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-agenda

Today's lecture will

o Review

@ Compute Bayes point estimates given a pmf or pdf posterior
distribution.

@ Construct credible intervals given a pmf or pdf posterior distribution.
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Review: Bayesian updating

Bayesian updating: Using Bayes' theorem to update a prior distribution
to a posterior distribution given data and the likelihood.

o Observed data y come from p(y | ), where 6 is unknown.

@ Prior distribution, p(@) of 6 (pmf or pdf).
o Likelihood: p(y | 8) (discrete or continuous)

Bayes' theorem

p(8) p(y | 6)
p(0|y) =
@1) p(y)
Posterior distribution oc prior distribution x likelihood )
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Review: Conjugate priors

@ A prior is conjugate to a likelihood, p(y | #), if the posterior is the
same type of distribution as the prior.

@ Advantage: Bayesian updating reduces to modifying the parameters
of the prior distribution.
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iew: Examples of likelihood /conjugate prior pairs

hypothesis data prior likelihood posterior
Bernoulli/Beta 6 € 10,1] x=0o0rz=1| Beta(e, ) Bernoulli(0) Beta(aw + 1, 3) or Beta(a, 5+ 1)
Binomial/Beta (fixed n) 0 €10,1] x=k Beta(«, ) binomial(n,0) | Beta(aw+ k,8+n — k)
Geometric/Beta 6 € [0,1] x=k Beta(«, ) geometric(6) Beta(a+ k, 5 + 1)
Normal/Normal (fixed 02) | € R x N (o, 0?) N(6,0?) N(py,0?)
Normal/gamma (fixed ) | 7=1/0>>0 | z € R gamma(a, 3) | N(0,0?) gamma(a + 0.5, 8 + 0.5(x — 0)?)
Exponential/Gamma A>0 x>0 gamma(a, 8) | exponential(\) | gamma(l + a,z + f3)
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~ Board questior

Which are conjugate priors for the following pairs likelihood /prior?

@ Exponential/Normal
@ Exponential/Gamma
@ Binomial /Normal
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Normal example, both parameters unknown

D= (P( T) N6T mégeej\e)?f\‘\/

o If yand 7 = 1/0” are unknown then there is a bivariate distribution
m;
which is conjugate.

@ Marginal distribution

7 ~ Gamma
P

and conditional distribution

w | 7 ~ Normal.

l"\

@ The joint prior distribution is the product of these twp.

@ The posterior is of the same form.

@ We're not going into details in this module.
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Bayesian inference

@ Data y come from p(y | ), where 6 is unknown.

@ We have seen how to calculate the posterior distribution for

parameter 6 by

p(0 | y) ocp(8) p(y | 0)

Posterior distribution oc prior distribution x likelihood )

e N N Y

@ In the Bayesian framework, all our inferences about 6 are based on

the posterior distribution p(6 | y).
A m—— e —— —

@ This includes point estimates.

@ For a single parameter, we can summarize the posterior distribution
E e
just as we would normally summarize a distribution.
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Point estimates

@ Suppose we know the posterior distributiorf p(6 | y) Yor a

one-dimensional parameter 6.
— /

@ We could summarise the center of the posterior p(f | y) using e.g.,

@ mean
o median

@ mode
—

@ Mean or median are most common.

@ Mode may be used if it's difficult to calculate mean or median.
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Point estimates

EX og £ (Nl

Summaries of p(@ | y) as point estimates for 6.

@ Posterior mean, for a pdf posterior density

dg = [ o910 ) as
0 oT———

@ Median, HAm

PO <8,y 3 9
| N o
o@ or maximum a posteriori (MAP) Y(\‘).‘\\

,

hraap = argmaxe
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Point estimates for Beta posterior pdf

Mean Median

Mode

k+ « 6&-
?wﬂ—a—l—ﬁ _ b%?(:%‘(\%

(e
. 2 151
o Mode: :‘: MQA.‘(W\L
S kta—1 S Neavl
n+a+p—2 é
2 ]
@ No simple formula for -
median but we can use
©o 02 04 06 08 10

computer.
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Quantile function

@ For a RV O, let F(0) be the cdf Dg
= P(0 <0) = F(9) (L,W\xl\e

——— — =
o If F'is strictly increasing and continuous, the m» q€(0,1)is

the unique real number 6, such that —
‘F:

- f(@ < Sz) =7

F(Qq):q
.

o We call 0, the g-quantile of ©.

@ The quantile function is the inverse function of the cdf
—— st - ’

o Iqu_f/ﬂfj,) for some ¢ € (0,1), then Q(q) = 0,. 8Z<’ FP‘[Z)TQ(‘L)
2 F(0z)=2
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Quantile function

o Eg. ifg=0.5and m=40,, =F "'(1/2) is the median,

——
F(0,5)=0.5
Q(0.5) = 0, ;
@ We call F~*(1/4) the first quantile and F'~*(3/4) the third quantile.
LAY ANn——————— Nt

F (7l4\=Bny
F- (3l¢] =Dy
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Finding the median

Cumulative distribution function

o Let F(0) be the cdf 100 ——————— = ———==
P(6 < 0) = F(0) 075
M
@ If m is the median, then .
_ S 0.50
F(m) = 0.5. [ g
o Half the probability / 0
mass is below, and half 0.251
is above
0.00 i AR , |
PO <m)=0.5 0 3 @6 5 12
0
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Finding the median

Cumulative distribution function

1.00 -2 —————=—=S =T ==
@ So if we can find the 0.75-
inverse funetion of the
cdf, we can find the =
) <~ 0.50
median. R
—b
@ T[he inverse of the cdf is 09
called the quantile '
» /
function.
— 0.00 . . . .
0 3 m 6 9 12
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Finding the median

@ We have seen examples where the posterior distribution is in a
well-known family of distributions.

o E.g. beta, gamma, or normal.
— et
@ Each one has a simple formula for the mean.

o For beta or gamma, there is no direct formula for the median (or the
cdf). ——

@ But we can use functions in R.

o E.g. for the gamma distribution pgamma returns the cdf an

returns the quantile function (inverse of cdf).
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Board question

Bent coin with unknown probability 6.
Flat prior: p(6) =1 on [0, 1]
Data: toss 27 times and get 15 heads.

@ Find the posterior mean
@Find the posterior median.

@ Find the MAP. /mode,
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Uncertainty in parameters

@ In Bayesian inference, any statements about uncertainty are based
on the posterior distribution p(6 | y).

@ For a single summary of uncertainty, we can calculate the posterior
standard deviation.

@ This is just the square root of the variance of the distribution.

o For example, for the beta(a+ k, 8+ n — k) pdf, the posterior
variance of 6 is

(a+k)(B+n—k)
(a+B+n)p(a+B+n+1)

var(f | k) =
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Confidence intervals

In frequentist inference (i.e. non-Bayesian inference), confidence intervals
are used to express a range of uncertainty around a parameter estimate.

@ Suppose random samples Y = (Y7, ...,Y, ) are repeatedly generated.

@ For each sample we can estimate the true parameter 6 by HA(Y) and
also construct an interval estimator (6.(Y ), 0 (Y)) based on the
random sample Y = (Y;,...,Y,).

o A 95% confidence interval is an interval (0 (Y),0y(Y)) that covers
6 with probability 0.95

POL(Y) <0 <0y(Y)) =0.95

@ The probability 0.95 refers to the random interval (0. (Y),0y(Y)),
and not the parameter and is called the coverage probability.
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-ence intervals illustrated

-~ lrue value
-’7* - .
._._:—.Q Estimate -
0
@ Generate repeated samples e . 95% Cl +——
from some distribution. L : - .
] N 2 I# L 2
o Estimate 6 and a 95% D ’
: . 2 o o! >
confidence interval for € each N
. R . G E—
time. e
] I# L 2 L 4
o 95% of the random intervals A )
. . Lo .
should contain the trie value. R B
0—0: L 2
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Interpretation of confidence intervals

@ In classical statistics, it is NOT correct to @ lies in the interval
(01 (y),0u(y)) with probability 0.95 since 6 is assumed to be fixed.
r_/q

@ The interval((01(y),0u (y one of the possible realised values of

the random interval H‘Z(/‘Y),@U(@bwhe} Y =y, and since 6 is
fixed, 6 is in (01 (y), 0y (y)) with probability 0 or 1.

@ Long-run frequency interpretation. With frequentist confidence
intervals, when we say that the interval((61(y), 0 (y)))has 0.95
chance of coverage we only mean that, in the Tong run, with repeated

_sampling, the intervals trap the parameter 6 95% of the time.
/\/\M
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Credible intervals

@ In the Bayesian framework, we can say that 6 lies inside the interval
with some probability, not 0 or 1.

© ¢ is a random variable with a probability distribution.

o After seeing the data y, this is the posterior distribution

p(0 | y).

@ As well as summarizing the posterior with a point estimate, we can
directly calculate an interval for 6 using the posterior distribution.
— ., ~ —

@ They are called credible intervals or probability intervals.
tfrr0o0vinirm— ———  —————
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.dible intervals

F 1 100(1 — ibl ility i |
@ For some a € [0, 1], a 100(1 — a)% credible or probability interval

for 0 i interval (0,0 h that .
or # is an interva (_i,.,l.]_) such tha Vyuk)@&)\(\’\ﬁ

P(9L<(9<(9U 1l —« )&‘A@\NQJ/\%\S

— dbuk &
E.g. a=0.05 for a 95% credible interval.

@ More generally, (01,60y) is a p-probability or credible interval for 8
such that ——=— ' o
such th

P(@<9<@:p

@ The probabilities are calculated from the posterior distribution pmf

or pdf i
V(%e@w&\)}\% PA(/S/[@ 18- Pp(e )
De
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Credible intervals

@ There are many ways to compute a p-credible interval.

@ In particular, notice that the p-credible interval for 6 is not unique.

P

o Example: Between the 0.05 and 0.55 quantiles is aqg:_S’ probability

e —

interval. Another 0.5-probability interval goes from 0.25 to the 0.75

. ¢ N
quantiles.
/'/_”
@ Thus we have @xobability intervals [0 05, 00.55] and [0 25, 00.75].
~ om0 e
E -~ 0-S
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@ﬁal tail inter@or symmetric probability intervals

—
e

@ Posterior pdf shown.
—_—————————————
@ 100(1 — )% interval.

P@<9<@):1—é> 0227
@ Equal probability outside 0.20-

each end.
_

P(é’ < HL) :

P> 0p) = a/2

Lo

o Example: If the 0.05-

interval |0 o5, 0,75 is
symmetric because the
amount of probability R - s =
remaining on either side of
the interval is the same,

o ._cﬁmj‘\-{ﬁl(\
namely 0.25. [&O-&‘S} 80-‘:({3\5 s § C[S/t> twnkewaol
E. Solea, QMUL
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Board question: beta credible interval

Bent coin with unknown probability 6. ?[6[ Q\m%@&—a (1{‘31\
Flat prior: p(é’)_: 1 on [0, 1] (\.%@)(o&f(ﬂ\ ’H—V\—-&\
Data: toss 1(igc|°mes and §zt:’2%t1eads. ::663«1 Q%) c()
@ Use R to construct a symmetric 95% credible interval
Q qbeta(C(Q;Q\%S,O .975) ,shapel1=3, shape2=9) 0-RFS - .08
Ou~F (1) Sv=0suas =015

<
3]

o
o

Q]
o

1.5

1.0

0.5

0.0

I
0.4

D0.03s - D0-%%S
@ A beta(3,9) posterior distribution with vertical bars indicating a 95%
probability interval.
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-estion: Normal credible set

Let z,,...,x, an i.i.d from N(60,0°) where o* is known. Let 6 have prior
N(p,7%), where p and 7 are known.

@ Find a 1 — « credible interval for 6.

—
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or beta distributions

0.4

034

0.2}

0.1+

_o_l A 1 1 1 L 'l 'l
-4 3 2 -1 0 1 2 3 4

Red = 0.68, magenta = 0.9, green = 0.5
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_for normal distributions

0 0.2 0.4 0.6 0.8 1

Red = 0.68, magenta = 0.9, green = 0.5
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Credible intervals

Remarks

@ For a fixed, p, different p-credible intervals for & may have different
widths.

@ Since the width can vary for fixed p, a larger p does now always
mean a larger width. But if a p,-credible interval is fully contained
in a p,-credible interval, then p, is smaller than p.,.

@ As in classical statistics, we can obtain a smallest credible interval by
centering the interval under the highest part of the pdf posterior.
Such an interval is called highest posterior density interval and is
usually a good choice since it contains the most likely values.
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L —

To convert an 80% probability interval to a 90% interval should you
shrink it or stretch it?

@ Shrink.
@ Stretch.
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Highest posterior density (HPD) intervals

o If the posterior density p(f|y) is unimodal, then for a given values of
«, the 1- a- shortest credible interval for 6 is given by

{0:p0ly) > Kk},

where k is chosen so that

/ p(0ly)do =1 — a.
{0:p(0]y) =k}

@ The set {0 : p(Aly) > k} is called the highest posterior density
(HPD) interval, as it consists of the values of the parameter 6 for
which the posterior density is highest.
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Highest posterior density (HPD) intervals

0.25+

@ Posterior pdf shown. We
need to find 6y and Oy

@ 100(1 — )% interval.

0.20+

0.15+

P(9L<9<9U):1—Oé 0.104

Posterior distribution

@ Equal height to posterior

density at 67, and 0. 0057

0.00

(0L | y) =pOu | y)
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Calculating credible intervals

@ Some textbooks emphasise the highest posterior density interval.
@ However, it is usually difficult to calculate.
@ The equal tail interval is easier to find computationally.

@ For named distributions, just like for the median, we can use the
quantile functions in R, ggamma, gnorm etc.

Suppose our posterior distribution for 6 is Gamma(a, b).

Posterior median:
ggamma (0.5, shape=a, rate=b)
Equal tail 95% credible interval limits:
qggamma (0.025, shape=a, rate=b)
ggamma (0.975, shape=a, rate=b)
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