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Today's lecture will

o Review

o Compute Bayes point estimates given a pmf or pdf posterior
distribution.

o Construct credible intervals given a pmf or pdf posterior distribution.
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Review: Bayesian updating

Bayesian updating: Using Bayes' theorem to update a prior distribution
to a posterior distribution given data and the likelihood.

o Observed data y come from p(y | 6), where 6 is unknown.

o Prior distribution, p(6) of 8 (pmf or pdf).
o Likelihood: p(y | 8) (discrete or continuous)

Bayes’ theorem

p(6) p(y | 0)
p(0]y) =
@1y) p(y)
Posterior distribution oc prior distribution x likelihood J
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-onjugate priors

o A prior is conjugate to a likelihood, p(y | ), if the posterior is the
same type of distribution as the prior.

o Advantage: Bayesian updating reduces to modifying the parameters
of the prior distribution.
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Review: Examples of likelihood/conjugate prior pairs

hypothesis data prior likelihood posterior
Bernoulli/Beta felo1 x=0orxz=1| Beta(o, ) Bernoulli(6) Beta(o + 1, ) or Beta(a, 3+ 1)
Binomial/Beta (fixed n) 0el0,1 T = Beta(a, ) binomial(n,0) | Beta(a+k,3+n —k)
Geometric/Beta 0elo,1 T = Beta(a, ) geometric(6) Beta(ar + k,f+1)
Normal/Normal (fixed o) | § € R x N (o, 03) N(0,0%) N(u,,0?)
Normal/gamma (fixed §) | 7=1/0>>0| 2 €R gamma(a, 8) | N(6,0%) gamma(a + 0.5, 8 4 0.5(x — 6)*)
Exponential/Gamma A>0 x>0 gamma(a, 3) | exponential(\) | gamma(l + a,z + 3)
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Which are conjugate priors for the following pairs likelihood/prior?
@ Exponential /Normal

@ Exponential/Gamma
@ Binomial/Normal
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Normal example, both parameters unknown

©

If w and 7 = 1/0? are unknown then there is a bivariate distribution
which is conjugate.

©

Marginal distribution
T ~ Gamma

and conditional distribution

w| 7 ~ Normal.

©

The joint prior distribution is the product of these two.

©

The posterior is of the same form.

©

We're not going into details in this module.
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Bayesian inference

o Data y come from p(y | 8), where 6 is unknown.

o We have seen how to calculate the posterior distribution for
parameter 6 by

p(0|y) < p(0) ply | 0)

Posterior distribution o< prior distribution X likelihood )

@ In the Bayesian framework, all our inferences about 6 are based on
the posterior distribution p(6 | ).
@ This includes point estimates.

o For a single parameter, we can summarize the posterior distribution
just as we would normally summarize a distribution.
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- estimates

@ Suppose we know the posterior distribution p(6 | y) for a
one-dimensional parameter 6.

@ We could summarise the center of the posterior p(f | y) using e.g.,

o mean
o median
o mode

@ Mean or median are most common.

@ Mode may be used if it's difficult to calculate mean or median.
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Summaries of p(é | y) as point estimates for 6.

o Posterior mean, for a pdf posterior density

ig :/ap(o | y) do
7]

@ Median, ém
PO <8,|y) =0.5.
o Mode or maximum a posteriori (MAP)

éMAP = argmax,p(d | y).
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-timates for Beta posterior pdf

Beta(k + a,n — k + ) posterior distribution.

o Mean: Mean Median
ean: Mode
k+«
v 21
n+a+f
=
S
o Mode: 5 157
2
k + o — 1 % 14
AR =
n+a+p—2 5
. S s
@ No simple formula for
median but we can use 0

computer. 00 02 04 06 08 10
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.uantile function

@ For a RV O, let F'(6) be the cdf

P(O© < 0) = F(6)

o If F is strictly increasing and continuous, then F='(q), ¢ € (0,1) is
the unique real number 6, such that

F(eq) =4q

©

We call 6, the g-quantile of ©.

The quantile function is the inverse function of the cdf

©

Q=r""

o If ¢ = F(0,) for some ¢ € (0,1), then Q(q) =0,.
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o Eg. if¢g=0.5and m=6,; = F~'(1/2) is the median,
F(0,5) = 0.5

Q(O5) = 0o
o We call F=*(1/4) the first quantile and F'~*(3/4) the third quantile.
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Cumulative distribution function

o Let F(0) be the cdf e
PO <0)=F(0) 0.75-
o If m is the median, then _
S 050
F(m) = 0.5. s
o Half the probability
mass is below, and half 0.251
is above
0.00 T T T )
PO <m)=05 0 3 m 6 9 12
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Cumulative distribution function

100 —Cmm—m e
o So if we can find the 0751
inverse function of the
cdf, we can find the =
. = 0.50
median. w
o The inverse of the cdf is 025
called the quantile '
function.
0.00 T T T )
0 3 m 6 9 12
q
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Finding the median

o We have seen examples where the posterior distribution is in a
well-known family of distributions.

o E.g. beta, gamma, or normal.
o Each one has a simple formula for the mean.

o For beta or gamma, there is no direct formula for the median (or the
cdf).

o But we can use functions in R.

o E.g. for the gamma distribution pgamma returns the cdf and qgamma
returns the quantile function (inverse of cdf).
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Bent coin with unknown probability 6.
Flat prior: p(6) =1 on [0,1]
Data: toss 27 times and get 15 heads.

@ Find the posterior mean

@ Find the posterior median.
@ Find the MAP.
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Uncertainty in parameters

o In Bayesian inference, any statements about uncertainty are based
on the posterior distribution p(é | y).

o For a single summary of uncertainty, we can calculate the posterior
standard deviation.

o This is just the square root of the variance of the distribution.
o For example, for the beta(a + &, 8+ n — k) pdf, the posterior
variance of 6 is
(a+k)(B+n—Fk)
(a+pB+n32(a+pB+n+1)

var(0 | k) =
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Confidence intervals

In frequentist inference (i.e. non-Bayesian inference), confidence intervals
are used to express a range of uncertainty around a parameter estimate.

o Suppose random samples Y = (Y;,...,Y,) are repeatedly generated.

o For each sample we can estimate the true parameter 6 by é(Y) and
also construct an interval estimator (01,(Y),0y(Y')) based on the
random sample Y = (Y;,...,Y,).

@ A 95% confidence interval is an interval (6(Y),0y(Y)) that covers
6 with probability 0.95

P(0L(Y) <0< 05(Y)) =095

© The probability 0.95 refers to the random interval (0. (Y),0u(Y)),
and not the parameter and is called the coverage probability.
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-ce intervals illustrated

«— True value
— &
|
e Estimate
| 95% Cl =

o Generate repeated samples
from some distribution. |

o Estimate 6 and a 95%

confidence interval for 6 each ———

time. A T,

o 95% of the random intervals R S
should contain the true value. i

05 1.0 15 2.0

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Interpretation of confidence intervals

o In classical statistics, it is NOT correct to say @ lies in the interval
(0L (y), 0u(y)) with probability 0.95 since 6 is assumed to be fixed.

o The interval (61 (y),0u(y)) is one of the possible realised values of
the random interval (0,(Y),0y(Y)) when Y =y, and since 6 is
fixed, 8 is in (0. (y), 0 (y)) with probability 0 or 1.

o Long-run frequency interpretation. With frequentist confidence
intervals, when we say that the interval (61 (y), v (y)) has 0.95
chance of coverage we only mean that, in the long run, with repeated
sampling, the intervals trap the parameter 6 95% of the time.
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Credible intervals

©

In the Bayesian framework, we can say that @ lies inside the interval
with some probability, not 0 or 1.

6 is a random variable with a probability distribution.

©

©

After seeing the data y, this is the posterior distribution

p(@ | y).

As well as summarizing the posterior with a point estimate, we can
directly calculate an interval for 6 using the posterior distribution.

©

©

They are called credible intervals or probability intervals.
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Credible intervals

o For some « € [0,1], a 100(1 — )% credible or probability interval
for 6 is an interval (01, 0y) such that

P(9L<9<9U)=1—04

E.g. a =0.05 for a 95% credible interval.

o More generally, (01,0y) is a p-probability or credible interval for 0
such that

PO <8<by)=p

o The probabilities are calculated from the posterior distribution pmf
or pdf

p(@y)
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Credible intervals

@ There are many ways to compute a p-credible interval.

o In particular, notice that the p-credible interval for 6 is not unique.

o Example: Between the 0.05 and 0.55 quantiles is a 0.5 probability
interval. Another 0.5-probability interval goes from 0.25 to the 0.75
quantiles.

@ Thus we have 0.5 probability intervals [0, 05, 00 55] and [0g.25, 0o 75)-
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Equal tail intervals or symmetric probability intervals

o Posterior pdf shown.
0 100(1 — )% interval.

PO, <0<0p)=1-a 021
o Equal probability outside o 02
each end. £ e
-§ 0.15-
PO <0r)=a/2 S
2 0.101
P(0 > 0y) = a/2 g
o
o
o Example: If « = 0.5, the 0.051
interval [90,25790,75} is
symmetric because the 000 = :h
amount of probability q

remaining on either side of
the interval is the same,
namely 0.25.
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Board question: beta credible interval

Bent coin with unknown probability 6.
Flat prior: p(f) =1 on [0, 1]
Data: toss 10 times and get 2 heads.

@ Use R to construct a symmetric 95% credible interval
@ gbeta(c(0.025,0.975) ,shapel=3,shape2=9)

@ A beta(3,9) posterior distribution with vertical bars indicating a 95%

probability interval.
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-: Normal credible set

Let z,,...,x, an i.i.d from N(6,02) where ¢* is known. Let 6 have prior
N(p,72), where 1 and 7 are known.

o Find a 1 — « credible interval for 6.
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_or beta distributions

-4 3 -2 -1 0 1 2 3 4

Red = 0.68, magenta = 0.9, green = 0.5
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_for normal distributions

—
e
0.6 0.8

0.2 0.4

Red = 0.68, magenta = 0.9, green = 0.5
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Credible intervals

Remarks

o For a fixed, p, different p-credible intervals for # may have different
widths.

@ Since the width can vary for fixed p, a larger p does now always
mean a larger width. But if a p,-credible interval is fully contained
in a p,-credible interval, then p, is smaller than p,.

@ As in classical statistics, we can obtain a smallest credible interval by
centering the interval under the highest part of the pdf posterior.
Such an interval is called highest posterior density interval and is
usually a good choice since it contains the most likely values.
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To convert an 80% probability interval to a 90% interval should you
shrink it or stretch it?

@ Shrink.
@ Stretch.
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Highest posterior density (HPD) intervals

o If the posterior density p(f|y) is unimodal, then for a given values of
«, the 1- - shortest credible interval for 8 is given by

{60 :p(0ly) > k},

where k is chosen so that

/ p(0ly)do = 1— a.
{0:p(0|y)>k}

o The set {0 : p(fly) > k} is called the highest posterior density
(HPD) interval, as it consists of the values of the parameter 6 for
which the posterior density is highest.
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.ghest posterior density (HPD) intervals

0.251
o Posterior pdf shown. We 020
need to find A, and Oy s
= l-a
@ 100(1 — a)% interval. 2 0151
P(0 0 <0 1 S

(0 <0 <fy)=1-a 2 0101

o Equal height to posterior O I S
density at 67, and 6. 005

p(OL |y) =p(bu | y) 000 == %
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Calculating credible intervals

@ Some textbooks emphasise the highest posterior density interval.
o However, it is usually difficult to calculate.
@ The equal tail interval is easier to find computationally.

o For named distributions, just like for the median, we can use the
quantile functions in R, ggamma, qnorm etc.

Suppose our posterior distribution for 6 is Gamma(a, b).

Posterior median:
ggamma (0.5, shape=a, rate=b)
Equal tail 95% credible interval limits:
ggamma (0.025, shape=a, rate=b)
gqgamma (0.975, shape=a, rate=b)
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