside

Popular activation functions

Hyperbolic tangent if you want to allow negative values

$$
\sigma(x)=\tanh (x):=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=2 \phi(2 x)-1 \quad \text { for } \quad \phi(x)=\frac{1}{1+e^{-x}}
$$

Popular activation functions

Leaky rectifier (when you want to allow some small negative values on the x)

Popular activation functions

Many other activation functions possible:

Takes a vector, gives you a vector Sums overall al j is one

Popular activation functions

Many other activation functions possible:

$$
\sigma(x)_{j}=\frac{\exp \left(x_{j}\right)}{\sum_{i=1}^{K} \exp \left(x_{i}\right)} \quad \text { (Softmax function) }
$$

Takes a vector, gives you a vector Sums overall al j is one

CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural network

Basic idea: reduce no. of network connections

Convolutional neural network

We reduce the no. of network connections by restricting our matrices W to a special class of linear operators: convolutions!

Convolutional neural network

We reduce the no. of network connections by restricting our matrices W to a special class of linear operators: convolutions!

Continuous convolution operator:

$$
(x * y)(\tau):=\int_{\mathbb{R}^{n}} x(t) y(t-\tau) d t
$$

Convolutional neural network

We reduce the no. of network connections by restricting our matrices W to a special class of linear operators: convolutions!

Continuous convolution operator:

$$
(x * y)(\tau):=\int_{\mathbb{R}^{n}} x(t) y(t-\tau) d t
$$

Discrete version: $\quad(x * y)[j]:=\sum_{i=1}^{m} x[i] y[i-j]$
one-dimensional

Convolutional neural network

We reduce the no. of network connections by restricting our matrices W to a special class of linear operators: convolutions!

Continuous convolution operator:

$$
(x * y)(\tau):=\int_{\mathbb{R}^{n}} x(t) y(t-\tau) d t
$$

Discrete version: $\quad(x * y)[j]:=\sum_{i=1}^{m} x[i] y[i-j]$
one-dimensional

$$
(x * y)[p, q]:=\sum_{i=1}^{m} \sum_{j=1}^{n} x[i, j] y[i-p, j-q] \quad \text { two-dimensional }
$$

Convolutional neural network

Example applied to a RGB coordinate system (a picture!):

The convolution "kills" a lot of data, but keeps some key components

Convolutional neural network

Another example: max-pooling

12	20	30	0			
8	12	2	0			
34	70	37	4			
112	100	25	12	$\xrightarrow{2 \times 2 \text { Max-Pool }}$	20	30
:---:	:---:					
112	37					

