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Today’s agenda

Today’s lecture will

Review

Compute Bayes point estimates given a pmf or pdf posterior
distribution.

Construct credible intervals given a pmf or pdf posterior distribution.
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Review: Bayesian updating

Bayesian updating: Using Bayes’ theorem to update a prior distribution
to a posterior distribution given data and the likelihood.

Observed data y come from p(y | ◊), where ◊ is unknown.
Prior distribution, p(◊) of ◊ (pmf or pdf).
Likelihood: p(y | ◊) (discrete or continuous)

Bayes’ theorem
p(◊ | y) = p(◊) p(y | ◊)

p(y)

Posterior distribution Ã prior distribution ◊ likelihood
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Review: Conjugate priors

A prior is conjugate to a likelihood, p(y | ◊), if the posterior is the
same type of distribution as the prior.

Advantage: Bayesian updating reduces to modifying the parameters
of the prior distribution.
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Review: Examples of likelihood/conjugate prior pairs

hypothesis data prior likelihood posterior
Bernoulli/Beta ◊ œ [0, 1] x = 0 or x = 1 Beta(–, —) Bernoulli(◊) Beta(– + 1, —) or Beta(–, — + 1)
Binomial/Beta (fixed n) ◊ œ [0, 1] x = k Beta(–, —) binomial(n, ◊) Beta(– + k, — + n ≠ k)
Geometric/Beta ◊ œ [0, 1] x = k Beta(–, —) geometric(◊) Beta(– + k, — + 1)
Normal/Normal (fixed ‡2) ◊ œ R x N(µ0, ‡2

0) N(◊, ‡2) N(µ1, ‡2
1)

Normal/gamma (fixed ◊) · = 1/‡2 > 0 x œ R gamma(–, —) N(◊, ‡2) gamma(– + 0.5, — + 0.5(x ≠ ◊)2)
Exponential/Gamma ⁄ > 0 x > 0 gamma(–, —) exponential(⁄) gamma(1 + –, x + —)
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Board question

Which are conjugate priors for the following pairs likelihood/prior?

1 Exponential/Normal
2 Exponential/Gamma
3 Binomial/Normal
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Normal example, both parameters unknown

If µ and · = 1/‡2 are unknown then there is a bivariate distribution
which is conjugate.
Marginal distribution

· ≥ Gamma

and conditional distribution

µ | · ≥ Normal.

The joint prior distribution is the product of these two.
The posterior is of the same form.
We’re not going into details in this module.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods









Bayesian inference

Data y come from p(y | ◊), where ◊ is unknown.
We have seen how to calculate the posterior distribution for
parameter ◊ by

p(◊ | y) Ã p(◊) p(y | ◊)

Posterior distribution Ã prior distribution ◊ likelihood

In the Bayesian framework, all our inferences about ◊ are based on
the posterior distribution p(◊ | y).
This includes point estimates.
For a single parameter, we can summarize the posterior distribution
just as we would normally summarize a distribution.
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Point estimates

Suppose we know the posterior distribution p(◊ | y) for a
one-dimensional parameter ◊.

We could summarise the center of the posterior p(◊ | y) using e.g.,
mean
median
mode

Mean or median are most common.
Mode may be used if it’s di�cult to calculate mean or median.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Point estimates

Summaries of p(◊ | y) as point estimates for ◊.

Posterior mean, for a pdf posterior density

◊̂B =
Z

◊

◊p(◊ | y) d◊

Median, ◊̂m

P (◊ Æ ◊̂m|y) = 0.5.

Mode or maximum a posteriori (MAP)

◊̂MAP = argmax◊p(◊ | y).
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Point estimates for Beta posterior pdf

Beta(k + –, n ≠ k + —) posterior distribution.

Mean:

k + –

n + – + —

Mode:

k + – ≠ 1
n + – + — ≠ 2

No simple formula for
median but we can use
computer.
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Quantile function

For a RV �, let F (◊) be the cdf

P (� Æ ◊) = F (◊)

If F is strictly increasing and continuous, then F ≠1(q), q œ (0, 1) is
the unique real number ◊q such that

F (◊q) = q

We call ◊q the q-quantile of �.
The quantile function is the inverse function of the cdf

Q = F ≠1

If q = F (◊q) for some q œ (0, 1), then Q(q) = ◊q.
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Quantile function

E.g. if q = 0.5 and m = ◊0.5 = F ≠1(1/2) is the median,

F (◊0.5) = 0.5

Q(0.5) = ◊0.5

We call F ≠1(1/4) the first quantile and F ≠1(3/4) the third quantile.
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Finding the median

Let F (◊) be the cdf

P (� Æ ◊) = F (◊)

If m is the median, then
F (m) = 0.5.
Half the probability
mass is below, and half
is above

P (� Æ m) = 0.5
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Finding the median

So if we can find the
inverse function of the
cdf, we can find the
median.
The inverse of the cdf is
called the quantile
function.
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Finding the median

We have seen examples where the posterior distribution is in a
well-known family of distributions.
E.g. beta, gamma, or normal.
Each one has a simple formula for the mean.
For beta or gamma, there is no direct formula for the median (or the
cdf).
But we can use functions in R.
E.g. for the gamma distribution pgamma returns the cdf and qgamma
returns the quantile function (inverse of cdf).
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Board question

Bent coin with unknown probability ◊.
Flat prior: p(◊) = 1 on [0, 1]
Data: toss 27 times and get 15 heads.

1 Find the posterior mean
2 Find the posterior median.
3 Find the MAP.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods









Uncertainty in parameters

In Bayesian inference, any statements about uncertainty are based
on the posterior distribution p(◊ | y).
For a single summary of uncertainty, we can calculate the posterior
standard deviation.
This is just the square root of the variance of the distribution.
For example, for the beta(– + k, — + n ≠ k) pdf, the posterior
variance of ◊ is

var(◊ | k) = (– + k)(— + n ≠ k)
(– + — + n)2(– + — + n + 1) .
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Confidence intervals

In frequentist inference (i.e. non-Bayesian inference), confidence intervals
are used to express a range of uncertainty around a parameter estimate.

Suppose random samples Y = (Y1, . . . , Yn) are repeatedly generated.
For each sample we can estimate the true parameter ◊ by ◊̂(Y ), and
also construct an interval estimator (◊L(Y ), ◊U (Y )) based on the
random sample Y = (Y1, . . . , Yn).
A 95% confidence interval is an interval (◊L(Y ), ◊U (Y )) that covers
◊ with probability 0.95

P (◊L(Y ) Æ ◊ Æ ◊U (Y )) = 0.95

The probability 0.95 refers to the random interval (◊L(Y ), ◊U (Y )),
and not the parameter and is called the coverage probability.
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Confidence intervals illustrated

Generate repeated samples
from some distribution.
Estimate ◊̂ and a 95%
confidence interval for ◊̂ each
time.
95% of the random intervals
should contain the true value.

True value

0.5 1.0 1.5 2.0

Estimate
95% CI
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Interpretation of confidence intervals

In classical statistics, it is NOT correct to say ◊ lies in the interval
(◊L(y), ◊U (y)) with probability 0.95 since ◊ is assumed to be fixed.

The interval (◊L(y), ◊U (y)) is one of the possible realised values of
the random interval (◊L(Y ), ◊U (Y )) when Y = y, and since ◊ is
fixed, ◊ is in (◊L(y), ◊U (y)) with probability 0 or 1.

Long-run frequency interpretation. With frequentist confidence
intervals, when we say that the interval (◊L(y), ◊U (y)) has 0.95
chance of coverage we only mean that, in the long run, with repeated
sampling, the intervals trap the parameter ◊ 95% of the time.
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Credible intervals

In the Bayesian framework, we can say that ◊ lies inside the interval
with some probability, not 0 or 1.
◊ is a random variable with a probability distribution.
After seeing the data y, this is the posterior distribution

p(◊ | y).

As well as summarizing the posterior with a point estimate, we can
directly calculate an interval for ◊ using the posterior distribution.
They are called credible intervals or probability intervals.
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Credible intervals

For some – œ [0, 1], a 100(1 ≠ –)% credible or probability interval
for ◊ is an interval (◊L, ◊U ) such that

P (◊L < ◊ < ◊U ) = 1 ≠ –

E.g. – = 0.05 for a 95% credible interval.
More generally, (◊L, ◊U ) is a p-probability or credible interval for ◊
such that

P (◊L < ◊ < ◊U ) = p

The probabilities are calculated from the posterior distribution pmf
or pdf

p(◊ | y)
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Credible intervals

There are many ways to compute a p-credible interval.
In particular, notice that the p-credible interval for ◊ is not unique.

Example: Between the 0.05 and 0.55 quantiles is a 0.5 probability
interval. Another 0.5-probability interval goes from 0.25 to the 0.75
quantiles.
Thus we have 0.5 probability intervals [◊0.05, ◊0.55] and [◊0.25, ◊0.75].
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Equal tail intervals or symmetric probability intervals

Posterior pdf shown.
100(1 ≠ –)% interval.

P (◊L < ◊ < ◊U ) = 1 ≠ –

Equal probability outside
each end.

P (◊ < ◊L) = –/2
P (◊ > ◊U ) = –/2

Example: If – = 0.5, the
interval [◊0.25, ◊0.75] is
symmetric because the
amount of probability
remaining on either side of
the interval is the same,
namely 0.25.
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Board question: beta credible interval

Bent coin with unknown probability ◊.
Flat prior: p(◊) = 1 on [0, 1]
Data: toss 10 times and get 2 heads.

1 Use R to construct a symmetric 95% credible interval
2 qbeta(c(0.025,0.975),shape1=3,shape2=9)
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3 A beta(3,9) posterior distribution with vertical bars indicating a 95%
probability interval.
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Board question: Normal credible set

Let x1, . . . , xn an i.i.d from N(◊, ‡2) where ‡2 is known. Let ◊ have prior
N(µ, · 2), where µ and · are known.

Find a 1 ≠ – credible interval for ◊.
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Probability intervals for beta distributions
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Probability intervals for normal distributions
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Credible intervals

Remarks
For a fixed, p, di�erent p-credible intervals for ◊ may have di�erent
widths.

Since the width can vary for fixed p, a larger p does now always
mean a larger width. But if a p1-credible interval is fully contained
in a p2-credible interval, then p1 is smaller than p2.

As in classical statistics, we can obtain a smallest credible interval by
centering the interval under the highest part of the pdf posterior.
Such an interval is called highest posterior density interval and is
usually a good choice since it contains the most likely values.
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Board question

To convert an 80% probability interval to a 90% interval should you
shrink it or stretch it?

1 Shrink.
2 Stretch.
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Highest posterior density (HPD) intervals

If the posterior density p(◊|y) is unimodal, then for a given values of
–, the 1- –- shortest credible interval for ◊ is given by

{◊ : p(◊|y) Ø k},

where k is chosen so that
Z

{◊:p(◊|y)Øk}

p(◊|y) d◊ = 1 ≠ –.

The set {◊ : p(◊|y) Ø k} is called the highest posterior density
(HPD) interval, as it consists of the values of the parameter ◊ for
which the posterior density is highest.
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Highest posterior density (HPD) intervals

Posterior pdf shown. We
need to find ◊L and ◊U

100(1 ≠ –)% interval.

P (◊L < ◊ < ◊U ) = 1 ≠ –

Equal height to posterior
density at ◊L and ◊U .

p(◊L | y) = p(◊U | y)
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Calculating credible intervals

Some textbooks emphasise the highest posterior density interval.
However, it is usually di�cult to calculate.
The equal tail interval is easier to find computationally.
For named distributions, just like for the median, we can use the
quantile functions in R, qgamma, qnorm etc.

Suppose our posterior distribution for ◊ is Gamma(a, b).

Posterior median:
qgamma(0.5, shape=a, rate=b)

Equal tail 95% credible interval limits:
qgamma(0.025, shape=a, rate=b)
qgamma(0.975, shape=a, rate=b)
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