QUEEN MARY, UNIVERSITY OF LONDON
 MTH6102: Bayesian Statistical Methods

Exercise sheet 5

2023-2024

1. If the data follow a normal distribution with unknown mean μ and known standard deviation, and μ is assigned a normal prior distribution, show that the posterior mean for μ can be written as a weighted sum of the maximum likelihood estimate and the prior mean.
2. The column in the exercise sheet 5 dataset, labelled x , contains the observed data data be x_{1}, \ldots, x_{n}. Suppose that each data-point x_{i} is normally distributed, with unknown mean θ and standard deviation assumed to be equal to 1 .
As a prior distribution for θ, we assign a normal distribution with mean 5 and standard deviation 10.
(a) What is the posterior distribution for θ ?
(b) What is the posterior mean for θ ?
(c) What is the posterior median for θ ?
(d) What is a 95% equal tail credible interval for θ ?
3. Let x_{1}, \ldots, x_{n} be iid $\operatorname{Poisson}(\lambda)$, and let λ have a $\operatorname{gamma}(\alpha, \beta)$ distribution.
(a) Show that $\operatorname{gamma}(\alpha, \beta)$ is conjugate to the Poisson likelihood.
(b) Calculate the posterior mean and variance.
(c) Show how to find a 95% equal tail credible interval for λ ?
(d) Show how to find a 95% HPD credible interval for λ.
4. In an investigation into the size of the errors produced by a new measurement instrument, n measurements are taken of a standard sample of mass 1000 grams. The measurements (in grams), y_{1}, \ldots, y_{n} can be modelled as a random sample from a normal distribution with known mean $\mu=1000$ and unknown precision τ (reciprocal of the variance). Assume the prior $\operatorname{gamma}(\alpha, \beta)$ distribution on τ, where $\alpha=5$ and $\beta=0.05$
(a) Six measurements are taken and the data is

$$
1000.11,999.96,999.84,999.89,999.80,1000.09 .
$$

Given these measurements, what is the posterior distribution of τ ?
(b) Use R to find the posterior median and a 95% equal tail credible interval for τ.
(c) Can you find the posterior median for $\sigma=1 / \sqrt{\tau}$? Can you find a 95% credible interval for σ ? [Hint: these do not need the derivation of the posterior distribution for σ, or any extensive calculations.]

