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Deep learning is everywhere

2

how-old.net

Deep learning pioneers Bengio, 
Hinton, LeCun have been awarded 
the Turing Award 2018

http://www.how-old.net/
https://www.washingtonpost.com/technology/2019/03/27/artificial-intelligence-pioneers-win-turing-award/
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*O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. 
Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision 
(IJCV), vol. 115, no. 3, pp. 211–252, 2015.

*

Many great successes in

• Image classification 
• Speech recognition 
• Image captioning 
• Natural language processing 
• Text generation 
• and many many more



Neural networks
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Image source 1

Image source 2

Image source

Image source

Image source

https://www.yourteesindy.com/products/skynet-t-shirt
https://www.marketwatch.com/story/this-is-what-happens-when-skynet-from-terminator-takes-over-the-stock-market-2018-02-14
https://goo.gl/images/VcZ4c4
https://goo.gl/images/oGsXCA
https://goo.gl/images/jWDVbL
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Image source

Source

Companies 
sponsoring NeurIPS

Source

https://goo.gl/images/Fam7MQ
https://www.theverge.com/2017/10/26/16552056/a-intelligence-terminator-facebook-yann-lecun-interview
https://nips.cc/Conferences/2018/Sponsors
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However, many successful strategies are black-boxes with little to no guarantees

Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.

Adversarial examples in image classification:

This is why we need mathematics to better understand deep learning
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Large Language Models and generative AI are super popular



Deep learning is everywhere
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Large Language Models and generative AI are super popular

ChatGPT made a real splash and opened this world to everyone
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9Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.
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Deep learning motivation
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Source

Biological neuron has dendrites to receive signals, a cell body to process them, 
and an axon to send signals out to other neurons

https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network


Deep learning motivation
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Source

McCulloch, Pitts, 
Rosenblatt, 1950s - 
60s

Artificial neuron has a number of input channels, a processing stage, and one output 
that can fan out to multiple other artificial neurons.

https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network


Perceptron
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McCulloch, Pitts, Rosenblatt, 
1950s - 60s

output =
0 if ∑3

j=1 wjxj ≤ threshold

1 if ∑3
j=1 wjxj > threshold

Binary inputs x1, x2, x3

Weights w1, w2, w3

Rosenblatt:

x1

x2

x3

output



Perceptron
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Example*:

Download festival is approaching & we really like Tool (the band)

*Inspired by 'Neural networks and deep learning'

http://downloadfestival.co.uk/
http://neuralnetworksanddeeplearning.com/chap1.html
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Example*:

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

*Inspired by 'Neural networks and deep learning'

http://downloadfestival.co.uk/
http://neuralnetworksanddeeplearning.com/chap1.html
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We make our decision by weighing up three factors:

• Is the weather good?

• Does our partner want to accompany us?
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*Inspired by 'Neural networks and deep learning'
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Now we try to decide whether to go or not

http://neuralnetworksanddeeplearning.com/chap1.html
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We make our decision by weighing up three factors:

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

Example*:

*Inspired by 'Neural networks and deep learning'

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

http://neuralnetworksanddeeplearning.com/chap1.html
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x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

(1 = yes, 0 = no)

• Is the weather good? 

• Does our partner want to accompany us? 

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:
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x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

(1 = yes, 0 = no)

Suppose we like Tool so much 
that we would see them without 
our partner, but we really loathe 
bad weather

• Is the weather good? 

• Does our partner want to accompany us? 

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:

https://standoutmagazine.co.uk/association-of-independent-festivals-conference-to-address-bad-weather-and-event-marketing/
https://images.app.goo.gl/o7izPkasfvYqxkjZ8
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x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

(1 = yes, 0 = no)

We can model decision processes like this with perceptrons:

w1 = 6, w2 = 2, w3 = 2

threshold = 5

• Is the weather good? 

• Does our partner want to accompany us? 

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:
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x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

output = {
0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

• Is the weather good? 

• Does our partner want to accompany us? 

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:
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x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

output = {
0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

Example: the weather is bad, our partner wants to accompany us and 
the festival is near public transit

x1 = 0, x2 = 1, x3 = 1 ⇒ output = 0

• Is the weather good? 

• Does our partner want to accompany us? 

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:
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x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

output = {
0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

Example: the weather is good, our partner does not want to accompany 
us and the festival is not near public transit

x1 = 1, x2 = 0, x3 = 0 ⇒ output = 1

• Is the weather good? 

• Does our partner want to accompany us? 

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:
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f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

A perceptron with  inputs can be modelled mathematically asn



Perceptron

22

f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

A perceptron with  inputs can be modelled mathematically asn

−b = threshold
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−b = threshold

= σ( )f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

w⊤x + b

A perceptron with  inputs can be modelled mathematically asn

©intmath

https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php


Perceptron

23

σ(t) = Heaviside function

w⊤ = (w1 ⋯ wn) , x =
x1
⋮
xn

−b = threshold σ(t)

= σ( )f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

w⊤x + b

A perceptron with  inputs can be modelled mathematically asn

©intmath

https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php
https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php
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Weights: w

Bias: b

Activation function: σ

f(x1, …, xn) w⊤x + b= σ( )



Multi-class perceptron
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Weights: W

Bias: bExtend perceptron to also 
have multiple outputs

W ∈ ℝn×m b ∈ ℝmW⊤x + bf(x) = σ( )

Activation function: σ



Multi-layer perceptron
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Multiple neurons communicating:

f(x) = σ ((W2)⊤σ ((W1)⊤x + b1) + b2)

Weights: W

Bias: b

2-layer perceptron:

1, W2

1, b2

Activation function: σ

https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1


Multi-layer perceptron
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Multiple neurons communicating:

f(x) = σ ((WL)⊤σ ((WL−1)⊤σ (… σ ((W1)⊤x + b1) … ) + bL−1) + bL)
No. of layers: L

Weights: W

Bias: b

, W2

, b2

1

1

, …, WL

, …, bL

Activation function: σ

https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1


Artificial neural network
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Multiple neurons communicating:

No. of layers: L

Notation: f l(x) := σ ((Wl)⊤x + bl) f(x) := fL(x)f1(x) := σ ((W1)⊤x + b1) ,

Weights: W

Bias: b

, W2

, b2

1

1

, …, WL

, …, bL

f(x) = σ ((WL)⊤σ ((WL−1)⊤σ (… σ ((W1)⊤x + b1) … ) + bL−1) + bL)

Activation function: σ

and

https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1


Artificial feed-forward neural networks
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xl = σ ((Wl)⊤xl−1 + bl)Summary:



Artificial feed-forward neural networks

29

xl = f l(xl−1) f l(x) := σ((Wl)⊤x + bl)This can be written as for

xl = σ ((Wl)⊤xl−1 + bl)Summary:



Artificial feed-forward neural networks

29

xl = f l(xl−1) f l(x) := σ((Wl)⊤x + bl)This can be written as for

y = f(x) := fL ∘ ⋯ ∘ f2 ∘ f1(x)

( f ∘ g)(x) := f(g(x))

Then the overall neural network reads as

where the composition     is defined as ∘

x = input

y = output

L = total no. of layers

xl = σ ((Wl)⊤xl−1 + bl)Summary:
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How many layers    do we choose?L

Artificial neural network
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w1 = 6, w2 = 2, w3 = 2

threshold = 5
Choose

Define    for  f(x) := {0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

x = (x1, x2, x3)



How do we estimate the parameters?

31

w1 = 6, w2 = 2, w3 = 2

threshold = 5
Choose

Define    for  f(x) := {0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

x = (x1, x2, x3)

Generate outputs  for inputs yi = f(xi) x1, x2, …, xs



How do we estimate the parameters?
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This is a forward problem:

Weights, threshold Model function    f Model outputs yi = f(xi)

w1 = 6, w2 = 2, w3 = 2

threshold = 5
Choose

Define    for  f(x) := {0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

x = (x1, x2, x3)

Generate outputs  for inputs yi = f(xi) x1, x2, …, xs
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What we are interested in (in practice) is the inverse problem:
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What we are interested in (in practice) is the inverse problem:

Weights, threshold Model inputs  and outputs  xi yi

Imagine we have some ground 
truth data that tells us the 
preferences of potential 
attendees and we know if they 
went or no to the concert 

“Learn” the weights 
and threshold 



How do we estimate the parameters?

32

What we are interested in (in practice) is the inverse problem:

Weights, threshold Model inputs  and outputs  xi yi

Imagine we have some ground 
truth data that tells us the 
preferences of potential 
attendees and we know if they 
went or no to the concert 

“Learn” the weights 
and threshold 

This might help us train the model and predict what other people might do



How do we estimate the parameters?
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How do we solve such an inverse problem?



Empirical risk minimisation

34

Empirical risk minimisation: based on pairs of training data , 

find optimal parameters  

(x1, y1), …, (xs, ys)
W1, W2, …, WL, b1, b2, …, bL
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Empirical risk minimisation: based on pairs of training data , 

find optimal parameters  

(x1, y1), …, (xs, ys)
W1, W2, …, WL, b1, b2, …, bL

Hence a nonlinear regression problem:

min
W1,…,WL,b1,…,bL

1
s

s

∑
i=1

f( xi ) yi−
2
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Empirical risk minimisation

35

Empirical risk minimisation: based on pairs of training data , 

find optimal parameters  

(x1, y1), …, (xs, ys)
W1, W2, …, WL, b1, b2, …, bL

Hence a nonlinear regression problem:

min
W1,…,WL,b1,…,bL

1
s

s

∑
i=1

f( xi ) yi

ℓ = loss-function

Potentially lots of unknowns! It is crucial to set the problem based on the  
amount of data available
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Training neural networks

36

Supervised training of neural networks is basically like all other supervised 
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of 
input/output training data



Training neural networks

36

Supervised training of neural networks is basically like all other supervised 
training that we have encountered in the module.
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Training neural networks

36

Supervised training of neural networks is basically like all other supervised 
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of 
input/output training data

E :=
1
2s

s

∑
i=1

∥f(xi) − yi∥2

Example: MSE cost function

Optimise for parameters W1, W2, …, WL, b1, b2, …, bL
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=
1
2s

s

∑
i=1

fL ∘ ⋯ ∘ f2 ∘ f1(xi) − yi
2

How do we determine the optimal parameters W1, W2, …, WL, b1, b2, …, bL ?

E :=
1
2s

s

∑
i=1

∥f(xi) − yi∥2



Training neural networks

37

=
1
2s

s

∑
i=1

fL ∘ ⋯ ∘ f2 ∘ f1(xi) − yi
2

How do we determine the optimal parameters W1, W2, …, WL, b1, b2, …, bL ?

Let's assume     is differentiable, i.e.        exists f ∇f

Then we can for example perform gradient descent

E :=
1
2s

s

∑
i=1

∥f(xi) − yi∥2
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Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

⋮
WL

k = WL
k−1 − τ∇E(WL

k−1)

b1
k = b1

k−1 − τ∇E(b1
k−1)

⋮
bL

k = bL
k−1 − τ∇E(bL

k−1)

So, we need to compute 
lots of partial derivatives!
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Backpropagation algorithm
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For simplicity let’s consider a simple linear case, without activation function

Backpropagation algorithm
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xLxL−1
y

Desired outputwL

For simplicity let’s consider a simple linear case, without activation function

Backpropagation algorithm



39

xLxL−1
y

Desired outputwL

For simplicity let’s consider a simple linear case, without activation function

Backpropagation algorithm

Are often called “activations”
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Backpropagation algorithm
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Backpropagation algorithm
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xLxL−1
y

Desired outputwL

Imagine that the input is XL−1 =
3
2

The desired output  y =
1
2

Backpropagation algorithm
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xLxL−1
y

Desired outputwL

Imagine that the input is XL−1 =
3
2

The desired output  y =
1
2

We can initialise gradient descent by setting  and wL
0 = 0.8 bL

0 = 1

Backpropagation algorithm
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We know that
xLxL−1 = 1.5

y = 0.5

Desired outputwL

xL = wLxL−1 + bL

Backpropagation algorithm
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41

We know that
xLxL−1 = 1.5

y = 0.5

Desired outputwL

xL = wLxL−1 + bL

Hence with the initial values of w and b we get

xL = wLxL−1 + bL = 0.8 × 1.5 + 1 = 2.2 We are far from the desired value

We need to apply gradient descent!

Backpropagation algorithm
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The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

Backpropagation algorithm
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The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = ( ∂E
∂wL

,
∂E
∂bL )

⊤

Backpropagation algorithm



42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = ( ∂E
∂wL

,
∂E
∂bL )

⊤

E = (xL − y)2

Backpropagation algorithm
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The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = ( ∂E
∂wL

,
∂E
∂bL )

⊤
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The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = ( ∂E
∂wL

,
∂E
∂bL )

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL

Backpropagation algorithm
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The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = ( ∂E
∂wL

,
∂E
∂bL )

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

Backpropagation algorithm
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The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = ( ∂E
∂wL

,
∂E
∂bL )

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL
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What about a general neural network?!
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Backpropagation algorithm

δl
j = ∑

v

wl+1
jv δl+1

v σ′ (zl
j)

So, we got

In matrix form we get δl = wl+1δl+1 ⊙ σ(zl) ⊙ =  Hadamard product

(Element-wise multiplication)



69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!



69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij



69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij



69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)



69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j x

l−1
i



69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j x

l−1
i

In matrix form



69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j x

l−1
i

In matrix form

∂E
∂wl

= xl−1(δl)⊤



70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!



70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j



70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j



70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)



70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j



70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j

In matrix form



70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function 
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j

In matrix form

∂E
∂bl

= δl



71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic 
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied 
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748


71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic 
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied 
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748


71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic 
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied 
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

δl = wl+1δl+1 ⊙ σ(zl) for all  l = L − 1, … , 1 .

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748


71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic 
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied 
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

δl = wl+1δl+1 ⊙ σ(zl)

∂E
∂wl

= xl−1(δl)⊤

for all  l = L − 1, … , 1 .

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748


71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic 
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied 
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

δl = wl+1δl+1 ⊙ σ(zl)

∂E
∂wl

= xl−1(δl)⊤

∂E
∂bl

= δl

for all  l = L − 1, … , 1 .

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748


ACTIVATION FUNCTIONS

72



Popular activation functions

73

Activation function examples:



Popular activation functions

73

Activation function examples: σ(x) = Heaviside(x)
¡
(x

)
æ
(x

)



Popular activation functions

73

Activation function examples: σ(x) = Heaviside(x)
¡
(x

)
æ
(x

) Output, binary



Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)
¡
(x

)



Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)

f l(x) = max (0, (Wl)⊤xl−1 + bl)⇒

¡
(x

)

Rectified linear unit (ReLU):

æ
(x

)



Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)

f l(x) = max (0, (Wl)⊤xl−1 + bl)⇒

¡
(x

)

Rectified linear unit (ReLU):

æ
(x

)

(component-wise application)



Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)

f l(x) = max (0, (Wl)⊤xl−1 + bl)⇒

¡
(x

)

Rectified linear unit (ReLU):

æ
(x

)

(component-wise application)

Eliminates negative values
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Many other activation functions possible:

σ(x) =
exp x

1 + exp x
=

1
1 + exp(−x)

(Sigmoid/logistic 
function)

æ
(x

) Smooth heavyside
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Hyperbolic tangent if you want to allow negative values

-4 -2 2 4

-1.0

-0.5

0.5

1.0

σ(x) = tanh(x) :=
ex − e−x

ex + e−x
ϕ(x) =

1
1 + e−xfor= 2ϕ(2x) − 1
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-4 -2 2 4

1

2

3

4

5

Leaky rectifier (when you want to allow some small negative values on the x)

σα(x) = max(αx, x)

α = 0.05
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Takes a vector, gives you a vector 
Sums overall al j is one
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Many other activation functions possible:
σ(x)j =

exp(xj)

∑K
i=1 exp(xi)

(Softmax function)

¡
(x

, y)
æ
(x

) Takes a vector, gives you a vector 
Sums overall al j is one



CONVOLUTIONAL NEURAL NETWORKS

79



Convolutional neural network
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Basic idea: reduce no. of network connections 

From To



Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices     to a 
special class of linear operators: convolutions!

W



Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices     to a 
special class of linear operators: convolutions!

W

(x y)(τ) := ∫ℝn

x(t) y(t − τ) dtContinuous convolution operator: *



Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices     to a 
special class of linear operators: convolutions!

W

(x y)(τ) := ∫ℝn

x(t) y(t − τ) dtContinuous convolution operator:

Discrete version:

*

(x y)[ j ] :=
m

∑
i=1

x[i] y[i − j]* one-dimensional



Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices     to a 
special class of linear operators: convolutions!

W

(x y)(τ) := ∫ℝn

x(t) y(t − τ) dtContinuous convolution operator:

Discrete version:

*

(x y)[ j ] :=
m

∑
i=1

x[i] y[i − j]* one-dimensional

(x y)[ p, q ] :=
m

∑
i=1

n

∑
j=1

x[i, j] y[i − p, j − q]* two-dimensional



Convolutional neural network

82

Example applied to a RGB coordinate system (a picture!):

* (
0 −1 0

−1 4 −1
0 −1 0 ) =

The convolution “kills” a lot of data, but keeps some key components
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Another example: max-pooling

©Wikimedia commons


