
n.perra@qmul.ac.uk

Machine Learning with Python
MTH786U/P 2023/24

Nicola Perra, Queen Mary University of London (QMUL)

Lecture 6: Regression with Neural Networks

mailto:n.perra@qmul.ac.uk

Deep learning is everywhere

2

how-old.net

Deep learning pioneers Bengio,
Hinton, LeCun have been awarded
the Turing Award 2018

http://www.how-old.net/
https://www.washingtonpost.com/technology/2019/03/27/artificial-intelligence-pioneers-win-turing-award/

Deep learning is everywhere

3
*O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.
Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pp. 211–252, 2015.

*

Many great successes in

• Image classification
• Speech recognition
• Image captioning
• Natural language processing
• Text generation
• and many many more

Neural networks

4

Image source 1

Image source 2

Image source

Image source

Image source

https://www.yourteesindy.com/products/skynet-t-shirt
https://www.marketwatch.com/story/this-is-what-happens-when-skynet-from-terminator-takes-over-the-stock-market-2018-02-14
https://goo.gl/images/VcZ4c4
https://goo.gl/images/oGsXCA
https://goo.gl/images/jWDVbL

Neural networks

5

Image source

Source

Companies
sponsoring NeurIPS

Source

https://goo.gl/images/Fam7MQ
https://www.theverge.com/2017/10/26/16552056/a-intelligence-terminator-facebook-yann-lecun-interview
https://nips.cc/Conferences/2018/Sponsors

Deep learning is everywhere

6

However, many successful strategies are black-boxes with little to no guarantees

Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.

Adversarial examples in image classification:

This is why we need mathematics to better understand deep learning

Deep learning is everywhere

7

Large Language Models and generative AI are super popular

Deep learning is everywhere

7

Large Language Models and generative AI are super popular

ChatGPT made a real splash and opened this world to everyone

8

9Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.

Deep learning is everywhere

10

11

Deep learning motivation

12

Source

Biological neuron has dendrites to receive signals, a cell body to process them,
and an axon to send signals out to other neurons

https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network

Deep learning motivation

13

Source

McCulloch, Pitts,
Rosenblatt, 1950s -
60s

Artificial neuron has a number of input channels, a processing stage, and one output
that can fan out to multiple other artificial neurons.

https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network

Perceptron

14

McCulloch, Pitts, Rosenblatt,
1950s - 60s

output =
0 if ∑3

j=1 wjxj ≤ threshold

1 if ∑3
j=1 wjxj > threshold

Binary inputs x1, x2, x3

Weights w1, w2, w3

Rosenblatt:

x1

x2

x3

output

Perceptron

15

Example*:

Download festival is approaching & we really like Tool (the band)

*Inspired by 'Neural networks and deep learning'

http://downloadfestival.co.uk/
http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

15

Example*:

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

*Inspired by 'Neural networks and deep learning'

http://downloadfestival.co.uk/
http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

16

We make our decision by weighing up three factors:

Example*:

*Inspired by 'Neural networks and deep learning'

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

16

We make our decision by weighing up three factors:

• Is the weather good?

Example*:

*Inspired by 'Neural networks and deep learning'

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

16

We make our decision by weighing up three factors:

• Is the weather good?

• Does our partner want to accompany us?

Example*:

*Inspired by 'Neural networks and deep learning'

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

16

We make our decision by weighing up three factors:

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

Example*:

*Inspired by 'Neural networks and deep learning'

Download festival is approaching & we really like Tool (the band)

Now we try to decide whether to go or not

http://neuralnetworksanddeeplearning.com/chap1.html

Perceptron

17

x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

(1 = yes, 0 = no)

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:

Perceptron

17

x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

(1 = yes, 0 = no)

Suppose we like Tool so much
that we would see them without
our partner, but we really loathe
bad weather

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:

https://standoutmagazine.co.uk/association-of-independent-festivals-conference-to-address-bad-weather-and-event-marketing/
https://images.app.goo.gl/o7izPkasfvYqxkjZ8

Perceptron

18

x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

(1 = yes, 0 = no)

We can model decision processes like this with perceptrons:

w1 = 6, w2 = 2, w3 = 2

threshold = 5

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:

Perceptron

19

x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

output = {
0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:

Perceptron

20

x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

output = {
0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

Example: the weather is bad, our partner wants to accompany us and
the festival is near public transit

x1 = 0, x2 = 1, x3 = 1 ⇒ output = 0

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:

Perceptron

21

x1 ∈ {0,1}

x2 ∈ {0,1}

x3 ∈ {0,1}

output = {
0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

Example: the weather is good, our partner does not want to accompany
us and the festival is not near public transit

x1 = 1, x2 = 0, x3 = 0 ⇒ output = 1

• Is the weather good?

• Does our partner want to accompany us?

• Is the festival near public transit (we don’t own a car)?

We make our decision by weighing up three factors:

Perceptron

22

f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

A perceptron with inputs can be modelled mathematically asn

Perceptron

22

f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

A perceptron with inputs can be modelled mathematically asn

−b = threshold

Perceptron

23

−b = threshold

= σ()f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

w⊤x + b

A perceptron with inputs can be modelled mathematically asn

©intmath

https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php

Perceptron

23

σ(t) = Heaviside function

w⊤ = (w1 ⋯ wn) , x =
x1
⋮
xn

−b = threshold σ(t)

= σ()f(x1, …, xn) :=
0 if ∑n

j=1 wjxj ≤ − b

1 if ∑n
j=1 wjxj > − b

w⊤x + b

A perceptron with inputs can be modelled mathematically asn

©intmath

https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php
https://www.intmath.com/laplace-transformation/1a-unit-step-functions-definition.php

Perceptron

24

Weights: w

Bias: b

Activation function: σ

f(x1, …, xn) w⊤x + b= σ()

Multi-class perceptron

25

Weights: W

Bias: bExtend perceptron to also
have multiple outputs

W ∈ ℝn×m b ∈ ℝmW⊤x + bf(x) = σ()

Activation function: σ

Multi-layer perceptron

26

Multiple neurons communicating:

f(x) = σ ((W2)⊤σ ((W1)⊤x + b1) + b2)

Weights: W

Bias: b

2-layer perceptron:

1, W2

1, b2

Activation function: σ

https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1

Multi-layer perceptron

27

Multiple neurons communicating:

f(x) = σ ((WL)⊤σ ((WL−1)⊤σ (… σ ((W1)⊤x + b1) …) + bL−1) + bL)
No. of layers: L

Weights: W

Bias: b

, W2

, b2

1

1

, …, WL

, …, bL

Activation function: σ

https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1

Artificial neural network

28

Multiple neurons communicating:

No. of layers: L

Notation: f l(x) := σ ((Wl)⊤x + bl) f(x) := fL(x)f1(x) := σ ((W1)⊤x + b1) ,

Weights: W

Bias: b

, W2

, b2

1

1

, …, WL

, …, bL

f(x) = σ ((WL)⊤σ ((WL−1)⊤σ (… σ ((W1)⊤x + b1) …) + bL−1) + bL)

Activation function: σ

and

https://www.researchgate.net/publication/316553702_Neural_Network_Processing_Modelling_and_Simulation_of_Neurons_and_Neural_networks/figures?lo=1

Artificial feed-forward neural networks

29

xl = σ ((Wl)⊤xl−1 + bl)Summary:

Artificial feed-forward neural networks

29

xl = f l(xl−1) f l(x) := σ((Wl)⊤x + bl)This can be written as for

xl = σ ((Wl)⊤xl−1 + bl)Summary:

Artificial feed-forward neural networks

29

xl = f l(xl−1) f l(x) := σ((Wl)⊤x + bl)This can be written as for

y = f(x) := fL ∘ ⋯ ∘ f2 ∘ f1(x)

(f ∘ g)(x) := f(g(x))

Then the overall neural network reads as

where the composition is defined as ∘

x = input

y = output

L = total no. of layers

xl = σ ((Wl)⊤xl−1 + bl)Summary:

30

How many layers do we choose?L

Artificial neural network

How do we estimate the parameters?

31

How do we estimate the parameters?

31

w1 = 6, w2 = 2, w3 = 2

threshold = 5
Choose

How do we estimate the parameters?

31

w1 = 6, w2 = 2, w3 = 2

threshold = 5
Choose

Define for f(x) := {0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

x = (x1, x2, x3)

How do we estimate the parameters?

31

w1 = 6, w2 = 2, w3 = 2

threshold = 5
Choose

Define for f(x) := {0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

x = (x1, x2, x3)

Generate outputs for inputs yi = f(xi) x1, x2, …, xs

How do we estimate the parameters?

31

This is a forward problem:

Weights, threshold Model function f Model outputs yi = f(xi)

w1 = 6, w2 = 2, w3 = 2

threshold = 5
Choose

Define for f(x) := {0 if 6x1 + 2x2 + 2x3 ≤ 5
1 if 6x1 + 2x2 + 2x3 > 5

x = (x1, x2, x3)

Generate outputs for inputs yi = f(xi) x1, x2, …, xs

How do we estimate the parameters?

32

What we are interested in (in practice) is the inverse problem:

How do we estimate the parameters?

32

What we are interested in (in practice) is the inverse problem:

Weights, threshold Model inputs and outputs xi yi

How do we estimate the parameters?

32

What we are interested in (in practice) is the inverse problem:

Weights, threshold Model inputs and outputs xi yi

Imagine we have some ground
truth data that tells us the
preferences of potential
attendees and we know if they
went or no to the concert

“Learn” the weights
and threshold

How do we estimate the parameters?

32

What we are interested in (in practice) is the inverse problem:

Weights, threshold Model inputs and outputs xi yi

Imagine we have some ground
truth data that tells us the
preferences of potential
attendees and we know if they
went or no to the concert

“Learn” the weights
and threshold

This might help us train the model and predict what other people might do

How do we estimate the parameters?

33

How do we solve such an inverse problem?

Empirical risk minimisation

34

Empirical risk minimisation: based on pairs of training data ,

find optimal parameters

(x1, y1), …, (xs, ys)
W1, W2, …, WL, b1, b2, …, bL

Empirical risk minimisation

34

Empirical risk minimisation: based on pairs of training data ,

find optimal parameters

(x1, y1), …, (xs, ys)
W1, W2, …, WL, b1, b2, …, bL

Hence a nonlinear regression problem:

min
W1,…,WL,b1,…,bL

1
s

s

∑
i=1

f(xi) yi−
2

ℓ (,)

Empirical risk minimisation

35

Empirical risk minimisation: based on pairs of training data ,

find optimal parameters

(x1, y1), …, (xs, ys)
W1, W2, …, WL, b1, b2, …, bL

Hence a nonlinear regression problem:

min
W1,…,WL,b1,…,bL

1
s

s

∑
i=1

f(xi) yi

ℓ = loss-function

ℓ (,)

Empirical risk minimisation

35

Empirical risk minimisation: based on pairs of training data ,

find optimal parameters

(x1, y1), …, (xs, ys)
W1, W2, …, WL, b1, b2, …, bL

Hence a nonlinear regression problem:

min
W1,…,WL,b1,…,bL

1
s

s

∑
i=1

f(xi) yi

ℓ = loss-function

Potentially lots of unknowns! It is crucial to set the problem based on the
amount of data available

Training neural networks

36

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.

Training neural networks

36

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of
input/output training data

Training neural networks

36

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of
input/output training data

E :=
1
2s

s

∑
i=1

∥f(xi) − yi∥2

Example: MSE cost function

Training neural networks

36

Supervised training of neural networks is basically like all other supervised
training that we have encountered in the module.

We formulate cost function and minimise it for pairs of
input/output training data

E :=
1
2s

s

∑
i=1

∥f(xi) − yi∥2

Example: MSE cost function

Optimise for parameters W1, W2, …, WL, b1, b2, …, bL

Training neural networks

37

=
1
2s

s

∑
i=1

fL ∘ ⋯ ∘ f2 ∘ f1(xi) − yi
2

How do we determine the optimal parameters W1, W2, …, WL, b1, b2, …, bL ?

E :=
1
2s

s

∑
i=1

∥f(xi) − yi∥2

Training neural networks

37

=
1
2s

s

∑
i=1

fL ∘ ⋯ ∘ f2 ∘ f1(xi) − yi
2

How do we determine the optimal parameters W1, W2, …, WL, b1, b2, …, bL ?

Let's assume is differentiable, i.e. exists f ∇f

Then we can for example perform gradient descent

E :=
1
2s

s

∑
i=1

∥f(xi) − yi∥2

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

⋮

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

⋮
WL

k = WL
k−1 − τ∇E(WL

k−1)

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

⋮
WL

k = WL
k−1 − τ∇E(WL

k−1)

b1
k = b1

k−1 − τ∇E(b1
k−1)

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

⋮
WL

k = WL
k−1 − τ∇E(WL

k−1)

b1
k = b1

k−1 − τ∇E(b1
k−1)

⋮

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

⋮
WL

k = WL
k−1 − τ∇E(WL

k−1)

b1
k = b1

k−1 − τ∇E(b1
k−1)

⋮
bL

k = bL
k−1 − τ∇E(bL

k−1)

Training neural networks

38

So our variables are W1, W2, …, WL, b1, b2, …, bL

Hence gradient descent means

W1
k = W1

k−1 − τ∇E(W1
k−1)

⋮
WL

k = WL
k−1 − τ∇E(WL

k−1)

b1
k = b1

k−1 − τ∇E(b1
k−1)

⋮
bL

k = bL
k−1 − τ∇E(bL

k−1)

So, we need to compute
lots of partial derivatives!

39

Backpropagation algorithm

39

For simplicity let’s consider a simple linear case, without activation function

Backpropagation algorithm

39

xLxL−1
y

Desired outputwL

For simplicity let’s consider a simple linear case, without activation function

Backpropagation algorithm

39

xLxL−1
y

Desired outputwL

For simplicity let’s consider a simple linear case, without activation function

Backpropagation algorithm

Are often called “activations”

40

Backpropagation algorithm

40

xLxL−1
y

Desired outputwL

Backpropagation algorithm

40

xLxL−1
y

Desired outputwL

Imagine that the input is XL−1 =
3
2

Backpropagation algorithm

40

xLxL−1
y

Desired outputwL

Imagine that the input is XL−1 =
3
2

The desired output y =
1
2

Backpropagation algorithm

40

xLxL−1
y

Desired outputwL

Imagine that the input is XL−1 =
3
2

The desired output y =
1
2

We can initialise gradient descent by setting and wL
0 = 0.8 bL

0 = 1

Backpropagation algorithm

41

We know that
xLxL−1 = 1.5

y = 0.5

Desired outputwL

xL = wLxL−1 + bL

Backpropagation algorithm

41

We know that
xLxL−1 = 1.5

y = 0.5

Desired outputwL

xL = wLxL−1 + bL

Hence with the initial values of w and b we get

Backpropagation algorithm

41

We know that
xLxL−1 = 1.5

y = 0.5

Desired outputwL

xL = wLxL−1 + bL

Hence with the initial values of w and b we get

xL = wLxL−1 + bL = 0.8 × 1.5 + 1 = 2.2

Backpropagation algorithm

41

We know that
xLxL−1 = 1.5

y = 0.5

Desired outputwL

xL = wLxL−1 + bL

Hence with the initial values of w and b we get

xL = wLxL−1 + bL = 0.8 × 1.5 + 1 = 2.2 We are far from the desired value

Backpropagation algorithm

41

We know that
xLxL−1 = 1.5

y = 0.5

Desired outputwL

xL = wLxL−1 + bL

Hence with the initial values of w and b we get

xL = wLxL−1 + bL = 0.8 × 1.5 + 1 = 2.2 We are far from the desired value

We need to apply gradient descent!

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

E = (xL − y)2

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

E = (xL − y)2 xL = wLxL−1 + bL

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL
= 2(xL − y)

Backpropagation algorithm

42

The variables are w and b and the gradient is then

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∇E = (∂E
∂wL

,
∂E
∂bL)

⊤

E = (xL − y)2 xL = wLxL−1 + bL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

Chain rule!

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL
= 2(xL − y)

Backpropagation algorithm

43

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL
= 2(xL − y)

Backpropagation algorithm

43

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

Note how

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL
= 2(xL − y)

Backpropagation algorithm

43

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

Note how
1) To compute the gradient we need the value x

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL
= 2(xL − y)

Backpropagation algorithm

43

xLxL−1 = 1.5
y = 0.5

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

Note how
1) To compute the gradient we need the value x
2) Hence the first step of the back propagation is the so called forward pass

where, given the initial values of w and b, we compute relative inputs
and outputs

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL
= 2(xL − y)

Backpropagation algorithm

44

We are ready to update the initial values of the parameters! Let us set τ = 0.1

xL
xL−1 =

3
2

y =
1
2

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL
= 2(xL − y)

Backpropagation algorithm

44

We are ready to update the initial values of the parameters! Let us set τ = 0.1

xL
xL−1 =

3
2

y =
1
2

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL
= 2(xL − y)

wL
1 = wL

0 − τ∇E(wL
0)

Backpropagation algorithm

44

We are ready to update the initial values of the parameters! Let us set τ = 0.1

xL
xL−1 =

3
2

y =
1
2

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL
= 2(xL − y)

wL
1 = wL

0 − τ∇E(wL
0)

wL
1 = 0.8 −

2
10 (2.2 −

1
2) 3

2
= 0.29

Backpropagation algorithm

44

We are ready to update the initial values of the parameters! Let us set τ = 0.1

xL
xL−1 =

3
2

y =
1
2

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL
= 2(xL − y)

wL
1 = wL

0 − τ∇E(wL
0)

wL
1 = 0.8 −

2
10 (2.2 −

1
2) 3

2
= 0.29

bL
1 = bL

0 − τ∇E(bL
0)

Backpropagation algorithm

44

We are ready to update the initial values of the parameters! Let us set τ = 0.1

xL
xL−1 =

3
2

y =
1
2

Desired outputwL

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂bL
=

∂E
∂xL

∂xL

∂bL
= 2(xL − y)

wL
1 = wL

0 − τ∇E(wL
0)

wL
1 = 0.8 −

2
10 (2.2 −

1
2) 3

2
= 0.29

bL
1 = bL

0 − τ∇E(bL
0)

bL
1 = 1 −

2
10 (2.2 −

1
2) = 0.66

Backpropagation algorithm

45

We can progress with the calculation going to the next iteration

xL
xL−1 =

3
2

y =
1
2

Desired outputwL

k wL
k bL

k xL

Backpropagation algorithm

45

We can progress with the calculation going to the next iteration

xL
xL−1 =

3
2

y =
1
2

Desired outputwL

k wL
k bL

k xL

Backpropagation algorithm

46

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

Backpropagation algorithm

46

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL = wLxL−1 + bL

Backpropagation algorithm

46

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL

Backpropagation algorithm

46

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL

E = (xL − y)2

Backpropagation algorithm

46

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL

E = (xL − y)2

Now we are dealing with 4 parameters!

Backpropagation algorithm

46

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL

E = (xL − y)2

Now we are dealing with 4 parameters!

∇E = (∂E
∂wL

,
∂E

∂wL−1
,

∂E
∂bL

,
∂E

∂bL−1)
⊤

Backpropagation algorithm

47

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

Backpropagation algorithm

47

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

Despite the number of parameters, the approach is exactly the same:

Backpropagation algorithm

47

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

Despite the number of parameters, the approach is exactly the same:
1) forward pass to compute the values of the inputs/outputs

Backpropagation algorithm

47

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

Despite the number of parameters, the approach is exactly the same:
1) forward pass to compute the values of the inputs/outputs
2) Backpropagation to get gradients

Backpropagation algorithm

47

What happens if we add a layer?

xLxL−1
y

Desired outputwL

xL−2

wL−1

Despite the number of parameters, the approach is exactly the same:
1) forward pass to compute the values of the inputs/outputs
2) Backpropagation to get gradients
3) Compute iteration of gradient descent

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂wL−1
=

∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂wL−1

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1 ∂E

∂wL−1
=

∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂wL−1
= 2(xL − y)wLxL−2

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL

∂E
∂wL−1

=
∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂wL−1
= 2(xL − y)wLxL−2

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL = 2(xL − y)

∂E
∂wL−1

=
∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂wL−1
= 2(xL − y)wLxL−2

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL = 2(xL − y)

∂E
∂wL−1

=
∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂wL−1
= 2(xL − y)wLxL−2

∂E
∂bL−1

=
∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂bL−1

Backpropagation algorithm

48

xLxL−1
y

Desired outputwL

xL−2

wL−1

xL−1 = wL−1xL−2 + bL−1

xL = wLxL−1 + bL
E = (xL − y)2 ∇E = (∂E

∂wL
,

∂E
∂wL−1

,
∂E
∂bL

,
∂E

∂bL−1)
⊤

∂E
∂wL

=
∂E
∂xL

∂xL

∂wL
= 2(xL − y)xL−1

∂E
∂bL

=
∂E
∂xL

∂xL

∂bL = 2(xL − y)

∂E
∂wL−1

=
∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂wL−1
= 2(xL − y)wLxL−2

∂E
∂bL−1

=
∂E
∂xL

∂xL

∂xL−1

∂xL−1

∂bL−1
= 2(xL − y)wL

Backpropagation algorithm

49

xLxL−1
y

Desired outputwL

xL−2

wL−1

We can now perform gradient descent!

Backpropagation algorithm

49

xLxL−1
y

Desired outputwL

xL−2

wL−1

wL
1 = wL

0 − τ∇E(wL
0)

bL
1 = bL

0 − τ∇E(bL
0)

wL−1
1 = wL−1

0 − τ∇E(wL−1
0)

bL−1
1 = bL−1

0 − τ∇E(bL−1
0)

We can now perform gradient descent!

Backpropagation algorithm

50

xLxL−1 y =
1
2

Desired outputwL

xL−2 =
3
2

wL−1

Backpropagation algorithm

50

xLxL−1 y =
1
2

Desired outputwL

xL−2 =
3
2

wL−1

wL−1
0 = 0.8, wL

0 = 0.8, bL−1
0 = 1, bL

0 = 1, τ =
1
10

Initialising

Backpropagation algorithm

50

xLxL−1 y =
1
2

Desired outputwL

xL−2 =
3
2

wL−1

wL−1
0 = 0.8, wL

0 = 0.8, bL−1
0 = 1, bL

0 = 1, τ =
1
10

k wL
k bL

k xLwL−1
k bL−1

k

Initialising

Backpropagation algorithm

Backpropagation algorithm

51

We can add the activation function

Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

https://www.youtube.com/watch?v=tIeHLnjs5U8

Backpropagation algorithm

51

We can add the activation function

Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL)

https://www.youtube.com/watch?v=tIeHLnjs5U8

Backpropagation algorithm

51

We can add the activation function

Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL) zL = wLxL−1 + bL

https://www.youtube.com/watch?v=tIeHLnjs5U8

Backpropagation algorithm

51

We can add the activation function

Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL)

E0 = (xL − y)2

zL = wLxL−1 + bL

Cost function for a single sample

https://www.youtube.com/watch?v=tIeHLnjs5U8

52Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL)

E0 = (xL − y)2

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

52Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

E0

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL)

E0 = (xL − y)2

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

52Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

E0

y

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL)

E0 = (xL − y)2 xL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

52Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

zL

E0

y

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL)

E0 = (xL − y)2 xL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

52Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

zL

wL xL−1 bL

E0

y

xLxL−1 y

Desired output
wL

xL = σ(wLxL−1 + bL) = σ(zL)

E0 = (xL − y)2 xL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

53Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

zL

wL xL−1 bL

C0

y

xL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

53Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

zL

wL xL−1 bL

C0

y

xL

To apply gradient descent we need to compute
∂

∂wL
E0

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

53Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

Which means to evaluate how
sensitive is with respect to ?E0 wL zL

wL xL−1 bL

C0

y

xL

To apply gradient descent we need to compute
∂

∂wL
E0

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

53Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

Which means to evaluate how
sensitive is with respect to ?E0 wL

By construction, variations in w will affect z
which will affect E

zL

wL xL−1 bL

C0

y

xL

To apply gradient descent we need to compute
∂

∂wL
E0

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

54Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

Chain rule

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
zL

wL xL−1 bL

E0

y

xL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

54Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

Chain rule

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
zL

wL xL−1 bL

E0

y

xL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

54Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

Chain rule

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
zL

wL xL−1 bL

E0

y

xL

It goes backwards: backpropagation!

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

55Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

55Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂E0

∂xL
= 2(xL − y)

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

55Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂E0

∂xL
= 2(xL − y)

∂xL

∂zL
= σ′ (zL)

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

55Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂E0

∂xL
= 2(xL − y)

∂xL

∂zL
= σ′ (zL)

∂zL

∂wL
= xL−1

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

55Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂E0

∂xL
= 2(xL − y)

∂xL

∂zL
= σ′ (zL)

∂zL

∂wL
= xL−1

∂
∂wL

E0 = 2xL−1σ′ (zL)(xL − y)

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

55Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂E0

∂xL
= 2(xL − y)

∂xL

∂zL
= σ′ (zL)

∂zL

∂wL
= xL−1

∂
∂wL

E0 = 2xL−1σ′ (zL)(xL − y)

∂
∂wL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂wL
xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

→
∂

∂wL
E =

1
s

s−1

∑
i=0

∂
∂wL

Ei

https://www.youtube.com/watch?v=tIeHLnjs5U8

56Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

zL

wL xL−1 bL

E0

y

xL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

56Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

zL

wL xL−1 bL

E0

y

xL

To apply gradient descent we need to compute
∂

∂bL
E0

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

56Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

Which means to evaluate how
sensitive is with respect to ?E0 bL zL

wL xL−1 bL

E0

y

xL

To apply gradient descent we need to compute
∂

∂bL
E0

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

56Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

xLxL−1 y

Desired output
wL

Which means to evaluate how
sensitive is with respect to ?E0 bL

By construction, variations in b will affect z
which will affect E

zL

wL xL−1 bL

E0

y

xL

To apply gradient descent we need to compute
∂

∂bL
E0

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

57Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂
∂bL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂bL
xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

57Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂
∂bL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂bL

∂E0

∂xL
= 2(xL − y)

xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

57Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂
∂bL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂bL

∂E0

∂xL
= 2(xL − y)

∂xL

∂zL
= σ′ (zL)

xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

57Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂
∂bL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂bL

∂E0

∂xL
= 2(xL − y)

∂xL

∂zL
= σ′ (zL)

∂zL

∂bL
= 1

xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

57Credits: https://www.youtube.com/watch?v=tIeHLnjs5U8

∂
∂bL

E0 =
∂E0

∂xL

∂xL

∂zL

∂zL

∂bL

∂E0

∂xL
= 2(xL − y)

∂xL

∂zL
= σ′ (zL)

∂zL

∂bL
= 1

∂
∂bL

E0 = 2σ′ (zL)(xL − y) →
∂

∂bL
E =

1
s

s−1

∑
i=0

∂
∂bL

Ei

xL = σ(wLxL−1 + bL) = σ(zL)
E0 = (xL − y)2

zL = wLxL−1 + bL

Backpropagation algorithm

https://www.youtube.com/watch?v=tIeHLnjs5U8

58

What about a general neural network?!

59

xL
j

yj

Desired output

wL
kj

xL−1
k

Backpropagation algorithm

60

xL
j

yj

Desired output

wL
jk

xL−1
k

Backpropagation algorithm

60

xL
j

yj

Desired output

wL
jk

xL−1
k

E0 =
1
2 ∑

i

(xL
i − yi)2

Backpropagation algorithm

60

xL
j

yj

Desired output

wL
jk

xL−1
k

E0 =
1
2 ∑

i

(xL
i − yi)2

zL
j = ∑

v

wL
jvx

L−1
v + bL

j

Backpropagation algorithm

60

xL
j

yj

Desired output

wL
jk

xL−1
k

E0 =
1
2 ∑

i

(xL
i − yi)2

zL
j = ∑

v

wL
jvx

L−1
v + bL

j

xL
j = σ(zL

j)

Backpropagation algorithm

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

For the last layer, for example, before we computed

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

∂E
∂wL

For the last layer, for example, before we computed

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

∂E
∂wL

For the last layer, for example, before we computed

Now w is a matrix!

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

∂E
∂wL

For the last layer, for example, before we computed

Now w is a matrix! ∂E
∂wL

→
∂E
∂wL

ij

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

∂E
∂wL

For the last layer, for example, before we computed

Now w is a matrix! ∂E
∂wL

→
∂E
∂wL

ij

We also need to consider the bias

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

∂E
∂wL

For the last layer, for example, before we computed

Now w is a matrix! ∂E
∂wL

→
∂E
∂wL

ij

We also need to consider the bias

∂E
∂bL

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

∂E
∂wL

For the last layer, for example, before we computed

Now w is a matrix! ∂E
∂wL

→
∂E
∂wL

ij

We also need to consider the bias

∂E
∂bL Now the bias is now a vector!

61

xL
jwL

kj
xL−1

k

Backpropagation algorithm

As before we need to compute the gradients

∂E
∂wL

For the last layer, for example, before we computed

Now w is a matrix! ∂E
∂wL

→
∂E
∂wL

ij

We also need to consider the bias

∂E
∂bL Now the bias is now a vector!

∂E
∂bL

→
∂E
∂bL

62

Interested in seeing how these gradients are computed?
Interested in seeing how backprogation works for real?

Make your choice!

62

Interested in seeing how these gradients are computed?
Interested in seeing how backprogation works for real?

Make your choice!

If the answer is no skip to
slide 73

63

xL
jwL

kj
xL−1

kxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

E0 =
1
2 ∑

i

(xL
i − yi)2

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

E0 =
1
2 ∑

i

(xL
i − yi)2

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

∂E
∂zL

j
= δL

j

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

∂E
∂zL

j
= δL

j

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

=
∂E
∂xL

j

∂xL
j

∂zL
j

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

∂E
∂zL

j
= δL

j

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

=
∂E
∂xL

j

∂xL
j

∂zL
j

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

∂E
∂zL

j
= δL

j

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

=
∂E
∂xL

j

∂xL
j

∂zL
j

= (xL
j − yj)

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

∂E
∂zL

j
= δL

j

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

=
∂E
∂xL

j

∂xL
j

∂zL
j

= (xL
j − yj)

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

∂E
∂zL

j
= δL

j

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

=
∂E
∂xL

j

∂xL
j

∂zL
j

= (xL
j − yj) σ′ (zL

j)

63

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

jxL
j = σ(zL

j)

Backpropagation algorithm

In the last layer we have

To compute the gradients we need the chain rule as before

∂E
∂zL

j
= δL

j

E0 =
1
2 ∑

i

(xL
i − yi)2

We start the derivation by defining asδL
j

=
∂E
∂xL

j

∂xL
j

∂zL
j

= (xL
j − yj) σ′ (zL

j)

This is the first step only since we saw that
∂

∂wL
E0 =

∂E0

∂xL

∂xL

∂zL

∂zL

∂wL

64

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

E0 =
1
2 ∑

i

(xL
i − yi)2

64

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

What is the value of delta in any previous layer??

E0 =
1
2 ∑

i

(xL
i − yi)2

64

xL
jwL

kj
xL−1

kzL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

What is the value of delta in any previous layer??

E0 =
1
2 ∑

i

(xL
i − yi)2

∂E
∂zl

j
= δl

j for all l = L − 1, … , 1 .

65

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus

65

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus

Idea: we can compute the delta value in each generic layer by
looking at the layer before!

65

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus

Idea: we can compute the delta value in each generic layer by
looking at the layer before!

xL
j

yjwL
kjxL−1

k
xL−2

v wL−1
vk

65

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus

Idea: we can compute the delta value in each generic layer by
looking at the layer before!

xL
j

yjwL
kjxL−1

k
xL−2

v wL−1
vk

65

Backpropagation algorithm

Here it is where the idea of backpropagation comes into focus

Idea: we can compute the delta value in each generic layer by
looking at the layer before!

xL
j

yjwL
kjxL−1

k
xL−2

v wL−1
vk

66

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm
E0 =

1
2 ∑

i

(xL
i − yi)2

xL
j

yjwL
kjxL−1

k
xL−2

v wL−1
vk

66

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

xL
j

yjwL
kjxL−1

k
xL−2

v wL−1
vk

66

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j xL

j
yjwL

kjxL−1
k

xL−2
v wL−1

vk

66

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j xL

j
yjwL

kjxL−1
k

xL−2
v wL−1

vk

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

= ∑
v

δl+1
v

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

= ∑
v

δl+1
v

∂zl+1
v

∂zl
j

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

= ∑
v

δl+1
v

∂zl+1
v

∂zl
j

zl+1
v = ∑

i

wl+1
iv xl

i + bl+1
v

xl
i = σ(zl

i)

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

= ∑
v

δl+1
v

∂zl+1
v

∂zl
j

zl+1
v = ∑

i

wl+1
iv xl

i + bl+1
v

xl
i = σ(zl

i)

∂zl+1
v

∂zl
j

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

= ∑
v

δl+1
v

∂zl+1
v

∂zl
j

zl+1
v = ∑

i

wl+1
iv xl

i + bl+1
v

xl
i = σ(zl

i)

∂zl+1
v

∂zl
j

= ∑
i

wl+1
iv

∂xl
i

∂zl
j

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

= ∑
v

δl+1
v

∂zl+1
v

∂zl
j

zl+1
v = ∑

i

wl+1
iv xl

i + bl+1
v

xl
i = σ(zl

i)

∂zl+1
v

∂zl
j

= ∑
i

wl+1
iv

∂xl
i

∂zl
j

= wl+1
jv σ′ (zl

j)

67

zL
j = ∑

v

wL
vjx

L−1
v + bL

j xL
j = σ(zL

j)

Backpropagation algorithm

∂E
∂zl

j
= δl

j

E0 =
1
2 ∑

i

(xL
i − yi)2

= ∑
v

∂E
∂zl+1

v

∂zl+1
v

∂zl
j

= ∑
v

δl+1
v

∂zl+1
v

∂zl
j

zl+1
v = ∑

i

wl+1
iv xl

i + bl+1
v

xl
i = σ(zl

i)

∂zl+1
v

∂zl
j

= ∑
i

wl+1
iv

∂xl
i

∂zl
j

= wl+1
jv σ′ (zl

j)

= ∑
v

δl+1
v wl+1

jv σ′ (zl
j)

68

Backpropagation algorithm

δl
j = ∑

v

wl+1
jv δl+1

v σ′ (zl
j)

So, we got

68

Backpropagation algorithm

δl
j = ∑

v

wl+1
jv δl+1

v σ′ (zl
j)

So, we got

In matrix form we get

68

Backpropagation algorithm

δl
j = ∑

v

wl+1
jv δl+1

v σ′ (zl
j)

So, we got

In matrix form we get δl = wl+1δl+1 ⊙ σ(zl)

68

Backpropagation algorithm

δl
j = ∑

v

wl+1
jv δl+1

v σ′ (zl
j)

So, we got

In matrix form we get δl = wl+1δl+1 ⊙ σ(zl) ⊙ = Hadamard product

(Element-wise multiplication)

69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j x

l−1
i

69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j x

l−1
i

In matrix form

69

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂wl

ij
=

∂E
∂zl

j

∂zl
j

∂wl
ij

= δl
j

∂zl
j

∂wl
ij

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j x

l−1
i

In matrix form

∂E
∂wl

= xl−1(δl)⊤

70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j

70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j

In matrix form

70

Backpropagation algorithm

This is ok, but to perform gradient descent we need the variation of the cost function
for w ans b!

∂E
∂bl

j
=

∂E
∂zl

j

∂zl
j

∂bl
j

= δl
j

∂zl
j

∂bl
j

zl
j = ∑

i

wl
ijx

l−1
i + bl

j

xl
j = σ(zl

j)

= δl
j

In matrix form

∂E
∂bl

= δl

71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748

71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748

71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

δl = wl+1δl+1 ⊙ σ(zl) for all l = L − 1, … , 1 .

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748

71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

δl = wl+1δl+1 ⊙ σ(zl)

∂E
∂wl

= xl−1(δl)⊤

for all l = L − 1, … , 1 .

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748

71

Backpropagation algorithm

If you have followed, congratulations, you have looked at of one of the most historic
algorithm in machine learning!

For more details please check “Deep learning: an introduction for applied
mathematicians” by Catherine F. Higham and Desmond J. Higham, Section 5

δL = (xL − y) ⊙ σ′ (zL)

δl = wl+1δl+1 ⊙ σ(zl)

∂E
∂wl

= xl−1(δl)⊤

∂E
∂bl

= δl

for all l = L − 1, … , 1 .

https://epubs.siam.org/doi/abs/10.1137/18M1165748
https://epubs.siam.org/doi/abs/10.1137/18M1165748

ACTIVATION FUNCTIONS

72

Popular activation functions

73

Activation function examples:

Popular activation functions

73

Activation function examples: σ(x) = Heaviside(x)
¡
(x

)
æ
(x

)

Popular activation functions

73

Activation function examples: σ(x) = Heaviside(x)
¡
(x

)
æ
(x

) Output, binary

Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)
¡
(x

)

Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)

f l(x) = max (0, (Wl)⊤xl−1 + bl)⇒

¡
(x

)

Rectified linear unit (ReLU):

æ
(x

)

Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)

f l(x) = max (0, (Wl)⊤xl−1 + bl)⇒

¡
(x

)

Rectified linear unit (ReLU):

æ
(x

)

(component-wise application)

Popular activation functions

74

Activation function examples:

Rectifier: σ(x) = max(0,x)

f l(x) = max (0, (Wl)⊤xl−1 + bl)⇒

¡
(x

)

Rectified linear unit (ReLU):

æ
(x

)

(component-wise application)

Eliminates negative values

Popular activation functions

75

Many other activation functions possible:

Smooth heavyside

Popular activation functions

75

Many other activation functions possible:

σ(x) =
exp x

1 + exp x
=

1
1 + exp(−x)

(Sigmoid/logistic
function)

æ
(x

) Smooth heavyside

Popular activation functions

76

Hyperbolic tangent if you want to allow negative values

-4 -2 2 4

-1.0

-0.5

0.5

1.0

σ(x) = tanh(x) :=
ex − e−x

ex + e−x
ϕ(x) =

1
1 + e−xfor= 2ϕ(2x) − 1

Popular activation functions

77

-4 -2 2 4

1

2

3

4

5

Leaky rectifier (when you want to allow some small negative values on the x)

σα(x) = max(αx, x)

α = 0.05

Popular activation functions

78

Many other activation functions possible:

Takes a vector, gives you a vector
Sums overall al j is one

Popular activation functions

78

Many other activation functions possible:
σ(x)j =

exp(xj)

∑K
i=1 exp(xi)

(Softmax function)

¡
(x

, y)
æ
(x

) Takes a vector, gives you a vector
Sums overall al j is one

CONVOLUTIONAL NEURAL NETWORKS

79

Convolutional neural network

80

Basic idea: reduce no. of network connections

From To

Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices to a
special class of linear operators: convolutions!

W

Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices to a
special class of linear operators: convolutions!

W

(x y)(τ) := ∫ℝn

x(t) y(t − τ) dtContinuous convolution operator: *

Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices to a
special class of linear operators: convolutions!

W

(x y)(τ) := ∫ℝn

x(t) y(t − τ) dtContinuous convolution operator:

Discrete version:

*

(x y)[j] :=
m

∑
i=1

x[i] y[i − j]* one-dimensional

Convolutional neural network

81

We reduce the no. of network connections by restricting our matrices to a
special class of linear operators: convolutions!

W

(x y)(τ) := ∫ℝn

x(t) y(t − τ) dtContinuous convolution operator:

Discrete version:

*

(x y)[j] :=
m

∑
i=1

x[i] y[i − j]* one-dimensional

(x y)[p, q] :=
m

∑
i=1

n

∑
j=1

x[i, j] y[i − p, j − q]* two-dimensional

Convolutional neural network

82

Example applied to a RGB coordinate system (a picture!):

* (
0 −1 0

−1 4 −1
0 −1 0) =

The convolution “kills” a lot of data, but keeps some key components

Convolutional neural network

83

Another example: max-pooling

©Wikimedia commons

