
WEEK 9 NOTES

1. SEPARATION OF VARIABLES FOR THE LAPLACE EQUATION CONTINUED
(READING MATERIAL, NOT TO BE TESTED)

Note. We will leave this section’s material of separation of variables of Laplace equations
in Cartesian coordinates as a reading material. It will not be tested in the final exam!

1.1. Separation of variables in Cartesian coordinates. The method of separation of
variables can also be used in a symmetric domain in the (x, y) Cartesian coordinates. For
example, consider the rectangular domain

Ω =
{

(x, y) ∈ R2 | 0 ≤ x ≤ a, 0 ≤ y ≤ b
}

as shown in the figure below:
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We want to solve
∆U = 0, on Ω.

We make use of the method of separation of variables. To this end, given the geometric
structure of the problem we look for solutions of the form

U(x, y) = X(x)Y (y).

Substituting the latter into
Uxx + Uyy = 0

one readily gets that
X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Rearranging one finds that
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side of this equality only depends on x while the left hand side only depends
on y. Thus, both sides have to be equal to a constant. That is, one has

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= k,

1



2 WEEK 9 NOTES

with k the separation constant. It follows then that one has the following ode’s to solve:

X ′′(x) = kX(x),(1.1a)
Y ′′(y) = −kY (y).(1.1b)

The type of solutions depends on the sign of k. For example, if k < 0, then the solutions
to (1.1a) are trigonometric functions while if k > 0 they are exponentials.

Note. To determine k one needs boundary conditions.

Example 1.1. Suppose that

U(0, y) = 0, U(a, y) = 0.

It follows from the above that

X(0) = X(a) = 0.

Accordingly, one needs to have X(x) as periodic solutions —that is, one requires trigono-
metric functions and necessarily k < 0. We thus write

k = −µ2, µ a constant.

The solution to (1.1a) is then given by

X(x) = A sin(µx) +B cos(µx), A, B constants.

Now, we have to match the boundary conditions. For this we observe that

X(0) = B = 0,

X(a) = A sin(µa) +B cos(µa) = A sin(µa) = 0,

where in the second line we have used that B = 0 (from the first line). Thus, in order to
have X(a) = 0 one requires

µa = nπ, n ∈ N.

Hence, the required solution of (1.1a) is

X(x) = sin

(
nπx

a

)
.

We are now in the position of solving (1.1b) which takes the form

Y ′′(y) = µ2Y (y).

The solution can be expressed in terms of hyperbolic functions or, alternatively, trigono-
metric functions:

Y (y) = An sinh

(
nπy

a

)
+Bn cosh

(
nπy

a

)
,(1.2a)

Y (y) = Cne
nπy
a +Dne

−nπya .(1.2b)

The expression (1.2a) is conventionally used when the y-domain is finite while (1.2b) is
used when it is infinite.

Note. Observe that if one requires U(x, y) → 0 as y → ∞ one then necessarily has that
Cn = 0 —see figure below.
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Putting everything together one ends up, for given n, with solutions of the form

Un(x, y) = sin

(
nπx

a

)(
An sinh

(
nπy

a

)
+Bn cosh

(
nπy

a

))
,

= sin

(
nπx

a

)(
Cne

nπy
a +Dne

−nπya
)
.

Now, recall that the equation ∆U = 0 is linear —thus, the principle of superposition holds.
The general solution is then a linear combination of all possible Un(x, y)’s:

U(x, y) =

∞∑
n=1

Un(x, y).

1.1.1. The problem on a rectangle. A more elaborated problem is:

Uxx + Uyy = 0,

with boundary conditions

U(0, y) = g1(y),

U(a, y) = g2(y),

U(x, 0) = f1(x),

U(x, b) = f2(x).

A schematic depiction of the situation is given in the picture below:
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Observe that the pde is homogeneous but the boundary conditions are not. To solve the
problem above we exploit the linearity of the equation and the boundary conditions and
break the original problem into 4 problems, each one with non-homogeneous boundary
conditions:

f1

f2

g1 g2

0

0 0 0

0

0

0

0

0 0

00

0

+ + +

In the following we concentrate, for conciseness on

∆U = 0,

U(0, y) = U(a, y) = 0,

U(x, 0) = f1(x),

U(x, b) = 0.

From the discussion in the previous subsection we already know that

Xn(x) = sin

(
nπx

a

)
, n ∈ N.

We also have that the general solution to Y ′′ = µ2Y is given by

Y (y) = Bn cosh(µy) +An sinh(µy).

However, one also needs that Y (b) = 0 so use the solution

(1.3) Y (y) = Bn coshµ(y − b) +An sinhµ(y − b),
which can be readily verified to solve Y ′′ = µ2Y (exercise!).

Note. That (1.3) is also a solution to Y ′′ = µ2Y is, ultimately, a consequence of the fact
that the Laplace equation is translationally invariant.

The boundary condition Y (b) = 0 readily implies that Bn = 0. Hence, one has that

Y (y) = An sinh
nπ

a
(y − b).
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Thus, the full solution for fixed n ∈ N is

Un(x, y) = An sin

(
nπx

a

)
sinh

nπ

a
(y − b),

while the general solution is a sum of all the possibilities:

U(x, y) =

∞∑
n=1

An sin

(
nπx

a

)
sinh

nπ

a
(y − b).

Finally, one needs to implement the boundary condition at y = 0. For this we observe that

U(x, 0) =

∞∑
n=1

An sin

(
nπx

a

)
sinh

nπ

a
(−b)

= −
∞∑
n=1

An sin

(
nπx

a

)
sinh

(
nbπ

a

)
= f1(x).

Using the orthogonality property of the sine function one can find that

An = −

∫ a
0
f1(x) sin

(
nπx

a

)
dx

a

2
sinh

(
nbπ

a

) .

Let’s apply this to the following example.
Example: Solve the following Dirichlet problem on the rectangle Ω{(x, y)|0 ≤ x ≤

a, 0 ≤ y ≤ b}

∆U = 0

U(x, 0) = sinπx− 2 sin 2πx

U(x, b) = 0

U(0, y) = 0

U(a, y) = 0.

Using that a = 2, b = π and the theory above, we have

A2 =−
∫ a

0
[sinπx− 2 sin 2πx] sin 2πx

2 dx

sinh 2π·π
2 + 2

2

=
−1

sinh(π2)

A4 =−
∫ a

0
[sinπx− 2 sin 2πx] sin 4πx

2 dx

sinh 4π·π
2 + 2

2

=
2

sinh(2π2)

An = 0,∀n 6= 2, 4.

Thus

U(x, y) =A2 sin
2πx

2
sinh

2π(y − π)

2
+A4 sin

4πx

2
sinh

4π(y − π)

2

=
−1

sinhπ2
sinπx sinh[π(y − π)] +

2

sinh(2π2)
sinh[2π(y − π).]
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One can also check the boundary condition boundary is satisfied as

U(x, 0) =
−1

sinhπ2
sinπx sinh(−π2) +

2

sinh(2π2)
sinh(−2π2)

= sinπx− 2 sin 2πx.

2. INVARIANT PROPERTIES OF HARMONIC FUNCTIONS

There are some invariant properties of the solutions to the Laplace equations in either
polar or Cartesian coordinates.

In Cartesian coordinates, we have

Proposition 2.1. If U(x, y) is a harmonic function on a disk of radius r centerred at
the origin, then V (x, y) = U(λx, λy) and W (x, y) = U(λx,−λy) are both harmonic
functions on a disk of radius r

λ .

In polar coordinates, we have

Proposition 2.2. If U(r, θ) is a harmonic function on R2 \ {0}, then both V (r, θ) =
U( 1

r , θ) and W (r, θ) = U( 1
r ,−θ) are harmonic functions on R2 \ {0}.

Both of these 2 properties are left as exercises in the problem sets/Courseworks.

3. THE MEAN VALUE PROPERTY

Several important properties of harmonic functions follow directly from Poisson’s for-
mula deduced at the end of last week.

(3.1) U(r, θ) =
(r2
∗ − r2)

2π

∫ 2π

0

f(θ′)dθ′

r2
∗ − 2rr∗ cos(θ − θ′) + r2

.

In particular, one has the following:

Proposition 3.1 (the first mean value property). Let U be a harmonic function on a disk
Ω. Then the value of U at the centre of the disk is equal to the average of U on its circum-
ference.

Proof. Without loss of generality set the centre of the disk at the origin of the polar coor-
dinates. Then, setting r = 0 in Poisson’s formula (3.1) one obtains

U(0) =
r2
∗

2π

∫ 2π

0

f(θ′)

r2
∗
dθ′.

The latter can be rewritten as

U(0) =
1

2πr∗

∫ 2π

0

f(θ′)r∗dθ
′.
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This is nothing but the average of f(θ) over the circumference —observe that 2πr? is the
value of the circumference while r∗dθ′ is the infinitesimal arc-length. �

Note. The first mean value property allows one to determine the value of a harmonic
function at the centre of the disk without actually having to solve the Laplace equation!

Example 3.2. For the problem in Example 2.4 last week for a discontinuous temperature
on the boundary, a quick calculation gives that

U(0) =
1

2π

∫ π

0

U1dθ +
1

π

∫ 2π

π

U2dθ

=
1

2
(U1 + U2).

That is the value at the centre is the average of the two different (constant) values at the
boundary —this is an intuitive observation.

Notice also that this coincide with the value we get when plugging in r = 0 in the
solution obtained last week:

U(r, θ) =
U1 + U2

2
+
U1 − U2

π

∞∑
m=1

rm

m

(
1− (−1)m

)
sinmθ.

There is a stronger version of the mean value property:

Proposition 3.3 (the second mean value property). Let U be a harmonic function on a disk
Ω. Then the value of U at the centre of Ω equals the average on the disk.

Proof. Let r ≤ r∗. The first mean value property then gives that

U(0) =
1

2π

∫ 2π

0

U(r, θ)dθ.

Multiplying by 2πr and integrating from 0 to r∗ gives∫ r∗

0

2πrU(0)dr =

∫ r∗

0

∫ 2π

0

U(r, θ)rdθdr

However, ∫ r∗

0

2πrU(0)dr = 2πU(0)

∫ r∗

0

rdr = πr2
∗U(0).

Hence,

U(0) =
1

πr2
∗

∫ r∗

0

∫ 2π

0

U(r, θ)rdθdr.

The above expression gives the value of u over the disk. In particular, πr2
∗ gives the area

of the disk. �
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Remark 3.4. One can write the second mean value property in the more concise form

U(0) =
1

πr2
∗

∫
Br∗ (0)

UdV,

where Br∗(0) denotes the ball (disk) of radius r∗ centred at the origin.

4. THE MAXIMUM PRINCIPLE

In this section we will discuss the important properties of the maximum and minimum
of harmonic functions. These properties have important application —mainly to discuss
the uniqueness of solutions to the Laplace and Poisson equation.

We recall some technical concepts which will be used in the following discussion:
Open domain. An open domain (i.e. set) is one for which at every point in the
set it is possible to have a sufficiently small ball (centred at the point in question)
which is contained within the set. In particular, an open domain does not include
its boundary.
Connected domain. A connected domain is one which consists only of one piece.
More precisely, given two arbitrary points in a connected set, it is always possible
to find a curve connecting the two points which is completely contained in the set.

Ω

∂Ω

∆U(x,y)=0

U(x,y)=f(x,y)

The first result of this section is the following:

Proposition 4.1. Let Ω ⊂ R2 be an open connected domain and U be a harmonic function
defined on Ω. Assume U achieves its maximum at a point (x?, y?) ∈ Ω. Then U(x, y) is
constant for all (x, y) ∈ Ω.

Proof. Since (x?, y?) ∈ Ω and Ω is open, we can find r > 0 such that Br(x?, y?) ⊂ Ω. By
the mean value property we have that

U(x?, y?) =
1

πr2

∫
Br(x?,y?)

U(x)dx.

Since U(x?, y?) ≥ U(x, y) for all (x, y) ∈ Ω (it is a maximum!), then the only way to
satisfy the mean value property is to have

U(x, y) = U(x?, y?) for all (x, y) ∈ Br(x?, y?).

Now, take any point (xn, yn) ∈ Ω. We want to show that U(xn, yn) = U(x?, y?). For this,
we connect (x?, y?) and (xn, yn) with a continuous curve that is covered by intersecting
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balls Br0(xi, yi), 2r0 < r, in such a way that

|(xi+1, yi+1)− (xi, yi)| < r0, for i = 0, . . . , n− 1.

By the first step in the proof one already knows that U(x1, y1) = U(x?, y?). So, repeating
the argument we obtain that

U(x?, y?) = U(xi, yi) for i = 1, . . . , n.

As the domain is connected then any point in it can be joined to (x?, y?) by means of a
curve completely contained in Ω. Thus, The argument used before shows that U(x, y)
must be constant throughout Ω. �

Changing U to −U in the previous argument one obtains the following:

Corollary 4.2. Let Ω ⊂ R2 be an open connected domain and U be a harmonic function
defined on Ω. Assume U achieves its minimum at a point (x?, y?) ∈ Ω. Then U(x, y) is
constant for all (x, y) ∈ Ω.

Combining the above results one obtains the main result of this section:

Theorem 4.3 (the maximum/minimum principle). Let Ω ⊂ R2 be an open connected
domain and U be a harmonic function defined on Ω. Then U attains its maximum and
minimum values on the boundary ∂Ω.

Note. In particular, if U is constant on ∂Ω, then it is also constant on Ω.

4.1. Application to uniqueness. The maximum principle is key to showing uniqueness
of solution to the Laplace and Poisson equation.

Proposition 4.4. Let Ω ⊂ R2 be an open connected domain, then the Poisson equation on
Ω

∆U = ψ

U |∂Ω = f,

has a unique solution

Proof. Suppose there are 2 solutions U1, U2, then V = U1 − U2 solves the following
Laplace equation {

∆V = ∆U1 −∆U2 = ψ − ψ = 0, in Ω

V |∂Ω = U1|∂Ω − U2|∂Ω = f − f = 0.

Then the maximum principle tells that V ≤ 0 and V ≤ 0. So V ≡ 0.
Namely U1 = U2 and the solution to the Poisson’s equation is unique. �

Example 4.5. Suppose U is harmonic on the disk of radius 4 with boundary conditions
U(4, θ) = 4 + 4 cos2 θ. Determine the maximum/minimum values of U in the disc of
radius r and compute the value of U at the origin.

Notice cos2 θ = cos 2θ+1
2 , we have U(4, θ) = 4 + 2 cos 2θ + 2 = 6 + 2 cos 2θ.

By the mean value property

U(0) =

∫ 2π

0

U(4, θ)dθ = 6.

By the maximum principle and the fact that −1 ≤ cos θ ≤ 1. we have

Umax =6 + 2 = 8

Umin =6− 2 = 4.
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Example 4.6. For a harmonic function on the annular region (see Problem set 8 Question
3)

Ω = {1

2
< r < 2}

satisfying the boundary conditions given by

U(
1

2
, θ) = 17 + 17 cos 2θ + 17 sin 2θ,

U(2, θ) = 17 + 17 cos 2θ + 17 sin 2θ.

Without solving it as in the problem sheets. We can show that −17 ≤ U ≤ 51 on the
whole Ω.

Indeed, this follows from the maximum principle and the fact that−1 ≤ cos 2θ, sin 2θ ≤
1.

U ≥17− 17− 17 = −17

U ≤17 + 17 + 17 = 51.

5. BASIC CONCEPTS FOR THE HEAT EQUATION

In this chapter we study the 1 + 1-dimensional heat equation —this is the paradigmatic
example of parabolic equations:

Ut − κUxx = 0,

with κ the so-called diffusivity constant. In 3 + 1 dimensions the equation is given by

Ut − κ
(
Uxx + Uyy + Uzz

)
= 0.

Thus, time independent solutions (i.e. with Ut = 0) satisfy the Laplace equation

∆U = 0.

We will interested in the following:
(i) The boundary value problem. Here one prescribes U at t = 0 and on x = a,

x = b.
(ii) The heat equation on the whole line. In this case there are no boundary condi-

tions and one only prescribes U at t = 0.

The heat equation has a wide range of applications in the study of heat propagation,
diffusion of substances in a medium, finance, geometry...

5.1. General remarks. Consider the 1 + 1 heat equation in the form

Ut = κUxx, κ > 0.(5.1)

Geometrically, given a function U(x, t), the second derivative Uxx is the rate of change of
slope (at fixed time) —that is, it determines whether the graph of U (for fixed t) is concave
or convex. On the other hand, Ut is the rate of change of U(x, t) at some fixed point. Thus,
one has that

Ut > 0 if the graph of U(x,t) (for fixed t) is convex,
Ut = 0 if the graph is a straight line,
Ut < 0 if the graph is concave.

Thus, at all points x where Uxx > 0 we have that U(x, t) increases in time , and at
points where Uxx < 0 we have that U(x, t) is decreasing in time.
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Note. The previous discussion shows that the effect of the heat equation is to smooth out
bumps.

Example 5.1. Consider the function

U(x, t) = 1 + e−κt cosx.

It can be checked to satisfy the heat equation. Plots of this function for various times are
given below.

-3 -2 -1 1 2 3

-2

-1

1

2

The plots show an initial central concentration spreading out an becoming more and
more uniform as t increases. Observe, in particular how U increases where Uxx > 0 and
decreases where Uxx < 0. Changing the value of κ affects the rate of smoothing: larger κ
means faster smoothing and viceversa.

5.2. Boundary conditions. Recall that when solving first order ode’s one needs one con-
dition on the unknown (initial condition) to determine fully the solution. Since we want
to predict the distribution of concentration/temperature U(x, t) for all t > 0 and the heat
equation has only one derivative in time, then at every x we need to prescribe one initial
condition for U(x, t) at t = 0 —that is

U(x, 0) = f(x).

On the other hand, since Ut = κUxx contains Uxx and x ∈ (a, b), we need to prescribe
boundary conditions at the end points a and b at each time. This is consistent with the
general principle for ode’s that to solve second order boundary value problems one needs
two boundary conditions (one at each point). These boundary conditions are determined
by physical modelling and might contain U and Ux. The most common types are:

(i) Dirichlet boundary conditions. Here one prescribes

U(a, t) = h(t), U(b, t) = g(t).

These boundary conditions correspond to the temperature/concentration at the
endpoints.

(ii) Neumann boundary conditions. Here one prescribes

Ux(a, t) = h(t), Ux(b, t) = g(t).

In this case one prescribes a flux of U rather than U itself. In particular, if

Ux(a, t) = Ux(b, t) = 0,

the endpoints are insulated —i.e. no flux.
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(iii) Mixed boundary conditions. One can also have situations as

Ux(a, t) = h(t), U(b, t) = g(t),

or
U(a, t) = h(t), Ux(b, t) = g(t).

(iv) Periodic boundary conditions. One can also have

U(−a, t) = U(a, t)

or
Ux(−a, t) = Ux(a, t).

6. THE HEAT EQUATION ON AN INTERVAL

In this section we will see how the method of separation of variables can be used to ob-
tain solutions to the heat equation on an interval. More precisely, we consider the following
problem:

Ut = κUxx, x ∈ [0, L], t > 0,

U(x, 0) = f(x),

U(0, t) = 0, U(L, t) = 0.

The boundary conditions describe, for example, a metallic wire whose ends are set (by
means of some device) at a temperature of 0 degrees.

6.1. Separation of variables. Following the general strategy of the method we consider
solutions of the form

U(x, t) = X(x)T (t).

Substitution into the heat equation gives

X(x)Ṫ (t) = κX ′′(x)T (t).

Hence, dividing by XT we find that

Ṫ (t)

κT (t)
=
X ′′(x)

X(x)
.

We observe that the left hand side of this last expression only depends on x. The right hand
side depends only on t. Thus, for the equality to hold one needs both sides to be constant.
That is, one has that

Ṫ (t)

κT (t)
=
X ′′(x)

X(x)
= −λ,

Thus, we end up with the following ordinary differential equations:

Ṫ = −κ − λT,(6.1a)
X ′′ = −λX.(6.1b)

Moreover, from the boundary conditions one has that

X(0)T (t) = 0, X(L)T (t) = 0,

so that

(6.2) X(0) = X(L) = 0.
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6.2. Solving the equation for X(x). Combining equation (6.1b) with the boundary con-
ditions (6.2) one obtains the eigenvalue problem

X ′′ = −λX,
X(0) = X(L) = 0.

Notice we have already proved the following claim about eigenvalues when studying wave
equations.

Claim 6.1. The eigenvalues λ ≥ 0.

Thus, the general solution to equation (6.1b) is given by

X(x) = A cos
√
λx+B sin

√
λx.

Now, we make use of the boundary conditions. First we observe that

X(0) = A cos 0 +B sin 0.

Thus, from (6.2) it follows that
A = 0.

Using now X(L) = 0 one finds that

B sinλL = 0.

Clearly one needs B 6= 0 to get a non-trivial solution. Thus
√
λ =

πn

L
, n = 1, 2, . . .

Hence, the solution to the eigenvalue problem is given (ignoring the constant B) by

Xn(x) = sin

(
πnx

L

)
, λn =

π2n2

L2
.

6.3. Solving the equation for T (t). Now knowing λ = π2n2

L2 , we can solve for T

Tn(t) = Ce−λnκt = Ce−
π2n2

L2 κt, C a constant.

6.4. General solution. The calculations from the previous sections can be combined to
obtain the family of solutions to the heat equation

Un(x, t) = Xn(x)Tn(t) = e−
π2n2

L2 κt sin

(
πnx

L

)
.

The general solution is then applied using the principle of superposition:

(6.3) U(x, t) =

∞∑
n=1

anUn =

∞∑
n=1

ane
−π2n2

L2 κt sin

(
πnx

L

)
,

with an constants that are fixed through the initial conditions.


