QUEEN MARY, UNIVERSITY OF LONDON MTH6102: Bayesian Statistical Methods

Exercise sheet 5

2023 - 2024

- 1. If the data follow a normal distribution with unknown mean μ and known standard deviation, and μ is assigned a normal prior distribution, show that the posterior mean for μ can be written as a weighted sum of the maximum likelihood estimate and the prior mean.
- 2. The column in the exercise sheet 5 dataset, labelled \mathbf{x} , contains the observed data data be x_1, \ldots, x_n . Suppose that each data-point x_i is normally distributed, with unknown mean θ and standard deviation assumed to be equal to 1.

As a prior distribution for θ , we assign a normal distribution with mean 5 and standard deviation 10.

- (a) What is the posterior distribution for θ ?
- (b) What is the posterior mean for θ ?
- (c) What is the posterior median for θ ?
- (d) What is a 95% equal tail credible interval for θ ?
- 3. Let x_1, \ldots, x_n be iid Poisson (λ) , and let λ have a gamma (α, β) distribution.
 - (a) Show that gamma(α, β) is conjugate to the Poisson likelihood.
 - (b) Calculate the posterior mean and variance.
 - (c) Show how to find a 95% equal tail credible interval for λ ?
 - (d) Show how to find a 95% HPD credible interval for λ .
- 4. In an investigation into the size of the errors produced by a new measurement instrument, *n* measurements are taken of a standard sample of mass 1000 grams. The measurements (in grams), y_1, \ldots, y_n can be modelled as a random sample from a normal distribution with known mean $\mu = 1000$ and unknown precision τ (reciprocal of the variance). Assume the prior gamma(α, β) distribution on τ , where $\alpha = 5$ and $\beta = 0.05$
 - (a) Six measurements are taken and the data is

1000.11, 999.96, 999.84, 999.89, 999.80, 1000.09.

Given these measurements, what is the posterior distribution of τ ?

- (b) Use R to find the posterior median and a 95% equal tail credible interval for τ .
- (c) Can you find the posterior median for $\sigma = 1/\sqrt{\tau}$? Can you find a 95% credible interval for σ ? [Hint: these do not need the derivation of the posterior distribution for σ , or any extensive calculations.]