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Deep learning is everywhere
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Deep learning pioneers Bengio,

Hinton, LeCun have been awarded
the Turing Award 2018
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Deep learning is everywhere
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*0. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.
Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision 3

(IJCV), vol. 115, no. 3, pp. 211-252, 2015.




Neural networks

"The development
of full artificial
Intelligence

could spell

THE END
OF THE
HUMAN
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Neural networks

: Companies
‘o sponsoring NeurlPS

5 : & ¢ a o -
R e

' n r | \
S | "THERE'S NO DANGER IN THE
Ta— w“i_ IMM[”M”’ ”R EVE” ME”"IM Egu?a?formgjﬁol:sgst‘tgThanslﬁ,zrgntlndsjpESES

TE R M ! expectations
facebook ELEMENT™ IBM Research Al 4 SmartAdvsors

Micro Data Centers
S O u rc e Digital Dexterity
Software-Defined Security

. ) Neurobusiness
amazon.com 8™ Microsoft GRAFHCORE Chuen03 St N

stradigi

Advanced Analytics With Self-Service Delivery
Autonomous Vehicdes
Internet of Things

e achine Leaming Machine

Cryptocurrencies
Consumer 3D Printing

-
Natural-Language Question Answerng Lea r’n l n g

Connected Home
Affective Computing
SmanRobols

30D Bloprinting Systems for Organ Transplant Q Hybrid Cloud Computing
Volumetric Displays
Human Augmentation

- Brain-Computer Interface
Lambda NVIDIA. Quantum Computing Augmented Reality Enterprise 3D Printing
Gesture Control
Bioacoustic Sensi Vinual Reality

/—7 N TL o Cryptocurrency Exchange Autonomous Field Vehicles
1 People-Literate Technology
|nte| AI T - Digital Security )

( s Virtual Personal Assistants
LaeA SmantDust
As of July 2015
Innovation l':‘ ?1::;:: Trough of Slope of Enlightenment Plateau of
Trigger Expectations Disillusionment Productivity

Source | v -

Plateau will be reached in: obsolete
Olessthan 2years ©2toSyears @5to10years A morethan 10years @ before plateau

Image source



https://goo.gl/images/Fam7MQ
https://www.theverge.com/2017/10/26/16552056/a-intelligence-terminator-facebook-yann-lecun-interview
https://nips.cc/Conferences/2018/Sponsors

Deep learning is everywhere

However, many successful strategies are black-boxes with little to no guarantees
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This 1s why we need mathematics to better understand deep learning

Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015. 6




Deep learning is everywhere

Large Language Models and generative Al are super popular
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Deep learning is everywhere

Large Language Models and generative Al are super popular

ChatGPT made a real splash and opened this world to everyone

b
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can you write a brief explanation for students in a MSc in Data Analytics of chatGPT?

Certainly! Here's a brief explanation of ChatGPT for students in an MSc in Data Analytics:

ChatGPT: An Overview for Data Analytics Students

ChatGPT is an advanced artificial intelligence (Al) model that falls under the category of
Natural Language Processing (NLP). Developed by OpenAl, it is designed to understand and

generate human-like text based on the input it receives. Here's how it works:

. Training Data: ChatGPT has been trained on an extensive dataset containing a wide range
of text from the internet. This data includes books, articles, websites, and more. This
extensive training allows ChatGPT to understand and generate text on a vast array of
topics.

. Transformers Architecture: ChatGPT uses a deep learning architecture called a
"transformer." This architecture is particularly well-suited for NLP tasks. It allows the model
to process and generate text in a context-aware manner, which means it can understand
and generate text that takes into account the surrounding context.

. Chat-Based Interaction: Users can interact with ChatGPT by providing text-based input.
They can ask questions, seek explanations, or request information on various topics.
ChatGPT responds with text-based answers or information.

. Language Generation: ChatGPT is not just about answering questions but also generating
human-like text. This makes it versatile for tasks like generating content, summarizing text,
and even engaging in creative writing.

. Limitations: It's essential to be aware of ChatGPT's limitations. While it's a powerful tool, it

may generate incorrect or biased information, so users need to critically evaluate the
" Regenerate

responses. It can also be sensitive to how questions are framed, and its responses nr




can you make it much shorter?

Absolutely! Here's a concise explanation:
ChatGPT in Data Analytics

ChatGPT is an Al model designed for natural language understanding and generation. It's a
valuable tool in data analytics, helping analysts with data queries and reports. However, it's

Important to verify the accuracy of its responses and be aware of potential biases.

Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015. 9




can you write a python widget to show the bias-variance decomposition?

) l Creating an interactive widget to visualize the bias-variance decomposition in Python can be il

done using libraries like Matplotlib and ipywidgets. You would need to have these libraries
installed. Here's a basic example of how you can create a simple widget for visualizing the

bias-variance tradeoff:

python D Copy code

C numpy as np
ort matplotlib.pyplot as plt
ort ipywidgets as widgets

“rom ipywidgets import interactive

F generacte some
np.random.seed(0)

X = np.linspace(0O, 1,
y_true = X**

y_noise = np.random.normal(

y = y_true + y_noise

- Fit e

p = np.polyfit(X, y, degree)

y_pred = np.polyval(p, X)



Polynomial... 1

Degree 1 Polynomial
Bias: 0.01, Variance: 0.08, Total Error: 0.09

1.2 -
® Data with Noise o
- == True Function ®
1.0 1 —— Model Prediction o0® »




Deep learning motivation
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Biological neuron has dendrites to receive signals, a cell body to process them,
lq and an axon to send signals out to other neurons
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https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network

Deep learning motivation

In,
McCulloch, Pitts,
in, 3 f out Egzenblatt, 1950s -
IN

blas

Artificial neuron has a number of input channels, a processing stage, and one output
l' that can fan out to multiple other artificial neurons.

lp source
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Perceptron

X McCulloch, Pitts, Rosenblatt,
1950s - 60s
X output Binary inputs x;, x,, x;

Weights w,, w,, w,

0 if ijlexj < threshold

Rosenblatt: output = ;
1 if X~  wux, > threshold
=1 ""JJ




Perceptron

Example*:

Download festival is approaching & we really like Tool (the band)
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*Inspired by ‘Neural networks and deep learning 15


http://downloadfestival.co.uk/
http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

Example*:

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not
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*Inspired by ‘Neural networks and deep learning 15
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Perceptron

Example*:
Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

We make our decision by weighing up three factors:

b
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*Inspired by ‘Neural networks and deep learning 16
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Perceptron

Example*:
Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

We make our decision by weighing up three factors:

* |s the weather good?

b
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Perceptron

Example*:
Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

We make our decision by weighing up three factors:

* |s the weather good?

l’ * Does our partner want to accompany us?

)

*Inspired by ‘Neural networks and deep learning 16
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Perceptron

Example*:
Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

We make our decision by weighing up three factors:

* |s the weather good?

l’ * Does our partner want to accompany us?

! .{ » |s the festival near public transit (we don’t own a car)?

*Inspired by ‘Neural networks and deep learning 16



http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

We make our decision by weighing up three factors:

* |s the weather good? x; € {0,1}
« Does our partner want to accompany us? x, € {0,1}

» |Is the festival near public transit (we don’t own a car)? *3 € {0.1}]

(1 =yes, 0 =no)
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Perceptron

We make our decision by weighing up three factors:

* |s the weather good? x; € {0,1}
« Does our partner want to accompany us? x, € {0,1}

» |Is the festival near public transit (we don’t own a car)? *3 € {0.1}]
(1 =yes, 0=no)

Suppose we like Tool so much
that we would see them without
our partner, but we really loathe
bad weather



https://standoutmagazine.co.uk/association-of-independent-festivals-conference-to-address-bad-weather-and-event-marketing/
https://images.app.goo.gl/o7izPkasfvYqxkjZ8

Perceptron

We make our decision by weighing up three factors:

* |s the weather good? x; € {0,1}
« Does our partner want to accompany us? x, € {0,1}

» |Is the festival near public transit (we don’t own a car)? *3 € {0.1}]

(1 =yes, 0 =no)

l' We can model decision processes like this with perceptrons:

4 W1=6,W2=2,W3=2
threshold =5




Perceptron

We make our decision by weighing up three factors:

* |s the weather good? x; € {0,1}
* Does our partner want to accompany us? x, € {0,1}

» |s the festival near public transit (we don’t own a car)? x; € {0,1}

l' 0 if 6x; +2x, +2x; <5
output =

' | ]f 6X1+2X2+2X3>5




Perceptron

We make our decision by weighing up three factors:

* |s the weather good? x; € {0,1}
* Does our partner want to accompany us? x, € {0,1}

» |s the festival near public transit (we don’t own a car)? X3 € 10,1}

O ]f 6X1+2X2+2X3S5
output = ,
1 if 6x; + 2%, +2x; > 5

l’ Example: the weather is bad, our partner wants to accompany us and
' the festival is near public transit

.xl =O,X2= I,X3= 1 = OUtpUt=O




Perceptron

We make our decision by weighing up three factors:
* |s the weather good? x; € {0,1}
 Does our partner want to accompany us? x, € {0,1}
» |s the festival near public transit (we don’t own a car)? X3 € 10,1}

O ]f 6X1+2X2+2X3S5
output = ,
1 if 6x; + 2%, +2x; > 5

l’ Example: the weather is good, our partner does not want to accompany
' us and the festival is not near public transit

.xl — I,X2=O,.X3=O = OUtpUt= 1




Perceptron

A perceptron with n inputs can be modelled mathematically as

1 if Z;;lexj > —b

fxy,...,x,)

)




Perceptron

A perceptron with n inputs can be modelled mathematically as

1 if Z;;lexj > —b

fxy,...,x,)

—b = threshold

)




Perceptron

A perceptron with 7 inputs can be modelled mathematically as

. n

fxp, ..0x,) =c(w'x+ b) = p—

—b = threshold

lg ©intmath



https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php

Perceptron

A perceptron with 7 inputs can be modelled mathematically as

fxp, ..0x,) =c(w'x+ b) = p—
1 if ijl wix; > — b

—b = threshold o(1)

o(t) = Heaviside function

©intmath



https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php
https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php

Perceptron

Weights: w
fGxy, .. x,) = o(w'x + b) Bias: b

Activation function: o

b

)




Multi-class perceptron

. Weights: W
&K |
Extend perceptron to also ‘\'4. Bias: b

have multiple outputs !0

"ﬁ‘:‘ Activation function: o
@

fix) = o(W'x + b) W e R™m b e R"




Multi-layer perceptron

Multiple neurons communicating:
Weights: W' w?

/ Dendrites

Cell body
I 7 = | : 1 2,2
Y i S~ > : Bias: b.b
N\ Nucleus D ey S, O | alo—r
i Jd3z: / {/ - - — h
/| \ o if— Signal Synapse 4’
7 A ( - direction o/
/ \ Axon hillock Ayxon B | . . .
Qe B e SRV G Activation function: o
AT N = N\
Presynaptic cell Synaptic - S / =
Myelin sheath terminals _Postsynaptic cell
\ ~

b

J 2-layer perceptron: fx) =0 ((W2)T0 ((Wl)Tx n bl) + b2>



https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1

Multi-layer perceptron

Multiple neurons communicating: Weights:  W)W2..., Wi

/ Dendrites

\.... Cell body B]aS. b o b% coeq bL

-—/

. -
) e /}
ey . :
y ||

Nucleus P =R =
A _ =

76 A" i i Activation function: o
x /

/ \ Axon hillock Ayxon B S | ,
\«\ L )= - O % T
AT RS B/ N
Presynaptic cell Synaptic | o

Myelin sheath  terminals —; "é Postsynaptic cell No. of layers: L

A

2 J fx) =0 ((WL)TG ((WH)T(; ( o (WHTx+b") ... ) + bL‘1> + bL>



https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1

Artificial neural network

Multiple neurons communicating: Weights: W'W2... Wi

Bias: b.b2..., b~
P e SNV S Activation function: o
No. of layers: L

fx) =0 ((WL)TG ((WH)T(; ( o (WHix+b') ... ) + bL‘1> + bL>

b

A{ Notation: f'(x) :=c((WH'x+b'), fi(x):=c((WH'x+b') and fx):=f"(x)



https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1

Artificial feed-forward neural networks

Summary: x'=o (W)X + b

)




Artificial feed-forward neural networks
Summary: x'=o (W)X + b

This can be written as  x' ="  for  F(x) := ao(W)Tx + b

b
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Artificial feed-forward neural networks
Summary: x'=o (W)X + b
This can be written as  x' ="  for Ff(x) := o(W)"x + b

Then the overall neural network reads as

. . x = Input
y = f0) i=fro o f2o f1(x) » = output
l’ where the composition - is defined as L = total no. of layers

249 (fe @)x) := flgx))




Artificial neural network

How many layers L do we choose?

b

)




How do we estimate the parameters?




How do we estimate the parameters?

Wl :6,W2:2,W3 :2

Choose
threshold = 5
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How do we estimate the parameters?

Wl :6,W2:2,W3 :2

threshold = 5

Choose

O if6X1+2X2+2X3S5

for x = (x;, x-,
1 if 6x; 4+ 2x, + 2x3 > 5 X = (0, 1, %)

Define f(x) := {

b
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How do we estimate the parameters?

Wl :6,W2:2,W3 :2

threshold = 5

Choose

O if6X1+2X2+2X3S5

for x = (x;, x-,
1 if 6x; 4+ 2x, + 2x3 > 5 X = (0, 1, %)

Define f(x) := {

Generate outputs y, = f(x;) for inputs x;, x,, ..., x

\)

b

)




How do we estimate the parameters?

Wl :6,W2:2,W3 :2

threshold = 5

Choose

O if6X1+2X2+2X3S5

for x = (xy, x,
1 if 6x; 4+ 2x, + 2x3 > 5 X = (0, 1, %)

Define f(x) := {

Generate outputs y, = f(x;) for inputs x;, x,, ..., x

\)

b

4 This is a forward problem:
Weights, threshold Model function f Model outputs y; = f(x,)

31



How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:
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How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:

Model inputs X; and outputs Y. Weights, threshold

b
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How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:

Model inputs X; and outputs Y. Weights, threshold

Imagine we have some ground

truth data that tells us the “Learn” the weights

preferences of potential
attendees and we know if they and threshold

went or no to the concert

)




How do we estimate the parameters?

What we are interested in (in practice) is the inverse problem:

Model inputs X; and outputs Y. Weights, threshold

Imagine we have some ground

truth data that tells us the “Learn” the weights

preferences of potential
attendees and we know if they and threshold

l. went or no to the concert

!4 This might help us train the model and predict what other people might do




How do we estimate the parameters?




Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data (x;,y,), ..., (x,, y,),
find optimal parameters W!, W2, ..., WLt b b?, ..., b"
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Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data (x;,y,), ..., (x,, y,),
find optimal parameters W!, W2, ..., WLt b b?, ..., b"

Hence a nonlinear regression problem:

2

. 1 <
min bL;i:ZI ”f(x,-)—yi

wl...Wtpl ...

b
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Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data (x;,y,), ..., (x,, y,),
find optimal parameters W!, W2, ..., WLt b b?, ..., b"

Hence a nonlinear regression problem:

1 \)
min - — ) £ (f(x), )

Wl WEbL,..bh S 1

Z = loss-function

b

)




Empirical risk minimisation

Empirical risk minimisation: based on pairs of training data (x;,y,), ..., (x,, y,),
find optimal parameters W!, W2, ..., WLt b b?, ..., b"

Hence a nonlinear regression problem:

1 \)
min - — ) £ (f(x), )

wh.. whbl . .bt S 1

Z = loss-function

b

Potentially lots of unknowns! It is crucial to set the problem based on the
amount of data available




Training neural networks

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.
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Training neural networks

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of
input/output training data
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Training neural networks

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of
input/output training data

Example: MSE cost function

lﬂ L= ZLSZ LA = yill?
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Training neural networks

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of
input/output training data

Example: MSE cost function

lﬂ L= ZLSZ‘ LA = yill?

lp‘.’ Optimise for parameters W' W2 ..., Wt bl b2, ..., b"




Training neural networks
E = 2%2} 1) - 3P

] « 2
= || ooy -y,
2 —

How do we determine the optimal parameters W' W2 ..., Wt b b2, ... bt ?

b
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Training neural networks
E = 2%2} 1) - 3P

] « 2
= || ooy -y,
2 —

How do we determine the optimal parameters W' W2 ..., Wt b b2, ... bt ?

l’ Let's assume [ is differentiable, i.e. V£ exists

!ﬂ{ Then we can for example perform gradient descent

37



Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
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Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt

Hence gradient descent means

b
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Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
Hence gradient descent means

W!=W,., —tVEW.)
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Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
Hence gradient descent means

W!=W,., —tVEW.)
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Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
Hence gradient descent means

W!=W,., —tVEW.)

Wy =W., —tVEW_,)
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Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
Hence gradient descent means

W!=W,., —tVEW.)

Wy =W., —tVEW_,)

b, =b,_,—tVED,_,)
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Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
Hence gradient descent means

W!=W,., —tVEW.)

Wy =W., —tVEW_,)

b, =b,_,—tVED,_,)
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Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
Hence gradient descent means

W!=W,., —tVEW.)

Wy =W., —tVEW_,)

b, =b,_,—tVED,_,)

; 249 bl = bl —tVE®E )




Training neural networks

So our variables are W' w2 .... WL bl b2, ... bt
Hence gradient descent means

W!=W,., —tVEW.)

Wy =W., —tVEW_,)

b, =b,_,—tVED,_,)

; 249 bl = bl —tVE®E )




Backpropagation algorithm




Backpropagation algorithm

For simplicity let’s consider a simple linear case, without activation function
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Backpropagation algorithm

For simplicity let’s consider a simple linear case, without activation function

: wik Q Desired output
Y




Backpropagation algorithm

For simplicity let’s consider a simple linear case, without activation function

: Wl Q Desired output
Yy

Are often called “activations”




Backpropagation algorithm




Backpropagation algorithm

: wik Q Desired output
Y




Backpropagation algorithm

: wik Q Desired output
Y




Backpropagation algorithm

C wk Q Desired output
Y

xL—l XL
o . . L_l 3
Imagine that the input is X = 5
1
l' The desired output y = 5
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Backpropagation algorithm

: wik Q Desired output
Y

xL—l XL
o . . L_l 3
Imagine that the input is X = 5
1
The desired output y = 5

!J We can initialise gradient descent by setting WO 0.8 and bL =1




Backpropagation algorithm

: wik Q Desired output
y = 0.5

xt1=15 xk
We know that

xb = whxl=1 +

b
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Backpropagation algorithm

: wik Q Desired output
y = 0.5

xt1=15 xk
We know that

xb = whxt=1 4+ pt

Hence with the initial values of w and b we get

b
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Backpropagation algorithm

: Wl Q Desired output
y = 0.5

xt1=15 xk
We know that

L = wlyl-1 4L plL

Hence with the initial values of w and b we get

l’ xb=whxl- 14+ pL=08%x15+1=22
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Backpropagation algorithm

: wik Q Desired output
y = 0.5

xt1=15 xk
We know that

xb = whxt=1 4+ pt

Hence with the initial values of w and b we get

l’ xb=whxl- 14+ pL=08%x15+1=22 We are far from the desired value

)




Backpropagation algorithm

: wik Q Desired output
y = 0.5

xt1=15 xk
We know that

xb = whxt=1 4+ pt
Hence with the initial values of w and b we get

xb=whxl- 14+ pL=08%x15+1=22 We are far from the desired value

We need to apply gradient descent!
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: wk Q Desired output
xt1=15 xt 7=

The variables are w and b and the gradient is then
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: wik Q Desired output
y = 0.5

xt1=15 xk
OE _ O ox" (k= ] OE _ OE ox" 20— )
owl  oxL owl obLl  oxL obl

2) Hence the first step of the back propagation is the so called
where, given the initial values of w and b, we compute relative inputs
and outputs
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wik Q Desired output
O 1

xL_l — 3 xL Y= 5
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We are ready to update the initial values of the parameters! Let us set 7 = 0.1
OE  OE ox* E E oxt
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We are ready to update the initial values of the parameters! Let us set 7 = 0.1
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We can progress with the calculation going to the next iteration

k w by x"

1 0.29 0.66 2.20
2 0.11 0.54 1.09
3 0.05 0.50 0.71
4 0.03 0.48 0.57
5 0.02 0.48 0.53
6 0.02 0.48 0.51
7 0.02 0.48 0.50
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What happens if we add a layer?
: w1 : wi O Desired output
Y

Now we are dealing with 4 parameters!
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What happens if we add a layer?

L1 i O Desired output
C : Y

Despite the number of parameters, the approach is exactly the same:




Backpropagation algorithm

What happens if we add a layer?

L1 i O Desired output
C : Y

1) forward pass to compute the values of the inputs/outputs
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What happens if we add a layer?

L1 i O Desired output
C : Y

2) Backpropagation to get gradients
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What happens if we add a layer?

L1 i O Desired output
C : Y

2 J 3) Compute iteration of gradient descent
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C : : Y

We can now perform gradient descent!
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: w1 : wi : Desired output
Y
We can now perform gradient descent!

wiy = wy — 7 VE(Wy) wit = wi™ =t VEWS™)

o bl = bl — tVE®DY) by~ =by~ —tVEMb;™)
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Backpropagation algorithm

We can add the activation function
WL .
Q—»Q Desired output
yL-1 L Y

xt = o(wtx 1 + b1 = o(zh) 7= whxt=1 4+ p*

!J Cost function for a single sample E, = (xI' —y)?

Credits:
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What about a general neural network?!
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As before we need to compute the gradients O\‘O
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Backpropagation algorithm

As before we need to compute the gradients O\‘O

For the last layer, for example, before we computed " ‘v
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L Now w is a matrix! ok - ok ¢ @
e owt  owk
We also need to consider the bias ‘
l’ oF oF oF

Now the bias is now a vector! —
obL obL obl




Interested in seeing how these gradients are computed?
Interested in seeing how backprogation works for real?
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Backpropagation algorithm

In the last layer we have O\
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In the last layer we have O\
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In the last layer we have O\
! v 30
dooch =Y we B=gYaiowt O S

To compute the gradients we need the chain rule as before ¢ o

b

)




Backpropagation algorithm

In the last layer we have O\
1 7 OF;
L __ L L L 1 _ L 9 yL-1
xj _U(Zj) Z _Z VJV EO_zz(xi yl) k ‘v

To compute the gradients we need the chain rule as before ¢ o

We start the derivation by defining 5jL as

b

)




Backpropagation algorithm

In the last layer we have O\
1 7 OF;
L __ L L L 1 _ L 9 yL-1
xj _U(Zj) Z _Z VJV EO_zz(xi yl) k ‘v

To compute the gradients we need the chain rule as before ¢ o

We start the derivation by defining 5jL as

X ok st
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In the last layer we have O\
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Backpropagation algorithm

In the last layer we have O\
! v 30
dooch =Y we B=gYaiowt O S

To compute the gradients we need the chain rule as before ¢ o

We start the derivation by defining 5jL as

9
0E
_ sL ,
ok 0; (z7)
0 - 0k, ox" oz"
This is the first step only since we saw that ol Fo = oxL ozl gwl
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Backpropagation algorithm

5 ‘Z Wk T+ X' = o(z)) Eo=%2<xf—yi>2 O "

What is the value of delta in any previous layer??
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Backpropagation algorithm

1 . k
=L+ gm0 E=o Y-y O S

What is the value of delta in any previous layer?? @ @
C _ 5 forall | 1 1 -
F aZjl_ i Oor a =/L—-1,....1.
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Here it is where the idea of backpropagation comes into focus
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Here it is where the idea of backpropagation comes into focus

ldea: we can compute the delta value in each generic layer by
looking at the layer before!
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Backpropagation algorithm

|

L L— 1

Z B Z Wty ij - a(sz) Ey = N Z (" = )°
a—E — 51 — Z ok aZl_I_l l+1 Z Wllv+1xll + bl+1
07! J aZl+1 aZl

xl = a(zl)

_ Z 5+ ozt
0z}




Backpropagation algorithm
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Backpropagation algorithm
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Backpropagation algorithm
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Backpropagation algorithm
50, we got
Z wl“él“a(zl)

In matrix form we get 5! = ws! @ () ® = Hadamard product

(Element-wise multiplication)
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This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!
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This is ok, but to perform gradient descent we need the variation of the cost function
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This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!
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This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!
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This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!
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Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!
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This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!
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This is ok, but to perform gradient descent we need the variation of the cost function
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Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied 71
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5



https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748
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Activation function examples:
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Activation function examples: o(x) = Heaviside(x)
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Activation function examples: o(x) = Heaviside(x)
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Popular activation functions

Activation function examples:

Rectifier: o(x) = max(0,x)
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Activation function examples:

Rectifier: o(x) = max(0,x)
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8 - Rectified linear unit (RelLU):
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Popular activation functions

Activation function examples:

Rectifier: o(x) = max(0,x) Eliminates negative values

10 A

8 - Rectified linear unit (RelLU):
= fi(x) = max (O, (WHTx=T 4 bl)

(component-wise application)
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Popular activation functions

Many other activation functions possible:

Smooth heavyside
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Popular activation functions

Many other activation functions possible:

__expx I (Sigmoid/ logistic
o(X) = = .
1 +expx 1+ exp(—x) function)
___06- Smooth heavyside
=
Q 0.4

0.2 -
4 0.0 -
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X




Popular activation functions

Hyperbolic tangent if you want to allow negative values

!J o(x) = tanh(x) := ¢ ; ¢ =2¢(2x)—1 for P(x) = 1 +1e—
ex e—x X




Popular activation functions

Leaky rectifier (when you want to allow some small negative values on the x)

a = 0.05

0,(x) = max(ax, x)




Popular activation functions

Many other activation functions possible:

Takes a vector, gives you a vector
Sums overall al j is one

)




Popular activation functions

Many other activation functions possible: exp(x;)

o(x): = -
J zil exp(x) (Softmax function)

S
3 06 1 Takes a vector, gives you a vector
< Sums overall al j is one
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Convolutional neural network

Basic idea: reduce no. of network connections
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Convolutional neural network

We reduce the no. of network connections by restricting our matrices W to a
special class of linear operators: convolutions!
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Convolutional neural network

We reduce the no. of network connections by restricting our matrices W to a
special class of linear operators: convolutions!

Continuous convolution operator: (xxy)(7) := J x(t) y(t — 1) dt
[Rn

m

l' Discrete version: ((x*xy)[j]:= Zx[i]y[i — 7] one-dimensional
=1

!ﬂ{; (xx)p.ql =), Y xli.jlyli—p.j—q]l  two-dimensional

i=1 j=1




Convolutional neural network

Example applied to a RGB coordinate system (a picture!):

of

The convolution “Kills” a lot of data, but keeps some key components




Convolutional neural network

Another example: max-pooling

2 1 0] 2x2Max-Pool |40 |3V
—

34 | 70 | 37 | 4 1121 37

112 {100 | 25 | 12
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