
WEEK 8 NOTES

1. BASIC IDEAS OF ELLIPTIC EQUATIONS

In this part of the course we will study the properties of elliptic equations in two dimen-
sions (spatial). More precisely, we will look at the Laplace equation

Uxx + Uyy = 0,

and the Poisson equation
Uxx + Uyy = f(x, y).

The Poisson equation is the inhomogeneous version of the Laplace equation.
Typically we will be interested in the so-called Dirichlet problem in which we solve

the Laplace equation on a domain Ω ⊂ R2 given that the value of U on the boundary ∂Ω
of Ω is known.

Ω

∂Ω

∆U(x,y)=0

U(x,y)=f(x,y)

Notation. In what follows we write

∆U = Uxx + Uyy.

The physicists notation is
∇2U = Uxx + Uyy.

The operator ∆ (∇2) is called the Laplacian. The reason for the physicists notation is that
the Laplacian is the divergence of the gradient of a function ∆U = ∇ · ∇U .

The Laplace and Poisson equations arise from applications in physics (electrostatics,
Newtonian gravity), fluid flows (steady state), soap films, elastic membranes, and also in
pure mathematics (complex variables). As examples consider the wave equation in 1 + 2
dimensions

Utt = c2(Uxx + Uyy)

and the 1 + 2 heat equation
Ut = κ(Uxx + Uyy).

For both of these equations it is of interest to look for solutions which are independent of
time —i.e. Ut = 0. These solutions describe the asymptotic behaviour —i.e. at late
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times. This is a statement that is hard to show and that is at the forefront of modern pde
research.

1.0.1. Harmonic functions.

Definition 1.1. A function having second partial derivatives on a domain Ω ⊂ R2 is called
harmonic if ∆U = 0 for all (x, y) ∈ Ω.

Example 1.2.
(i) the function U(x, y) = x+ y is harmonic for all Ω ⊂ R2;

(ii) similarly for the function U(x, y) = x2 − y2;
(iii) the function U(x, y) = ln(x2 + y2) for any domain Ω not containing the origin as

the function U(x, y) is not defined there.

1.0.2. Relation to complex variables. Let f(z) = u(x, y)+iv(x, y) be an analytic function
with z = x+ iy. To verify that the function f(z) is analytic on a domain Ω one can make
use of the Cauchy-Riemann equations:

vy = ux,(1.1a)
vx = −uy.(1.1b)

Applying ∂/∂y to equation (1.1a) one has that

vyy = uxy = −vxx
where the second equality follows from (1.1b). Thus, one has that

vxx + vyy = 0,

that is, the imaginary part of analytic function is harmonic. A similar relation follows for
the real part u.

Note. This observation indicates a very deep connection between pde’s and complex vari-
ables!

2. SEPARATION OF VARIABLES FOR THE LAPLACE EQUATION

Before studying the general properties of the Laplace and Poisson equations, let us
consider some explicit solutions using separation of variables.

2.1. Separation of variables in polar coordinates. The method of separation of vari-
ables can be used to find solutions to the Laplace equation in settings with circular sym-
metry —i.e. a disk or an annulus.

Given the polar coordinates (r, θ) given by

x = r cos θ, y = r sin θ,

the Laplacian can be expressed as

∆U =
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2
∂2U

∂θ2
.

Consider the boundary value problem for the Laplace equation in which the value of the
solution is given on a circumference of a disk of radius r∗ —namely,

∆U =
1

r

∂

∂r

(
r
∂U

∂r

)
+

1

r2
∂2U

∂θ2
= 0,

U(r∗, θ) = f(θ),
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see the figure below:

r*∆U=0

U(r*,θ)=f(θ)

Our task is to find the solution U(r, θ) in the interior of the circumference (disk). Fol-
lowing the general strategy of the method of separation of variables we look for solutions
of the form

U(r, θ) = R(r)Θ(θ).

Plugging into the Laplace equation in polar coordinates one obtains the expression

ΘR′′ +
1

r
ΘR′ +

1

r2
RΘ′′ = 0.

Dividing the above expression by RΘ/r2 and rearranging one finds that

r2R′′

R
+
rR′

R
= −Θ′′

Θ
.

The left hand side of the above expression depends only on r while the right hand side only
on θ. Thus, each must be equal to some separation constant k —namely:

r2R′′

R
+
rR′

R
= k, −Θ′′

Θ
= k,

or

r2R′′ + rR′ − kR = 0,

Θ′′ + kΘ = 0.

The Θ-equation. This equation is used to set the value of k. Observe that we need periodic
solutions so k > 0. In the following we write k = m2. Then

Θ(θ) = A cosmθ +B sinmθ.

To enforce periodicity we require that

U(r, θ) = U(r, θ + 2π),

Uθ(r, θ) = Uθ(r, θ + 2π).

Observing that
cosm(θ + 2π) = cos(mθ + 2πm) = cosmθ

if m ∈ N (and similarly for sinmθ) then m ∈ N.

The R-equation. Following the previous discussion one has that the equation for R(r)
takes the form

r2R′′ + rR′ −m2R = 0.

We look for solutions to this equations of the form

R(r) = rα,
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for some constant α. It follows then that

α(α− 1)rα + αrα −m2rα = 0

so that

(α2 −m2)rα = 0.

Hence, α2 = m2 —that is,

α = ±m.

So the general solution for the R equation is

R(r) = Cmr
m +

Dm

rm
.

For m = 0 one needs to do more work as there must be two independent solutions. In that
case one has the equation

r2R′′ + rR′ = 0.

If r 6= 0 the latter implies

r
dR′

dr
= −R′,

which can be read as an equation for R′. Integrating one obtains

R′(r) =
D0

r
,

from where a further integration gives

R(r) = C0 +D0 ln r.

The general solution. Combining the whole of the previous discussion one finds that the
general solution to the Laplace equation in polar coordinates is given by

(2.1) U(r, θ) =

(
C0 +D0 ln r

)
+

∞∑
m=1

(
Cmr

m +
Dm

rm

)
(Am cosmθ +Bm sinmθ).

2.2. Examples of Laplace equations on disks and annuli. Consider solutions such that
U(r∗, θ) = f(θ) and U(r, θ) well defined at the origin. Observe that the general solution
as given by (2.1) are singular at r = 0. To avoid this behaviour set D0 = 0 and Dm = 0.
Hence,

(2.2) U(r, θ) = a0 +

∞∑
m=1

rm(am cosmθ + bm sinmθ),

where

am ≡ AmCm bm ≡ BmCm.

The boundary condition at r = r∗ gives then

f(θ) = a0 +

∞∑
m=1

rm∗ (am cosmθ + bm sinmθ).
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This is an example of a Fourier series! The Fourier coefficients can be computed (using
the standard method) to be

a0 =
1

2π

∫ 2π

0

f(θ)dθ,

an =
1

πrn∗

∫ 2π

0

f(θ) cos(nθ)dθ,

bn =
1

πrn∗

∫ 2π

0

f(θ) sin(nθ)dθ.

Example 2.1. Let

∆U = 0, in B3(0)

U(3, θ) = 2 cos2 θ.

Namely r∗ = 3 and f(θ) = 2 cos2 θ = 1 + cos 2θ.
We have a0 = 1, bn = 0 for all n and an = 0 except for n = 2. Moreover

a2 =
1

π · 32

∫ 2π

0

cos2(2θ) =
1

9π

∫ 2π

0

cos 4θ + 1

2
=

1

9
.

So U(r, θ) = 1 + 1
9r

2 cos 2θ.
Alternatively, one can compute the coefficients by “observation”. Notice that the bound-

ary conditions gives

1 + cos 2θ = a0 +

∞∑
m=1

rm∗ (am cosmθ + bm sinmθ)

and they have to be equal term by term.
The constant term agrees on both sides gives a0 = 1.
And since the left hand side does not have all the cosmθ and sinmθ terms except for

cos 2θ with m = 2. So all the am and bm are vanishing except for m = 2.
And the coefficients in front of cos 2θ agrees, 1 = a2 · 32. So a2 = 1

9 .
This gives the same conclusion!

Example 2.2. Let r∗ = 1 and f(θ) = sin θ. One can then evaluate equation (2.2) at
r = 1to yield

U(1, θ) = a0 +

∞∑
m=1

am cosmθ +

∞∑
m=1

bm sinmθ.

As, on the other hand,
U(1, θ) = sin θ

and the sines and cosines are independent, then by direct inspection one finds that

a0 = 0, am = 0,

b1 = 1, bm = 0, m 6= 1.

So, in this case, the solution takes the simple form

U(r, θ) = r sin θ.

Example 2.3. Let r∗ = 1 and f(θ) = cos2 θ. Recall the identity

cos2 θ =
1

2
+

1

2
cos 2θ.
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So, in this case we have that

1

2
+

1

2
cos 2θ = a0 +

∞∑
m=1

am cosmθ +

∞∑
m=1

bm sinmθ,

from where direct inspection yields

a0 =
1

2
, a2 =

1

2
, am = 0, m 6= 0, 2,

bm = 0.

Thus, the solution is given by

U(r, θ) =
1

2
+

1

2
r2 cos 2θ.

Example 2.4. Now, suppose that the boundary conditions are such that on half of the circle
the function takes the constant value U1 and in the lower part it takes the value U2. More
precisely, one has that

f(θ) =

{
U1 0 < θ < π
U2 π < θ < 2π.

Assume, further for simplicity that r∗ = 1.

From the theory of Fourier series we have that

a0 =
1

2π

∫ 2π

0

f(θ)dθ =
U1

2π

∫ π

0

dθ +
U2

2π

∫ 2π

π

dθ =
U1 + U2

2

am =
1

π

∫ 2π

0

f(θ) cosmθdθ =
U1

π

∫ π

0

cosmθdθ +
U2

π

∫ 2π

π

cosmθdθ = 0.

However, one also has that

bm =
1

π

∫ 2π

0

f(θ) sinmθdθ =
U1

π

∫ π

0

sinmθdθ +
U2

π

∫ 2π

π

sinmθdθ

= − U1

πm

(
(−1)m − 1

)
− U2

πm

(
1− (−1)m

)
=

(U1 − U2)
(
1− (−1)m

)
πm

.

Hence, the solution to the Laplace equation is given by

U(r, θ) =
U1 + U2

2
+
U1 − U2

π

∞∑
m=1

rm

m

(
1− (−1)m

)
sinmθ.

Observe that the solution only contains terms with m odd. In Exercise 6 of Coursework 7,
you will be asked to write the above series in closed form.

Consider now ∆U = 0 in Ω = {r1 ≤ r ≤ r2}—this type of region is called an annulus
(ring) with inner radius r1 and outer radius r2. Boundary conditions are then given by

U(r1, θ) = f(θ),

U(r2, θ) = g(θ).

In this case one can keep the general solution as the origin is excluded.

Example 2.5. Suppose ∆U = 0 in Ω = {1 ≤ r ≤ e} and

U(1, θ) = 4 + (2 + e2) sin 2θ)

U(e, θ) = (2e2 + 1) sin 2θ.



WEEK 8 NOTES 7

Recall the general solution is of the form

U(r, θ) =

(
C0 +D0 ln r

)
+

∞∑
m=1

(
Cmr

m +
Dm

rm

)
(Am cosmθ +Bm sinmθ).

We must have:
The constant terms satisfies

4 = C0 +D0 ln 1

0 = C0 +D0 ln e.

Thus solving it we get C0 = 4 and D0 = −4.
Next, notice that there are only sin terms and no cos terms, we have all Am = 0 for all

m.
And since there is only sin(2θ) terms, we must have all Bm = 0 for m 6= 2.
Moreover, we can assume B2 = 1 and solve for C2, D2. The coefficients in front of the

sin 2θ terms gives

2 + e2 = C2 · 12 +
D2

12

2e2 + 1 = C2 · e2 +
D2

e2
.

Solve it we get C2 = 2 and D2 = e2.
So the solution is

U(r, θ) = 4− 4 ln r + (2r2 +
e2

r2
) sin(2θ).

2.3. Poisson’s formula. We have obtained previously the solution to Dirichlet’s problem
on a disk in the form of the infinite series

U(r, θ) = a0 +

∞∑
m=1

rm∗ (am cosmθ + bm sinmθ),

with

a0 =
1

2π

∫ 2π

0

f(θ)dθ,

an =
1

πrn∗

∫ 2π

0

f(θ) cos(nθ)dθ,

bn =
1

πrn∗

∫ 2π

0

f(θ) sin(nθ)dθ.

Remarkably, the previous solution can be written in closed form —i.e. in a way it does not
involve an infinite series.

2.3.1. Some useful facts. We recall some useful fact that will be used in the following
calculation.

Writing trigonometric functions in terms of exponentials. One has the Euler formula

eiθ = cos θ + i sin θ

where i =
√
−1. From the above expression it follows that

cos θ =
eiθ + e−iθ

2
.
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Geometric series. Recall that for |x| < 1 one has that

1 + x+ x2 + · · · =
∞∑
n=0

xn =
1

1− x
.

So, in particular

(2.3) x+ x2 + · · · =
∞∑
n=1

xn =
x

1− x
.

2.3.2. Expressing the series solution in closed form. Substituting the expressions for the
Fourier coefficients into the general solutions of Laplace equations on the disk (2.2) one
obtains

U(r, θ) =
1

2π

∫ 2π

0

f(θ′)dθ′ +
1

π

∞∑
m=1

rm

rm∗

(∫ 2π

0

f(θ′) cosmθ′dθ′ cosmθ +

∫ 2π

0

f(θ′) sinmθ′dθ′ sinmθ

)

=
1

2π

∫ 2π

0

f(θ′)dθ′ +
1

π

∞∑
m=1

rm

rm∗

∫ 2π

0

f(θ′)
(

cosmθ′ cosmθ + sinmθ′ sinmθ
)
dθ′.

Recalling that
cosm(θ − θ′) = cosmθ′ cosmθ + sinmθ′ sinmθ,

one gets then

U(r, θ) =
1

2π

∫ 2π

0

f(θ′)dθ′ +
1

π

∫ 2π

0

f(θ′)

∞∑
m=1

(
r

r∗

)m
cosm(θ − θ′)dθ′

=
1

2π

∫ 2π

0

f(θ′)

(
1 + 2

∞∑
m=1

(
r

r∗

)m
cosm(θ − θ′)

)
dθ′.

Now, rewriting cosm(θ − θ′) in terms of integrals one finds that

1 + 2

∞∑
m=1

(
r

r∗

)m
cosm(θ − θ′) = 1 +

∞∑
m=1

(
r

r∗

)m(
eim(θ−θ′) + e−im(θ−θ′)

)

= 1 +

∞∑
m=1

(
rei(θ−θ

′)

r∗

)m
+

∞∑
m=1

(
re−i(θ−θ

′)

r∗

)m
.

The last two terms are geometric series like in (2.3) series with x given by the expressions
in brackets. Accordingly, we can write

1 + 2

∞∑
m=1

(
r

r∗

)m
cosm(θ − θ′) = 1 +

(r/r∗)e
i(θ−θ′)

1− (r/r∗)ei(θ−θ
′)

+
(r/r∗)e

−i(θ−θ′)

1− (r/r∗)e−i(θ−θ
′)

= 1 +
rei(θ−θ

′)

r∗ − rei(θ−θ′)
+

re−i(θ−θ
′)

r∗ − re−i(θ−θ′)

=
r2∗ − r2

r2∗ − 2rr∗ cos(θ − θ′) + r2
.

Thus, one has that

U(r, θ) =
1

2π

∫ 2π

0

f(θ′)(r2∗ − r2)

r2∗ − 2rr∗ cos(θ − θ′) + r2
dθ′,

or after some rearrangements
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(2.4) U(r, θ) =
(r2∗ − r2)

2π

∫ 2π

0

f(θ′)dθ′

r2∗ − 2rr∗ cos(θ − θ′) + r2
.

The latter is known as Poisson’s formula. It expresses the solution to the Dirichlet
problem on a disk as an integral of the boundary data over the boundary of the disk.

r*∆U=0

U(r*,θ)=f(θ)

Note. The term
r2∗ − 2rr∗ cos(θ − θ′) + r2

is, essentially the cosine’s law of trigonometry and gives the distance between a point with
polar coordinates (r, θ) in the interior of the disk where we want to know the value of U
and the points (r∗, θ

′) on the boundary of the disk (over which one is integrating).


