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Abstract
We study the module theory of the 0-Hecke algebra as Fayers [3] did. We specialise
to the 0-Hecke algebra of the symmetric group, classifying its simple modules and
studying its projective and injective modules.
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1 Introduction
Let W be a Coxeter group. The 0-Hecke algebra H0(W) of W over the field F can
be thought of as a ‘deformation’ of the group algebra F(W) in the following sense.
The generators {hi} of H0(W) are in bijection with the generators of W , satisfying
the braid relations. But rather than the generators being involutions, they instead
satisfy the quadratic relation h2

i � −hi .
Norton [8] studied the 0-Hecke algebra H0(W), studying its nilpotent radical,

classifying its irreducible representations and decomposing it into its irreducible
left ideals. Fayers [3] built on this work, presenting dualities and a correspondence
between the projective and injective modules. In this work, we will present the
results from [3], simplifying to the case where W is a symmetric group.

Any reader of this paper is assumed to have a good background in group and
ring theory. Hungerford [5] covers much more than we will need in Chapters 1,
2 and 3. We will assume any group and ring theory results from Hungerford [5]
without comment.

Since the reader is not assumed to be familiar with module theory, we start by
briefly introducing modules, following [5, Section 4]. When then briefly introduce
Coxeter groups, using Sn as a case study. We study useful properties of Sn , follow-
ing [7, Section 1]. All results stated are from [7], except for the few general results
from [4, Section 5].

The final section studies the module theory ofH0(W) for the special case where W
is a symmetric group, classifying the simple and studying projective and injective
modules.

Throughout this paper, we will write f g for the composition of two functions f
and g, omitting the ◦ symbol.
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2 Module Theory

2.1 Modules and Module Homomorphisms
Definition 2.1.1. Let R be a ring with unity. A left R-module is an abelian group
(M,+) with a function R × M → M, (r,m) 7→ rm such that for all r, s ∈ R and
m , n ∈ M the following hold.

M1) r(m + n) � rm + rn.
M2) (r + s)m � rm + sm.
M3) r(sm) � (rs)m.
M4) 1Rm � m.

If R is a division ring and M is a left R-module, then M is a left vector space.

From now on, unless stated otherwise, R denotes a general ring with unity.
A right R-module (vector space resp.) M is defined in a similar way to left R-

modules but with a function M × R → M, (m , r) 7→ mr satisfying i)−iv) for right
multiplication. We will only consider left R-modules, and call them R-modules.

One notices that modules are ’vector spaces over rings’, as opposed to the familiar
notion of a vector space over a field. So in particular, every vector space over a field
is a module of that field.

Since R is a group, we see that iii) and iv) define an action of R on M. So we
will sometimes refer to the function as an R-action. Note that we specified + as
the operation for M. However, we could just as easily have taken M to have any
operation ◦.
Example 2.1.1. R is always a module over itself, with the module action being regu-
lar left multiplication. This is known as the regular representation. The trivial group
{0} is always an R-module with the module action given by r0 � 0 for all r ∈ R.

The following familiar properties from ring theory carry through to modules. If
M is an R-module, and 0M and 0R are the additive identities of M and R respectively
then

r0M � 0M , 0r m � 0M , (−r)m � −(rm) � r(−m).

for all r ∈ R and m ∈ M.
From now on, we will denote 0M , 0R and the trivial module {0} all by 0.

Example 2.1.2. Any abelian group G can be made into a Z-module M by defining
a function R ×M → M by

(m , n) 7→



m + . . . + m︸        ︷︷        ︸
n times

if n > 0,

−(m + . . . + m︸        ︷︷        ︸
n times

) if n < 0,

0 otherwise.
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The reader may wish to verify that this really does define a Z-module.

Example 2.1.3. Let R be a ring and I an ideal of R. Then I is an R-module with R-
action being regular multiplication. Also, R/I is an abelian group so can be made
into an R-module under the R-action r(s + I) � (rs) + I.

Since I is closed under multiplication in R, it is easy to see that is an R-module.
Moreover, since the R-action of R/I is essentially just multiplication in R, it is also
easy to see that R/I is an R-module, so we won’t formally prove it.

The above example gives a flavour of the importance of module theory, as both
ideals and quotient rings are modules. Thus, module theory combines results
about both ideals and quotient rings.

Example 2.1.4. Recall that R[x] is the polynomial ring of R. Let M � C0([a , b]) be
the set of continuous functions on [a , b]. This is an additive group. So we can make
M into an R[x]-module as follows. Let p �

∑k
i�0 ai x i ∈ R[x] and f ∈ M. Then

define the R[x]-action by p · f � a0 f .
Note this is actually just scalar multiplication in disguise, and since M is a vector

space (so is compatible with scalar multiplication), it follows that M is an R[x]-
module.

Definition 2.1.2. Let M be an R-module and N ⊆ M. N is a submodule of M (de-
noted N 6 M) if N is an additive subgroup of M and rn ∈ N for all r ∈ R and
n ∈ N . If R is a division ring, then any submodule of a vector space M is a subspace.

Example 2.1.5. If M is an R-module, then given any m ∈ M, the set Rm � {rm | r ∈
R} is a submodule of M. We will give a proof of this in the next subsection.

Example 2.1.6. Let I be an ideal of R. Recall that both R and I are R-modules.
Thus, I 6 R, by definition. So, in some sense, submodules generalise the notion of
an ideal.

If R is clear from the context, then we will simply say N is a submodule of M.

Definition 2.1.3. Let M and N be R-modules. A function φ : M → N is an R-
module homomorphism if

i) φ(m + n) � φ(m) + φ(n) (φ is a group homomorphism),
ii) φ(rm) � rφ(m) (φ is R-linear),

for all r ∈ R and m , n ∈ N .
If φ is

i) injective, then φ is a monomorphism.
ii) surjective, then φ is a an epimorphism.
iii) bijective, then φ is an isomorphism.

From now on, we will simply call them homs. We will sometimes use embed-
ding to mean monomorphism and projection to mean epimorphism. We denote by
HomR(M,N) the set of all homs from M to N .

Definition 2.1.4. Let M be an R-module. The dual module of M is the R-module
M∗ B HomR(M, R).



2 Module Theory Page 4

We usually just say that M∗ is the dual of M.
If M is a left R-module, then M∗ is naturally a right R-module. We can define the

R-action by f r : m → ( f (m))r for all f ∈ M∗ and m ∈ M. Since f is a hom and
f (m) is in R, it follows that M∗ satisfies the module axioms under this action.

Similarly, if M is right R-module, then the dual of M is M∗ B HomR(M, R), which
is a left R-module. (See Hungerford [5, Chapter 5, Section 4] for a full proof.)
Definition 2.1.5. Let φ : M → N be a module hom. The kernel of φ is ker(φ) �
{m ∈ M | φ(m) � 0} and the image of φ is Im(φ) � {φ(m) | m ∈ M}.

The Isomorphism Theorems for groups can be extended to modules in a natural
way. See [5, pp. 172–173] for the precise statement of each theorem. Similarly, a
module hom φ is an embedding if and only if ker(φ) � 0.
Theorem 2.1.1. (Hungerford [5, Theorem 1.6].) Let M be an R-module and N 6 M.
Then M/N is an R-module with the R-action given by r(m + N) � rm + N .
Proof. Firstly, since M is abelian, N is a normal subgroup of M, so M/N is well-
defined. Now, suppose m ,m′ ∈ M such that m + N � m′ + N . Then, by the
Coset Lemma, m − m′ ∈ N , and since N 6 M, r(m − m′) ∈ N , too. Therefore,
rm + N � rm′ + N again by the Coset Lemma. Thus, the R-action is well-defined,
and it follows that it satisfies the module axioms. �

Definition 2.1.6. Let M1 , . . . ,Mk be R-modules. The direct sum of M1 , . . . ,Mk is the
R-module

M1 ⊕ . . . ⊕Mk | � M1 × . . . ×Mk

with addition given by
(m1 , . . . ,mk) + (m′1 , . . . ,m

′
k) � (m1 + m′1 , . . . ,mk + m′k),

and R-action given by
r(m1 , . . . ,mk) � (rm1 , . . . , rmk).

It is not too difficult to show that M1 ⊕ · · · ⊕Mk really is an R-module. This is left
as an exercise to the reader.
Definition 2.1.7. Let M � M1 ⊕ · · · ⊕ Mk . The canonical projection is the map πi :⊕

M j → Mi and the canonical injection is the map ιi : Mi →
⊕

M j .
The reader is left to check the πi and ιi are mutually inverse homs.

Definition 2.1.8. Let {M1 , . . . ,Mk} be a family of submodules of an R-module M.
Then M is the direct sum of M1 , . . . ,Mk if

i) M � M1 ⊕ · · · ⊕Mk B {m1 + · · · + mk | mi ∈ Mi};
ii) Mi ∩M j � 0 for all i , j.
When considering submodules and sums of modules, we will restrict to the fi-

nite case, although this is done without loss of generality (for the purposes of this
paper).
Definition 2.1.9. Let F be a field. An F-algebra is a ring R satisfying the following.

i) (R,+) is a unitary F-module.
ii) λ(rs) � (λr)s � r(λs) for all λ ∈ F and r, s ∈ R.
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2.2 Free Modules
Definition 2.2.1. Let N be a subset of an R-module M. The span of N , span(N), is
the intersection of all submodules of M which contain N . If S is such an intersection
then we say that N spans S or N is a spanning set for S.

The span of N is also called the submodule generated by N . If N is a singleton, then
the submodule generated by N is cyclic. More generally, M is finitely generated if it
is generated by a finite subset N .

Proposition 2.2.1. Let M be an R-module. If N � {m1 , . . . ,mk} ⊆ M, then the span of
N is the set of all linear combinations of m1 , . . . ,mk in R. That is,

span(N) � RN B {r1m1 + · · · + rk mk | ri ∈ R}.

Proof. Let us first show that span(N) is itself a submodule of M. Write span(N) �
M1 ∩ · · · ∩Mk , and let i range between 1 and k, so that N ⊆ Mi 6 M. We start by
showing that span(N) is a subgroup, using the Subgroup Test.
S1. If m , n ∈ span(N), then m , n ∈ Mi , so m + n ∈ Mi , so m + n ∈ span(N).
S2. 0 ∈ Mi for each i, so 0 ∈ span(N).
S3. If m ∈ span(N), then m ∈ Mi , so −m ∈ Mi , so −m ∈ span(N).
Also, given r ∈ R and m ∈ span(N), rm ∈ Mi , so rm ∈ span(N), thus span(N) is
closed under the R-action, whence span(N) 6 M.

We now show that RN is also a submodule of M. Again, we first show that RN
is a subgroup.
S1. If m �

∑k
i�1 ri mi and n �

∑k
i�1 r′i mi in RN , then

m + n �

k∑
i�1

ri mi +

k∑
i�1

r′i mi �

k∑
i�1

(
ri + r′i

)
mi ∈ RN.

S2. 0 � 0m1 + . . . + 0mk ∈ RN .
S3. For all m ∈ RN as above, we claim −m �

∑k
i�1(−ri)mi . Indeed,

m + (−m) �
k∑

i�1
ri mi +

k∑
i�1
(−ri)mi �

k∑
i�1
(ri − ri)mi �

k∑
i�1

0mi � 0,

and −m ∈ RN since −r ∈ R. Similarly, (−m) + m � 0.
Moreover, RN � r

∑k
i�1 ri mi �

∑k
i�1(rri)mi ∈ RN (as rri ∈ R), so RN is also

closed under the R-action, so RN 6 M.
Now, N ∈ span(N), by definition of span(N). In particular, each mi ∈ span(N) so

rmi ∈ span(N) (as span(N) is closed under the R-action), and r1m1 + . . . + rk mk ∈
span(N) (as span(N) is an additive group). Thus, RN ⊆ span(N). Furthermore,
each mi ∈ RN (To see this, let ri � 1 and r j � 0 for all j , i.), so RN contains N .
Thus, we also have span(N) ⊆ RN . �
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In the proof, we took N to be finite, but we could just as well have taken N to be
infinite.

Letting N � {m} for some m in M, we see that the cyclic submodule generated
by N is Rm, as in Example 2.1.2, and that this really is a submodule of M.

Definition 2.2.2. Let M be an R-module, N � {m1 , . . . ,mk} ⊆ M and m ∈ M be
nonzero.

i) N is linearly independent if
k∑

i�1
ri mi � 0

implies ri � 0 for all i. Otherwise, N is linearly dependent.
ii) m is torsion-free if rm � 0 implies r � 0 for all r ∈ R. That is, {m} is linearly

independent as a subset of M.

Definition 2.2.3. Let M be an R-module. A basis for M is a subset of M which is
linearly independent and spans M. An R-module M is free if it has at least one basis.

Theorem 2.2.2. (Hungerford [5, Theorem 2.4].) Every vector space M over a division
ring has a basis and thus is free. In particular, M has a basis B such that

A ⊆ B ⊆ C,

where A is linearly independent and C spans M.

Proof. The proof is beyond the scope of this work so we skip it. �

Note that, in general, it’s not true that every spanning set contains a basis.
To see this, suppose that M is cyclic with m as its generator, ie., {m} generates M.

If m is not torsion-free, then {m} is not linearly independent, and so is not a basis
for M.

Another example is Z as a module over itself. Consider the subset {2, 3}. Then
this subset generates Z (See Numbers, Sets and Functions, Exercise Sheet 1.) but is
not linearly independent, since −6 · 2+4 · 3 � 0. Moreover, no subset of {2, 3} spans
Z.

Lemma 2.2.3. (Hungerford [5, Lemma 2.3]) Let M be a free R-module. Any basis of
M is maximally linearly independent.

Proof. Let B � {m1 , . . . ,mk} be a basis for M. By maximally linearly independent,
we mean that for any m ∈ M with m < B, the set {m1 , . . . ,mk ,m} is linearly depen-
dent. Indeed, given m ∈ M not in B, write m � rm1 m1 + · · · + rmk mk with rmi ∈ R
for i � 1, . . . , k. Then

k∑
i�1
(−rmi )mi + 1m �

k∑
i�1
(−rmi )mi +

k∑
i�1

rmi mi �

k∑
i�1
(−rmi + rmi )mi � 0,

so {m1 , . . . ,mk ,m} is linearly dependent since rk+1 � 1 , 0. �
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Theorem 2.2.4. (Hungerford [5, Theorem 2.7].) Let M be a free vector space over a
division ring with basis B. Then every other basis of M has cardinality |B |. If B is infinite,
then every other basis is also infinite.

Proof. The proof of the theorem is standard so we skip it. It is easy to prove using
the preceding lemma. �

In view of this theorem, we make the following definition.

Definition 2.2.4. Let M be a free vector space over a division ring R. The dimension
dimR(M) of M over R is the cardinality of any basis of M.

2.3 Sequences of Module Homomorphisms

Definition 2.3.1. A sequence of module homs K
φ
−→ L

ψ
−→ M is exact if Im(φ) �

ker(ψ).

In the sequel, we will simply say ‘exact sequence of modules’ to mean ‘exact se-
quence of module homs’.

Example 2.3.1. Let M and N be R-modules. Then the sequence

0 −→ M
φ
−→ N

is exact if and only if φ is an embedding. This is because the unique map 0 → M
has image 0, so we require ker(φ) � 0. That is, φ must be injective. Similarly,

M
φ
−→ N −→ 0

is exact if and only if φ is a projection. Reversing the above argument, the kernel
of the unique map N → 0 is all of N , so we require Im(φ) � N ; that is, φ must be
projective.

2.4 Projective and Injective Modules
Definition 2.4.1. An R-module P is projective if, given any exact sequence

M
ψ
−→ N −→ 0

and hom φ : P → N , there exists a hom χ : P → M such that φ � ψχ.

This can be drawn in a commutative diagram, that is, the arrows commute, as
follows.

P

M N 0

φχ

ψ
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Recall from Example 2.3.1 that ψ is a projection. So P is projective if, given any
hom φ : P → N and projection ψ : M → N , there exists a hom χ : P → M such
that φ � ψχ.

Theorem 2.4.1. (Hungerford [5, Theorem 3.2].) Every free module is projective.

Proof. Let P be a free module with basis B � {p1 , . . . , pn}. Suppose we are given
the following diagram

P

M N 0

φ

ψ

where ψ is an epimorphism. For each pi ∈ B, φ(pi) ∈ N . Since ψ is an epimor-
phism, there exist mi ∈ M for each pi ∈ B such that ψ(mi) � φ(pi).

Since P is free, the map χ̄ : B→ M given by χ̄(pi) � mi can be extended to a hom
as follows. Write p ∈ P as p �

∑k
i�1 ri pi and define χ(p) � ∑k

i�1 ri χ̄(pi). The map is
well-defined since, if p �

∑n
i�1 si pi also, then

∑n
i�1 ri pi−

∑n
i�1 si pi �

∑n
i�1(ri− si)pi �

0. The reader is left to check that χ is really a hom.
Consequently, ψ(χ(pi)) � φ(pi) for all i, so ψχ � φ : P → N , whence P is

projective. �

Example 2.4.1. By Theorems 2.2.2 and 2.4.1, every vector space over a division ring
is projective.

Theorem 2.4.2. (Hungerford [5, Proposition 3.8].) Let P be a projective R-module. If
P � P1 ⊕ · · · ⊕ Pk , then each Pi is projective for all 1 6 i 6 k.

Proof. Let P � P1 ⊕ · · · ⊕Pk be projective. Let πi and ιi be the canonical projections
and injections respectively. Suppose we are given the following diagram

P

Pi

M N 0

πi
ιi

φ

ψ

with ψ epimorphic. Since P is projective, there is a hom χ̄ : P → M such ψχ̄ �

φ ◦ πi . Let χ � ψιi so that ψχ � ψχ̄ ◦ ιi � φ ◦ πi ◦ ιi � φ. Therefore, Pi is projective
for all i. �

Definition 2.4.2. An R-module I is injective if, given any exact sequence

0 −→ M
ψ
−→ N

and hom φ : M → I, there exists a hom χ : N → I such that φ � χ ◦ ψ.
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This can also be drawn in a commutative diagram, as follows.

I

0 M N
ψ

φ

χ

One notices that in the commutative diagrams for projective and injective mod-
ules, the arrows are reversed (with M and N switched for ease of notation). More-
over, ψ is, in this case, an embedding, again by Example 2.4.1. This is known as du-
alisation. This means, in particular, that projective and injective modules are dual.
That is, P is projective if and only if P∗ is injective and P is injective if and only if P∗

is projective.
This generalises to injectivity and surjectivity; there exists a surjection from a set

A to a set B if and only if there exists an injection from B to A, and vice versa.

Proposition 2.4.3. (Hungerford [5, Proposition 3.7]) Let I be an injective R-module.
If I � I1 ⊕ · · · ⊕ Ik , then each Ii is injective for all 1 6 i 6 k.

Proof. The result follows from carefully dualising the proof of Theorem 2.4.2. �

Example 2.4.2. Consider R2 as an R-module with the standard basis {e1 , e2}. Write
〈e1〉 for the span of e1. Then 〈e1〉 is an injective R-module since 〈e1〉 ⊕ 〈e2〉 � R2 and
〈e1〉 ∩ 〈e2〉 � 0.

Definition 2.4.3. A ring is self-injective if it is injective as a module over itself.

2.5 Projective Covers and Injective Hulls
Definition 2.5.1. Let M be an R-module. N is a superfluous submodule of M if, given
any submodule L of M,

L + N � M ⇒ L � M.

Example 2.5.1. The trivial module 0 is a superfluous submodule of any R-module.

Definition 2.5.2. Let M and N be an R-modules. A superfluous epimorphism of M is
a surjection φ : M → N such that ker(φ) is a superfluous submodule of M.

Example 2.5.2. Any module isomorphism φ : M → N is a superfluous epimor-
phism since φ is necessarily an epimorphism and ker(φ) � 0, as φ is injective, so
ker(φ) is a superfluous submodule of N .

Definition 2.5.3. A projective cover of an R-module M is a pair (P, φ), where P is
projective and φ : P → M is a superfluous epimorphism of P.

By Benson [1, page 9] the projective cover is unique up to isomorphism. We will
write P(M) to denote the projective cover of M in the future.

We require φ to be superfluous so that P is the ‘smallest’ projective module which
covers M, in the sense that no proper submodule Q of P would cover M. This is
because superfluity of φ means, informally, that φ is only surjective on P, and isn’t
surjective when restricted to any submodule of P.
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Example 2.5.3. Suppose M is free and M � N as modules under φ. Then N is
projective by Theorem 2.4.1 and φ is a superfluous isomorphism as in Example
2.5.2, so (N, φ) is a projective cover of M.

Definition 2.5.4. Let M be an R-module. N is an essential submodule of M if, given
any submodule L of M,

L ∩ N � 0⇒ L � 0.

We also say M is an essential extension of N .

The idea of superfluous and essential submodules is that superfluous submod-
ules are ‘small’ submodules of M whilst essential submodules are ‘big’ submodules
of M.

Example 2.5.4. Any R-module M is an essential submodule of itself.

Definition 2.5.5. Let M be an R-module. I � I(M) is the injective hull of M if M is
an essential submodule of I and I is injective.

Every module has an injective hull, since every module may be embedded into an
injective module. However, a projective cover may not always exist for a module.

2.6 Simple Modules
Definition 2.6.1. Let M be an R-module. Then M is simple if its only submodules
are 0 and M.

Definition 2.6.2. Let M be an R-module. A composition series of M is a series of
submodules

M � M0 > . . . > Mk � 0

such that Mi/Mi+1 is simple for all i.

Similar to the Isomorphism Theorems, the Jordan-Hölder Theorem also holds for
composition series of modules. Therefore, any two composition series of M have
the same length and same factors, up to isomorphism and reordering.

Proposition 2.6.1. Let M and M′ be R-modules and N 6 M. If M and M′ have compo-
sition series, then so do M/N and M ⊕M′.

Proof. We use an argument from Rotman [9] and [12].
Let

M � M0 > . . . > Mk � 0

and
M′ � M′0 > . . . > M′l � 0

be composition series for M and M′ respectively. Then we can explicitly construct
the following composition series for M ⊕M′:

M ⊕M′ > M1 ⊕M′ > . . . > Mk ⊕M′ > Mk ⊕M′1 > . . .Mk ⊕M′l > 0 ⊕ 0.
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Note that under the canonical projection π, M′ � 0 ⊕ M′ � ker(π), so Mi � (Mi ⊕
M′)/M′. Thus, there exist quotient maps Mi ⊕ M′ → Mi → Mi/Mi+1 which are
all epimorphisms. One can check that Mi+1 is in the kernel of the composition,
whence (Mi ⊕ M′)/(Mi+1 ⊕ M′) � Mi/Mi+1 for each i. Therefore, it follows that
each (Mi ⊕M′)/(Mi+1 ⊕M′) is simple.

Now, let M0 � M/N and for i � 1, . . . , k, let M i � {m + N | m ∈ Mi}. Then

M/N � M0 > . . . > Mk � 0

is a series of M/N (since each M i is abelian). The quotient maps Mi → M i →
M i/M i+1 are epimorphisms, and since Mi+1 is in the kernel of the composition,
Mi/Mi+1 � M i/M i+1. Thus, each M i/M i+1 is simple. �

Definition 2.6.3. Let M be an R-module and {N1 , . . . ,Nk} be a complete collection
of its simple submodules. The socle of M is the R-module

soc(M) � N1 ⊕ · · · ⊕ Nk .

Lemma 2.6.2. Every simple module is the socle of its injective hull.

Proof. We use an argument from [11].
Let M be a simple module and I � I(M). Then, in particular, M is an essential

submodule of I. So given any non-trivial J 6 I, we have M ∩ J , 0. But we showed
in Proposition 2.2.1 that the intersection of submodules is itself a submodule. We
also have M ∩ J 6 M 6 I. Thus, since M is simple, this implies M ∩ J � M; that is,
M is contained in J. This means, in particular, that M is the only simple submodule
of I. Therefore, soc(I) � M. �

Theorem 2.6.3. Let M be a nontrivial R-module. Then M is simple if and only if M is a
cyclic module with any nonzero element as its generator.

Proof. First suppose M is simple. Let m ∈ M be nonzero and consider Rm. Then
Rm is a cyclic submodule of M, by Proposition 2.2.1. Since M is simple, we must
have Rm � 0 or Rm � M. Since m , 0, Rm , 0 (as m � 1m ∈ Rm), so Rm � M.

Now assume M is a cyclic module with any nonzero element as its generator. Let
N be a nonzero submodule of M and let m ∈ N be nonzero. Then, since N is a
submodule of M, it follows that rm ∈ N for all r ∈ R and m ∈ N . Therefore,

Rm ⊆ N ⊆ M.

But, by assumption, m generates M. Thus, Rm � M so N � M. �
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3 Special Properties of Sn

In this section, we will introduce some important properties of Sn which will be
useful when studying the 0-Hecke Algebra. First, let us reintroduce Sn .

3.1 Sn as a Coxeter Group
Definition 3.1.1. The symmetric group of order n is the group Sn generated by the
set S � {s1 , . . . , sn−1} such that (si s j)mi j � e for all si , s j ∈ S, where mii � 1 and
mi j � m ji for all j , i.

Let’s see how this coincides with the familiar definition of Sn .
The symmetric group Sn is generated by n − 1 transpositions s1 , . . . , sn−1, where

si � (i i + 1), each with order 2 (so they are involutions). This is because any
transposition (i j) can be written as

(i j) � si si+1 . . . s j−1 . . . si+1si ,

and any element can be written as a product of transpositions.
Furthermore, if 1 6 i , j 6 n − 1, then each product si s j of the transpositions

si and s j has order 3 if si s j is a 3-cycle, and order 2 otherwise. Moreover, s j si is a
3-cycle only if si s j is a 3-cycle, and if not, then si s j � s j si .

Any group which satisfies Definition 2.1.1 is called a Coxeter group. Some familiar
examples are the Klein four-group and the dihedral group of order n. We are only
interested in Sn as a Coxeter group. Throughout this chapter, we will introduce
properties of Sn which are general properties of all Coxeter groups.

See Humphreys [4, Section 5] for a general discussion on Coxeter Groups.

3.2 The Length Function
From now on, W � Sn+1 and S � {s1 , . . . , sn | si � (i i + 1)}. (This simply means
that W is generated by n elements rather than n − 1.)

Recall that the subgroup generated by S is the set 〈s1 , . . . , sn〉 of all products of
elements from {

s±1
1 , . . . , s±1

n
}
.

Since the si ’s generate W, 〈s1 , . . . , sn〉 � W and since s−1
i � si , each element w ∈ W

can be written as a product w � sr1 · · · srk of possibly non-distinct elements in S.
We are interested in the case where i is minimal.

Definition 3.2.1. Let w ∈ W and write w � sr1 · · · srk with k minimal.
i) The length of w is k.
ii) The expression sr1 · · · srk is a reduced expression for w.
iii) The length function of W is the function ` : W → N which maps w 7→ k if

sr1 · · · srk is a reduced expression for w.

Example 3.2.1. In W , the identity element e has length 0 as it is the product of no
generators, and any si ∈ S has length 1.
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Example 3.2.2. Consider S6 with the usual generating set. Let w � (1 5)(2 3 4) ∈ S6.
Then a reduced expression for w is

w � (1 2)(2 3)(3 4)(4 5)(4 3)(3 2)(2 1)(2 3)(3st4),

so `(w) � 9.

Lemma 3.2.1. (Humphreys, [4, p. 108].) Let ` be the length function on W . Let w and
w′ be any elements in W and let si be any generator in S. Then

i) `
(
w−1) � `(w).

ii) `(w) � 1⇔ w � si .
iii) `(ww′) 6 `(w) + `(w′).
iv) `(ww′) > `(w) − `(w′).
v) `(w) − 1 6 `(si w) 6 `(w) + 1.

Proof. Let w , w′ ∈ W and si ∈ S.
i) Suppose a reduced expression for w is w � sr1 · · · srk . Then, w−1 � srk · · · sr1

and `
(
w−1) 6 `(w). Now, suppose a reduced expression for w−1 is srl · · · sr1 , so

w � sr1 · · · srl . Then `(w) 6 `
(
w−1) .

ii) Trivial.
iii) Let w � sr1 · · · srk and w′ � s′r1 · · · s′rl

be reduced expressions for w and w′

respectively. Then `(w) � k and `(w′) � l. Also, sr1 · · · srk s′r1 · · · s′rl
is an expression

for ww′ with k + l factors. Thus,

`(ww′) 6 k + l � `(w) + `(w′).

iv) We have
`(w) � `(ww′(w′)−1) 6 `(ww′) + `(w′),

so
`(w) − `(w′) 6 `(ww′).

v) Simply combine iii) and iv) to conclude

`(w) − 1 � `(w) − `(si) 6 `(si w) 6 `(w) + `(si) � `(w) + 1. �

Corollary 3.2.2. (Humphreys [4, p. 108].) The ’sign’ homomorphism φsign | W →
{1,−1}, which sends even permutations to 1 and odd permutations to −1, is given by
φ(w) � (−1)`(w) for all w ∈ W . Thus, `(si w) � `(w) ± 1 for any si ∈ S.

Proof. Each generator si is odd, and `(si) � 1. Thus,

φsign(si) � −1 � (−1)1 � (−1)`(si ).

Now, given any w ∈ W , let sr1 · · · srk be a reduced expression for w (so `(w) � k).
Then

φsign(w) � φsign(sr1) · · · φsign(srk ) � (−1)k � (−1)`(w).
Moreover, φsign(si w) � φsign(si)φsign(w) � −φsign(w) implies `(si w) , `(w), so it
follows from Lemma 2.2.1 v) that `(si w) � `(w) ± 1. The same clearly holds for
`(wsi). �
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Proposition 3.2.3. (Fayers [3, Lemma 2.3].) There exists a unique w0 ∈ W such that
`(w0) > `(w) for all w ∈ W . Moreover,

`(w0w) � `(w0) − `(w) � `(ww0).

In particular, w0 is an involution.

We claim that w0 � (1 n)(2 (n − 1))...(bn/2c dn/2e + 1). Note w0 is a product
of bn/2c disjoint transpositions and can be written with n(n−1)

2 generating trans-
positions. In order to show that w0 is the longest element in W , we require some
results which are proven in the next section, so we will delay the proof until then.
However, note that w0 is an involution, by construction.

Lemma 3.2.4. (Fayers [3, Proposition 2.4].) The conjugation action of w0 on Sn is
given by w0si w0 � sn−i .

Proof. Denote by w0 · si the conjugation action of w0 on Sn .
We have w0 � (1 n)(2 (n − 1))...(bn/2c dn/2e + 1). Notice, firstly, from how w0

was constructed, that (k l) is a disjoint cycle of w0 if and only if k + l � n + 1. Also,
if i , k and l , i + 1, then w0 · si fixes k and l, since (k l) appears twice in w0 · si ,
so w0 · si | k 7→ l 7→ k, and l 7→ k 7→ k. Finally, since w0 · si is a transposition, it
transposes two (and only two) numbers. So if we find two numbers which w0 · si
doesn’t fix, then we have found w0 · si ,

Now, for all 1 6 i 6 n − 1, w0 · si transposes n − i and n − i + 1. This is because
(i (n − i + 1)) and ((i + 1) (n − i)) are disjoint cycles of w0, since i + (n − i + 1) � n + 1
and (i + 1) + (n − i) � n + 1. Also,

w0 · si : n − i + 1 7→ i 7→ i + 1 7→ n − i
n − i 7→ i + 1 7→ i 7→ n − i + 1

so w0 · si � ((n − i) (n − i + 1)) � sn−i . �

3.3 The Strong Exchange Condition
In this section, we will state and prove the Strong Exchange Condition. But before
we can do that, we must introduce some preliminary ideas. We will proceed as
Mathas did in [7, Section 1], and so all proofs are adapted from him.

Throughout this section, T � {wsi w−1 |w ∈ W, si ∈ S} is the set of transpositions
in W .

Definition 3.3.1. Let w ∈ W and denote by P(W) the power set of W . The reflection
cocycle of W is the function N : W → P(W) given by

N(w) � {(i j) ∈ W | i < j, w(i) > w( j)}.

Example 3.3.1. N(e) � ∅ and N(si) � {si}, since, for each i, si(i) � i + 1 and
si(i + 1) � i, and si fixes every other j , i , i + 1.
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Lemma 3.3.1. (Mathas [7, Lemma 1.2].) Let v , w ∈ W and denote by ∆ the symmetric
difference of sets. Then N(vw) � N(v) ∆ vN(w)v−1.

Proof. We proceed by induction on `(v).
Let `(v) � 1, so v � si ∈ S, and let w � ( j k) ∈ W . Then we claim that si( j k)si �

(si( j) si(k)). This is trivially true if i , j, k , i + 1 or ( j k) � si , since si wsi � w and
si either fixes both j and k or transposes them.

If j � i , k , i + 1 then

si( j k)si | i 7→ i + 1 7→ i
i + 1 7→ i � j 7→ k
k 7→ j � i 7→ i + 1,

so si( j k)si � si(i k)si � (i + 1 k) � (si(i) si(k)). Similarly, if j , i , k � i + 1,
then si wsi � ( j i) � (si( j) si(k)). So the claim holds in each case, therefore, the
hypothesis is true for the base case.

Now suppose `(v) > 1 and that the induction hypothesis holds for all integers
`(u) < `(v). Since `(v) > 1, it follows that v � si u where si ∈ S and u ∈ W with
`(u) � `(v) − 1. We can find such a u by letting si � sr1 where sr1 · · · srk is some
reduced expression for v. In particular, N(v) � N(si u) � N(si) ∆ si N(u)si , so

N(vw) � N(si uw) � N(si(uw)) � N(si) ∆ si N(uw)si

� N(si) ∆ si N(u)si ∆ si uN(w)u−1si

� N(v) ∆ si uN(w)(si u)−1

� N(v) ∆ vN(w)v−1. �

Proposition 3.3.2. (Mathas [7, Proposition 1.3].) Let w ∈ W . Then
i) `(w) � |N(w)|.
ii) N(w) � {t ∈ T | `(tw) < `(w)}.

Proof. Let w ∈ W .
i) Let sr1 · · · srk be a reduced expression for w. For each 1 6 i 6 k, let ti �

sr1 · · · sri−1 sri sri−1 · · · sr1 . Recall we showed that ti is a transposition at the beginning
of this section. Then, by Lemma 3.3.1,

N(w) � N(sr1 · · · srk )
� N(sr1) ∆ sr1 N(sr2 · · · srk )sr1

� N(sr1) ∆ sr1(N(sr2) ∆ sr2 N(sr3 · · · srk )sr2)sr1 .

Repeatedly iterating this process, we get

N(w) � {t1} ∆ · · · ∆ {tk},

since N(si) � {si} for each si , and so conjugating N(si) by some s j means simply
conjugating si by s j , which gives some transposition t j .



3 Special Properties of Sn Page 16

We claim that ti , t j if i , j. If not, then, for some 1 6 i < j 6 k, we have ti � t j .
Also,

ti w � sr1 · · · sri−1 sri sri−1 · · · sr1 sr1 · · · srk

� sr1 · · · sri−1 sri+1 · · · srk ,

since sr1 · · · sri is a sub-expression of a reduced expression for w, so all of these fac-
tors cancel out. Similarly, t j w � sr1 · · · ŝr j · · · srk where the hat denotes the omission
of that element. Therefore,

w � ti t j w � sr1 · · · sri−1 sri sri−1 · · · sr1 sr1 · · · sr j−1 sr j sr j−1 · · · sr1 w

� sr1 · · · ŝri · · · ŝr j · · · srk

implying `(w) < k. This is a contradiction, so each ti is distinct, so N(w) � {t1 , . . . , tk}
and |N(w)| � k � `(w).

ii) Note firstly that t ∈ N(t) for all t ∈ T. To see this, write t � (i j) so that i < j.
But t(i) � j > i � t( j), so t ∈ N(t).

Now, let N(w) � {t1 , . . . , tk} as in the proof of i). We proved that t j w � sr1 · · · ŝr j · · · srk

for each t j , whence `(t j w) < `(w). Thus, N(w) ⊆ {t ∈ T | `(tw) < `(w)}. On the
other hand, let t ∈ T with t < N(w). By Lemma 3.3.1, N(tw) � N(t) ∆ tN(w)t. We
know t ∈ N(t), and by supposition, t < N(w), so t < tN(w)t. Thus, t ∈ N(tw) ⊆
{t ∈ T | `(ttw) < `(tw)}. Therefore, `(ttw) � `(w) < `(tw). �

We can now prove Lemma 3.2.2.

Proof (of Lemma 3.2.2). Recall that w0 � (1 n)(2 (n − 1))...(bn/2c dn/2e + 1).
To prove the first part, we use an argument from [10]. Note that there are n(n−1)

2
pairs (i j) ∈ W with i < j. There are n − 1 pairs (1 2), (1 3), . . . (1 n), n − 2 pairs
(2 3), (2 4) . . . (2 n), ..., and one pair (n − 1 n). Summing all of these gives

(n − 1) + (n − 2) + · · · + 1 �

n−1∑
k�1

k �
n(n − 1)

2 pairs.

Thus for any w ∈ W , we have N B n(n−1)
2 > `(w) � |N(w)|, as there are at most

N pairs (i j) with w(i) > w( j). Since w0 has exactly N such pairs (in its reduced
expression), it follows that `(w0) � N . In particular, `(w0) > `(w) for all w ∈ W .

Now, `(ww0) > `(w)0) − l(w), by Lemma 3.2.1. So we require to show that
`(ww0) 6 `(w0) − `(w). We will do so by induction on `(w0) − `(w), using an
argument from [2]. Let w ∈ W .

If `(w) � `(w0), then w � w0, so `(ww0) � `(e) � 0. (This holds, in particular, for
w−1

0 , whence w0 is an involution.)
Now suppose `(w) < `(w0). Choose some si ∈ S and let w′ B si w such that

`(w′) > `(w). In particular, `(w′) � `(w) + 1. We can do this since `(w) is not
maximal, so we can increase it. So, `(w0)− `(w′) < `(w0)− `(w), thus the induction
hypothesis holds for `(w0) − `(w′). That is, `(w′w0) � `(w0) − `(w′). Moreover,
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`(ww0) � `(si si ww0) � `(si w′w0) 6 `(w′w0) + 1. Therefore,

`(ww0) 6 `(w′w0) + 1 � `(w0) − `(w′) + 1
� `(w0) − (`(w) + 1) + 1
� `(w0) − `(w).

Finally, noting that w−1w0 � (w0w)−1, we have

`(w0w) � `(w−1w0) � `(w0) − `(w−1) � `(w0) − `(w). �

We are now ready to introduce the Strong Exchange Condition.
Theorem 3.3.3. (Strong Exchange Condition.) Let w � sr1 · · · srk be a reduced expres-
sion for w. If t ∈ T satisfies `(tw) < `(w), then there exists an i with 1 6 i 6 k such
that

tw � sr1 · · · ŝri · · · srk ,

where ŝri denotes the omission of sri . Furthermore, t � ti (as in Proposition 3.3.2), and if
the expression for w is reduced, then i is unique.

Proof. For 1 6 i 6 k, let ti be as in the proof of Proposition 3.3.2. Then N(w) �
{t1} ∆ · · · ∆ {tk} by Lemma 3.3.1 and t ∈ N(w) by Proposition 3.3.2 ii). Recall we
showed that N(w) � {t1 , . . . , tk}, so t � ti for some i. We also showed that, in this
case, ti w � sr1 · · · ŝri · · · srk , and that the omitted sri is unique. �

Corollary 3.3.4. Mathas [7, Corollary 1.7] Let w ∈ W and si ∈ S. Then `(si w) < `(w)
if and only if w has a reduced expression starting with si .

Proof. Suppose `(si w) < `(w) and let sr1 · · · srk be a reduced expression for w.
Then si w � si sr1 · · · ŝr j · · · srk for some j, using the Strong Exchange Condition, so
w � si sr1 · · · ŝr j · · · srk which is reduced as it has length k. The converse is easy to
prove and left to the reader. �

The last two results listed will be important in the next section.
Theorem 3.3.5. (Matsumoto’s Theorem.) Two expressions sr1 · · · srk and s′r1 · · · s′rl

are
both reduced expressions for some w ∈ W if and only if one can be transformed into the
other using only the braid relations.

Proof. See Mathas [7, pp. 4–5]. �

Lemma 3.3.6. Let w ∈ W and si , s j ∈ S such that si and s j commute. Then `(s j w) >
`(w) and `(si s j w) � `(w) and if and only `(si w) < `(w) and `(s j si w) � `(w).
Proof. Firstly, if `(si s j w) < `(s j w), then si ∈ N(s j w), by Proposition 3.3.2. Now,
consider N(w). We have

N(w) � N(s j s j w) � N(s j) ∆ s j N(s j w)s j � {s j} ∆ s j N(s j w)s j ,

by Lemma 3.3.1. Since si ∈ N(s j w), s j si s j ∈ s j N(s j w)s j , so s j si s j ∈ N(w) because
s j si s j < {s j}. But si and s j commute, so si s j � s j si . Therefore, s j si s j � (s j)2si �

si ∈ N(w), and if `(si s j w) � `(w), then `(s j si w) � `(w) since si s j w � s j si w. The
converse follows from reversing the preceding arguments. �
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4 The Module Theory of the 0-Hecke Algebra

4.1 The 0-Hecke Algebra
Definition 4.1.1. Let F be a field. The 0-Hecke algebra H0(W) is the associative F-
algebra with generators h1 , . . . , hn satisfying the following relations.

i) (hi)2 � −hi .
ii) hi h j � h j hi for all j , i ± 1.
iii) hi hi+1hi � hi+1hi hi+1.

From now on, we will write H for H0(W). H is part of a larger family of algebras
called Iwahori-Hecke algebras. See [6] for a general discussion on Iwahori-Hecke
algebras.

Note that the generators of H are in bijection with the generators of W . For any
w ∈ W , let sr1 · · · srk be a reduced expression for w. Define hw � hr1 · · · hrk . By
Matsumoto’s Theorem, this is well-defined as it’s independent of the reduced ex-
pression for w. If w � e, then hw � 1F.

Theorem 4.1.1. (Fayers [3, Theorem 2.1].) Let w ∈ W and si ∈ S. Then hsi � hi and

hi hw �


hsi w if `(si w) > `(w)),

−hw if `(si w) < `(w)).

Moreover, as an F-module, H has a basis {hw | w ∈ W}.
Proof. Clearly, hsi � hi , by definition.

Now, suppose `(si w) > `(w). Then `(si w) � `(w) + 1, so si sr1 · · · srk is a reduced
expression for si w and

hsi w � hsi hr1 · · · hrk � hi hr1 · · · hrk � hi hw .

And if `(si w) < `(w), then si · · · srk is a reduced expression for w by Corollary
3.3.4, so hw � hi · · · hrk . Thus, using si · · · srk as the reduced expression for w, we
have

hi hw � hsi hw � hsi hsi · · · hrk � (hsi )2 · · · hrk � −hsi · · · hrk � −hw .

Now, recall that the h′i s and s′i s are in bijection. So given any h ∈ H, we can write
it minimally as h � hr1 · · · hrk � hsr1

· · · hsrk
� hw where w ∈ W and sr1 · · · srk is a

reduced expression for this w. Thus, it follows that h � hw , and so {hw | w ∈ W}
spans H.

Now, suppose R is an F-algebra with basis {ew |w ∈ W}. Using an argument from
Mathas [7, Theorem 1.13], we shall show that HomF(R, R) admits a subalgebra
R generated by elements which satisfy i), ii) and iii) from Definition 4.1.1. Let
ϑ1 , . . . , ϑn ∈ HomF(R, R) be given by

ϑi(ew) �


esi w if `(si w) > `(w),

−ew if `(si w) < `(w),
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for all 1 6 i 6 n. We claim that R � H.
Firstly, suppose `(si w) > `(w) (so `(si(si w)) < `(si w)). Then

ϑi(ϑi(ew)) � ϑi(esi w) � −esi w .

And if `(si w) < `(w), then

ϑi(ϑi(ew)) � ϑi(−ew) � ew .

So, overall,

ϑi(ϑi(ew)) �

−esi w if `(si w) > `(w),

ew if `(si w) < `(w),

from which it follows that ϑ2
i � −ϑi .

Now, let us show that ϑiϑ j � ϑ jϑi for j , i±1, and we leave showing ϑiϑi+1ϑi �

ϑi+1ϑiϑi+1 to the reader. (Note that si s j � s j si in this case.) Either `(si s j w) � `(w)
or `(si s j w) � `(w) ± 2. Let us list the all cases for ϑi(ϑ j(ew)) and ϑ j(ϑi(ew)).

First, suppose `(s j w) > `(w). Then

ϑi(ϑ j(ew)) �


esi s j w if `(si s j w) > `(s j w),

−es j w if `(si s j w) < `(s j w).

Second, suppose `(s j w) < `(w). Then

ϑi(ϑ j(ew)) �

−esi w if `(si s j w) > `(s j w),

ew if `(si s j w) < `(s j w).

Now suppose `(si w) > `(w). Then

ϑ j(ϑi(ew)) �


es j si w if `(s j si w) > `(si w),

−esi w if `(s j si w) < `(si w).

Finally, if `(si w) < `(w), then

ϑi(ϑ j(ew)) �

−es j w if `(s j si w) > `(si w),

ew if `(s j si w) < `(si w).

If `(si s j w) � `(w) + 2, then `(s j w) > `(w) and `(si s j w) > `(s j w), so ϑi(ϑ j(ew)) �
esi s j w . And since si s j � s j si , we have `(s j si w) � `(w) + 2, so `(si w) > `(w) and
`(s j si w) > `(si w), whence ϑ j(ϑi(ew)) � es j si w � esi s j w � ϑi(ϑ j(ew)).

Similarly, if `(si s j w) � `(w) − 2, then ϑi(ϑ j(ew)) � ϑi(−ew) � ew � ϑ j(ϑi(ew)).
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If `(si s j w) � `(w), then assume first that `(s j w) > `(w). By Lemma 3.3.6, this
implies `(si w) < `(w) and `(s j si w) � `(w). Therefore, `(si s j w) < `(s j w) and
`(s j si w) > `(si w), so

ϑi(ϑ j(ew)) � ϑi(es j w) � −es j w � ϑ j(−ew) � ϑ j(ϑi(ew)).

Similarly, if `(s j w) < `(w), then, by Lemma 3.3.6, `(si w) > `(w). Thus applying the
same argument, we also have ϑi(ϑ j(ew)) � ϑ j(ϑi(ew)).

SoR andH are generated by elements both satisfying the same defining relations,
so there is a surjective algebra hom Θ : H→ R given by Θ(hi) � ϑi . Furthermore,
given w ∈ W with reduced expression sr1 · · · srk , define ϑw B ϑr1 · · · ϑrk . Then
Θ(hw) � ϑw . (By Matsumoto’s Theorem, this is independent of the reduced ex-
pression for W .) Observe that ϑw(ee) � ϑr1 · · · ϑrk (ee) � ϑr1 · · · ϑrk−1(esrk

) � . . . �
esr1 ···srk

� ew .
We are now able to show that {hw |w ∈ W} is a linearly independent set. Suppose

h B
∑

w∈W λw hw � 0, where λw ∈ F. Then ϑ(h) � ∑
w∈W λwϑw � 0 inR. Therefore,

in R, ∑
w∈W

λw ew �

∑
w∈W

λwϑw(ee) � 0.

Since {ew | w ∈ W} is a basis for R, we must have λw � 0 for all w ∈ W , so {hw | w ∈
W} is a linearly independent set, and so a basis for H. This also implies that Θ is
an isomorphism, as it implies ker(Θ) � 0. �

Corollary 4.1.2. (Norton [8, Corollary 1.4].) Let w , w′ ∈ W . Then
i) hw hw′ � ±hw′′ for some w′′ ∈ W with `(w′′) > `(w′).
ii) hw hw′ � hww′ if and only if `(ww′) � `(w) + `(w′).

Proof. Let w , w′ ∈ W . Let sr1 · · · srk be a reduced expression for w and s′r1 · · · s′rl
be

a reduced expression for w′.
i) Then

hw hw′ � hsr1
· · · hsrk

hw′ .

By Theorem 4.1.1, multiplying hw′ by any hsri
on the left either equals hsri w′ or−hw′ .

In particular, multiplying hw′ on the left by a generator can’t decrease the length of
w′. Thus, doing this for each sri in the reduced expression for w, we have hw hw′ �

±hw′′ , with `(w′′) > `(w′).
ii) First suppose `(ww′) � `(w)+ `(w′). Then since `(ww′) � k + l, it follows that

sr1 · · · srk s′r1 · · · s′rl
is a reduced expression for ww′, so

hww′ � hsr1
· · · hsrk

hs′r1
· · · hs′rl

� hw hw′ .

Now suppose hw hw′ � hww′ . Then

hww′ � hsr1
· · · hsrk

hs′r1
· · · hs′rl

.

This implies that sr1 · · · srk s′r1 · · · s′rl
is a reduced expression for ww′, so `(ww′) �

k + l � `(w) + `(w′). �
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We can now give an example of a 0-Hecke algebra using Theorem 4.1.1.

Example 4.1.1. Let F � Z/2Z and W � S2. Note that W is generated by (1 2). Write 1
and h for the basis elements of H(W). Then H(W) � {0, 1, h , 1+h}. We are working
in characteristic 2, whence 2h � 2(1 + h) � 0. Moreover, −1F � 1F, so h2 � −h � h.
and (1 + h)2 � 12 + h2 � 1 + h. (Note this makes H(W) a boolean algebra.) Thus,
the addition table for H(W) is

+ 0 1 h 1 + h
0 0 1 h 1 + h
1 1 0 1 + h h
h h 1 + h 0 1

1 + h 1 + h h 1 0

and the multiplication table is

· 0 1 h 1 + h
0 0 0 0 0
1 0 1 h 1 + h
h 0 h h 0

1 + h 0 1 + h 0 1 + h

4.2 Simple H-Modules
Define the following order on the elements of W :

e 6 w1 . . . 6 wN−1 6 wN � w0 ,

where N B (n + 1)! − 1. If wi and w j have the same length, then write them in any
order. Write w > w′ Let h0 B 1F � he and rewrite the basis of H as {hi | 0 6 i 6 N}
in bijection with the elements of W . Note, in particular, that h1 , . . . , hn are still the
generators of H.

Lemma 4.2.1. (Norton [8, Section 2].) Let M0 B H and for 1 6 i 6 N , define Mi to
be the F-module with basis {h j | j > i}. Then each Mi is an H-module.

Proof. It suffices to show that each Mi is a left ideal of H.
Let h ∈ H and hi ∈ Mi . Write h � λ0h0 + . . . + λN hN . We must show that

hhi ∈ Mi . Fix some j such that 0 6 j 6 N . Then by Corollary 4.1.2, h j hi � ±hk with
k > i. Thus, ±h j hi is a basis element of Mi , and so λh j hi is an element of Mi . Thus,
hhi � λ0h0hi + · · · + λN hN hi ∈ Mi , whence Mi is an ideal of H. �

Theorem 4.2.2. (Fayers [3, Theorem 2.2].) For each subset J of {1, ..., n}, let MJ be the
H-module with basis {h} and H-action given by

h j h �


−h if j ∈ J,

0 if j < J

Then {MJ | J ⊆ {1, . . . , n}} is a complete set of simple H-modules.
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Proof. We will follow Norton’s proof from [8, Section 3].
From Lemma 4.2.1, we have the following series of H-ideals:

H � M0 > M1 > . . . > MN � hNH > 0.

This is a natural composition series ofH, and so each Mi/Mi+1 is a one-dimensional
H-module. Therefore, by Theorem 2.6.2, these are simple modules. In fact, these
are all of the simple H-modules.

To see this, let M be a finitely generatedH-module with m generators. Then there
exists a projection φ : Hk → M, so M is (isomorphic to) a quotient module of Hm .
This is because Hk/ker(φ) � M, by the First Isomorphism Theorem.

But from the given composition series of H, by Proposition 2.6.1, we can produce
a composition series of Hm with the same property. Similarly, this induces a com-
position series of its quotient module M, which will, again, have the same property
as the composition series of Hm . This shows that M can’t be simple unless it’s one-
dimensional.

Now, each Mi/Mi+1 has a 1-dimensional basis {hw j + Mi+1} �: [hw j ]. The H-
action is given by hsi [hw j ] � [hsi hw j ], by Theorem 2.1.1. And by Theorem 3.1.1,
hsi hw j equals either hsi w j or −hw j . But hsi w j ∈ Mi+1, so in this case, [hsi hw j ] � [0] �
0 ∈ Mi/Mi+1. Thus, overall, hsi [hw j ] � 0 or hsi hw j � −[hw j ].

We must show that this action and the H-action from the theorem are equivalent.
For any J ⊆ {1, . . . , n}, let WJ be the subgroup of W generated by SJ B {s j | j ∈
J} ⊆ S. Let wNJ be the unique longest element in W(J). For such a wNJ , we have
{i ∈ {1, . . . , n} | si wNJ < wNJ } � J. That is, if wNJ generates a simple module,
then the H-action on that module will be exactly as described in the theorem. We
showed that there are 2N+1 simple H-modules, and there are exactly 2N+1 of these
elements wNJ .

Moreover, given the construction of the ideals, each ideal will contain a wNJ for
some J, so wN j will generate that ideal. So given any J ⊆ {1, . . . , n}}, arbitrarily
choose i ∈ {0, . . . ,N} so that Mi/Mi+1 is generated by wNJ , and let MJ B Mi/Mi+1.
Then {MJ | J ⊆ {1, . . . , n}} is a complete set of simple H-modules. �

4.3 Automorphisms and Duality
In this section, we list some automorphisms and dualities which will be useful in
the next section.

Definition 4.3.1. Let R be a F-algebra. A hom φ : R → R is an anti-automorphism
if φ satisfies φ(rs) � φ(s)φ(r) for all r, s ∈ R, together with the remaining ring
homomorphism axioms and F-linearity.

Proposition 4.3.1. (Fayers [3, Proposition 3.2].) There is an automorphism of H given
by

ψ : hi 7→ hwN si wN ,
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and an anti-automorphism given by

χ : hi 7→ hi

for i � 1, . . . , n.

Proof. Let us check thatψ preserves the defining relations forH. Recall that wN si wN
� sn+1−i , so ψ(hi) � hn+1−i . Therefore, (ψ(hi))2 � −hn+1−i � −ψ(hi). Furthermore,
if j , i ± 1, then

ψ(hi h j) � hn+1−i hn+1− j � hn+1− j hn+1−i � ψ(h j hi).

This follows since n + 1 − j , (n + 1 − i) ± 1 if j , i ± 1. Finally, it is easy to see that

ψ(hi hi+1hi) � hn+1−i hn+2−i hn+1−i � hn+2−i hn+1−i hn+2−i � ψ(hi+1hi hi+1).

The reader is left to check the same holds for χ. �

Now suppose M is an H-module.
We define M to be the module with the same underlying vector space as M, but

with the H-action given by

hm � ψ(h)m ,

for all h ∈ H and m ∈ M.
We also define M� to be the vector space dual to M, with the H-action given by

(h f )(m) � f (χ(h)m),

for all h ∈ H, f ∈ M� and m ∈ M. Finally, we define M◦ � (M)� � M�.

Proposition 4.3.2. (Fayers [3, Proposition 3.3].) Let J ⊆ {1, . . . , n} and MJ be as in
Theorem 4.2.2. Then M�J � MJ and M J � (MJ)◦.

Proof. If we can prove the first equivalence, then the second follows by definition.
Since MJ is one-dimensional, (MJ)∗ is also one-dimensional and hence, simple. So
dimH(MJ) � dimH((MJ)∗), and MJ and (MJ)∗ have the same H-action. Therefore,
MJ � (MJ)∗ and the result follows. �

4.4 Projective and Injective H-Modules
Definition 4.4.1. Let R be an F-algebra. R is Frobenius if there exists a linear map
φ : R→ F such that ker(φ) contains no left or right ideal of R.

Proposition 4.4.1. (Fayers, [3, Proposition 4.1].) H is Frobenius.

Proof. Define φ : H→ F by mapping

φ
(
hwi

)
�


−1 if wi � wN ,

0 otherwise,
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and extending by linearity.
Let IH and HI be left and right ideals of H. We must show that IH ,HI < ker(φ).
Let h ∈ H be nonzero. We must find j, k ∈ H such that φ( jh), φ(hk) , 0. Write

h � λ0hw0 + . . . + λN hwN and let wi be the element of maximal length such that
hi � hwi has a nonzero coefficient. Let j � hwN w−1

i
and k � hw−1

i wN
. Then, by

Corollary 4.1.2, jhwi � hWN � hwi k, since

`(wN w−1
i wi) � `(wN ) − `(w−1

i wi) � `(wN ) + `(w−1
i wi),

because `(w−1
i wi) � 0. Moreover, if j , i, then jhw j , hw j k , hwN because

`(wN w−1
i w j) � `(wN ) − `(w−1

i w j) , `(wN ).

Thus, φ( jh), φ(hk) , 0, so φ( jh), φ(hk) < ker(φ), so H is Frobenius. �

Proposition 4.4.2. (Fayers [3, Proposition 4.2].) Let φ be the linear map defined in the
proof of Proposition 4.4.1. Then, for any h , j ∈ H, we have φ(h j) � φ(ψ( j)h).

Proof. By linearity, it suffices to only check the case where h � hwi and j � hw j . By
Corollary 4.1.2, φ(h j) � 1 if and only if h j � hwN , and h j � hwN if and only if j �
hw−1

i wN
. Similarly, φ(ψ( j)h) � 1 if and only if ψ( j) � hwN w−1

i
. But ψ( j) � hwN w j wN ,

so φ(h j) � 1 if and only if j � φ(ψ( j)h) � 1. This is because if j � hw−1
i wN

, then
ψ( j) � hwN w−1

i wN wN
� hwN w−1

i
. Similarly, if j � hwN w−1

i
, then ψ( j) � hw−1

i wN
. �

Lemma 4.4.3. (Benson [1, Proposition 1.6.2].) Let R be an F-algebra. If R is Frobenius,
then R is self-injective. Moreover, any finitely generated R-module is projective if and only
if it is injective.

Proof. We will only prove the lemma for the case where R � H.
Write HH when considering H as a left H-module and write HH when consider-

ing H as a right H-module. We showed that H is free, so by Proposition 2.4.1, H is
projective. Therefore, if we show that HH � (HH)∗, then, by duality, this will imply
that H is injective.

Recall that (HH)∗ � Hom(H, F) is a natural left H-module. Define a hom ϑ :
HH → (HH)∗ given by ϑ(h) : j → φ( jh), where φ is the linear map from Proposi-
tion 4.4.1. Then

ϑ(h + h′)( j) � φ( j(h + h′)) � φ( jh) + φ( jh′) � ϑ(h) + ϑ(h′),

so ϑ is a hom. We showed in Proposition 4.4.1 that φ( jh) , 0 whenever h , 0. Thus,
ker(ϑ) � 0, so ϑ is injective. Thus, ϑ must also be surjective, since dimF(HH) �
dimF((HH)∗), as H is finitely generated.

Since H is self-injective, it follows that an H-module M is projective if and only if
M∗ is projective. And, by duality, M∗ is projective if and only if M is injective. �

Definition 4.4.2. Let R be an F-algebra. An element e ∈ R is an idempotent if e2 � e.
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Note that in ring theory, e is used to denote an idempotent, whereas in group
theory, e is used to denote the identity.

If ϑ is a module hom and e is an idempotent, then ϑ(e) is an idempotent, since
ϑ(e)2 � ϑ(e2) � ϑ(e).

Lemma 4.4.4. (Benson [1, Lemma 1.3.3].) Let R be an F-algebra, M be an R-module
and e be an idempotent in R. Then

eM � HomR(Re ,M).

Proof. Define a map ϑ : eM → HomR(Re ,M) given by ϑ(em) : re 7→ rem. To see
that ϑ is a hom, suppose m , n ∈ M. Then

(ϑ(em + en))(re) � (ϑ(e(m + n)))(re) � re(m + n) � rem + ren � (ϑ(em) + ϑ(en))(re).

Now define ϑ̄ : HomR(Re ,M) → eM given by ϑ̄( f ) � f (e) for all f ∈ HomR(Re ,M).
Again, ϑ̄ is a hom. Let f , g ∈ HomR(Re ,M). Then

ϑ̄( f + g) � ( f + g)(e) � f (e) + g(e) � ϑ̄( f ) + ϑ̄(g).

It remains to show ϑ and ϑ̄ are inverses. Indeed, if f ∈ HomR(Re ,M), then f (e) �
f (1e) � em, so

(ϑ(ϑ̄( f )))(re) � ϑ( f (e))(re) � ϑ(em)(re) � rem � f (em).

And if m ∈ M, then ϑ̄(ϑ(em)) � em, since ϑ(em) : e 7→ em. �

Proposition 4.4.5. (Fayers [3, Proposition 4.5].) For each simple module MJ of H, we
have

P(MJ) � I(M J).
Hence, for any projective module P of H, we have P◦ � P.

Proof. Let MJ be any simple H-module. Then MJ has an injective cover I � I(MJ).
But I is also projective, and since MJ embeds into I minimally, it follows that I covers
MJ minimally, so I � P(MJ). Thus, by Lemma 2.6.4, soc(P) is simple whenever
P � P(MJ).

Now, by Norton [8, Theorem 4.20], for each subset J of {1, . . . , n}, there exist
idempotents q J ∈ H such that Hq J are ideals and

H �
⊕

J

Hq J .

SinceH is free, Theorem 2.4.2 implies that eachHq J is a projectiveH-module. More-
over, Hq J is finitely generated, and thus injective, too. Thus, Hq J � P � P(MJ) for
the simple H-module MJ .

We then have Hψ(q J) � P � P(M J). Also, soc(P)q J is a left ideal of H (as it is a
submodule of H), so there exists some p ∈ soc(P) such that

0 , φ(pq J) � φ(ψ(q J)p),
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where the first equality holds since H is Frobenius and the second follows from
Proposition 4.4.2. Thus,

0 , ψ(q J)soc(P) � HomR(Hψ(q J), soc(P)) � HomR(P , soc(P)),

by Lemma 3.4.4. So there is a nonzero hom from P to soc(P). And since soc(P)
is simple, there is an isomorphism from soc(P) to the simple submodule M J of P.
Note that M J 6 P since P projects on M J , meaning M J embeds into P. Therefore,
M J is isomorphic to its image in P, which is a submodule of P. Therefore, P(MJ) �
I(M J) � I((MJ)◦), since M J � (MJ)◦, by Proposition 4.3.3. Moreover, since H � H◦
(by Fayers [3, Proposition 3.4]), it follows that Hq J � (Hq J)◦ for all q J .

Now, consider the case where P is any projective module (so soc(P) is not neces-
sarily simple). Then

P � P1 ⊕ · · · ⊕ Pk ,

where soc(Pi) is simple for each 1 6 i 6 k. But we showed that this means that
Pi � P(MJi ) � I((MJi )◦) for each Pi , where MJ1 , . . . ,MJk are all simple H-modules.
Finally, since P◦ is the sum of injective modules with simple socles (as the dual of
P), we have

P◦ � I((MJ1)◦) ⊕ · · · ⊕ I((MJk )◦),
from which it follows that P � P◦. �
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