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A more general form of the previous problem is variational regularisation
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w

{L(w) + R(w)}
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A more general form of the previous problem is variational regularisation

ŵ = arg min
w

{L(w) + R(w)}

Data term/

Regression term

Regularisation 
term

Previous example: L(w) =
1
2

∥Xw − y∥2 R(w) =
α
2

∥w∥2
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2
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What is the advantage of using the one-norm over the two-norm?

Sparsity!

Choose and

⇒

Variational regularisation: ŵ = arg min
w

{L(w) + R(w)}
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ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

Sparsity means that only relatively few elements of  will be non-zeroŵ

Sparsity ≅ simplicity! (Occam’s razor)

Implicit reduction of parameters

LASSO = Least Absolute Shrinkage and Selection Operator
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Example: fit line with just one input/output data sample (x, y)

x − axis

y − axis

y = w1x + w0

(x, y)
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Example: fit line with just one input/output data sample 

Which solution do we pick?

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)
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Example: fit line with just one input/output data sample 

Simplicity idea:

Let either     or     be zero!w0 w1

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)
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Example: fit line with just one input/output data sample 

Simplicity idea:

w0 = 0

y = xw1

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)
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Example: fit line with just one input/output data sample 

Simplicity idea:

w1 = 0

y = w0

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)
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In general, why (or how) does the  norm make  sparse?ℓ1 ŵ
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The solution of the problem





is a point in this space 

y = w0 + w1x

w1

w0

We can indeed write


w0 = y − w1x
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Minimise 

subject to
w1

w0

w2
0 + w2

1

w0 = − w1x + y
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|w0 | + |w1 |

Minimise 

subject to

(ŵ0, ŵ1)⊤

ŵ = (ŵ0, ŵ1)⊤
most likely sparse!

One of the coordinates

must be zero

w0 = − w1x + y

w1

w0
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(b) Sparse

Figure 4.1: A dense and a sparse signal. The `
2-norm of signal 4.1(a) is 1.5431, while the `

2-norm of
4.1(b) is 1.7472. The di↵erence in the `

1-norm is much more significant. The `
1-norm of 4.1(a) is 20.0615

and therefore large in comparison to the `
1-norm of 4.1(b), which is 6.2931.

The `
1 norm can be used not just for recovering sparse signals but also for promoting sparse

solutions with respect to a certain basis. If a function u can be represented as u =
P

n

j=1hu,'ji'j

with respect to the basis ('j)j2{1,...,n} the functional

J(u) =
nX

j=1

|hu,'ji|

would be a reasonable choice for a regularizer if u has a sparse representation with respect to '.

4.1.3 L1 Regularization and Regularization with Radon Measures

As the continuous analogue of the discrete `
1 regularization we could consider the L

1 norm as a
regularizer, i.e.

J(u) = kukL1(⌦) ,

for a function u : ⌦ ⇢ Rd ! R, d 2 N, in L
1(⌦). Similar to `

1 regularization it might be even
more reasonable to consider not just the L1-norm of a signal as a regularizer but also the L1-norm
of a suitable operator applied to that signal, i.e.

J(u) = kBukL1(⇥) , (4.4)

with B : U(⌦) ! L
1(⇥), for a suitable Banach space U(⌦) and suitable sets ⌦ and ⇥. Unfor-

tunately, as we have already discovered in Section 2.5.5, the space L
1 might be too restrictive,

depending on the operator B. We have seen that e.g. for B = r the regularization (4.4) only
allows functions u to be in W

1,1(⌦), which is not desirable. To overcome this problem we have
considered the distributional representation and therefore transferred the L

1-type problem to the
space of Radon measures. A general approach for sparsity-promoting regularization in measure
spaces has been considered in [19]. In the cited work, linear inverse problems of the form

K
⇤
µ = g

ℓ1 regularisation / the lasso

17
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∥signal in a)∥2 ≈ 1.5431 ∥signal in a)∥1 ≈ 20.061
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Lasso would select the sparse solution!




HOW TO SOLVE LASSO OR MORE IN GENERAL

OPTIMIZATION PROBLEMS?
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In the previous lectures, we have studied regression problems of the form

ŵ = arg min
w∈ℝd+1

E(w)

For 

E(w) =

where    is linear in , we have seen that we can compute  by solving 
a linear system of equations

f w ŵ

1
2s

s

∑
i=1

| f(xi, w) − yi |
2MSE(w) = ,
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In the previous lectures, we have studied regression problems of the form

ŵ = arg min
w∈ℝd+1

E(w)

For 

where    is linear in , we have seen that we can compute  by solving 
a linear system of equations

f w ŵ

But: how do we minimise  in general?E

E(w) =
1
2s

s

∑
i=1

| f(xi, w) − yi |
2 ,+

α
2

∥w∥2
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How about using grid search?

Advantages:

Disadvantages:

Evaluate a function  at points on 
a grid and record smallest value

E

• works for any kind of function!
• very easy to implement

• computationally infeasible for large no. of parameters
• no guarantee that we compute a minimum



Smooth optimisation
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Smooth functions (continuously differentiable) allow the application 
of more systematic searches compared to grid search 

E ∈ C1(ℝd+1) ⇒ ∇E exists and is continuous



Smooth optimisation
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Example for smooth optimisation: gradient descent

wk+1 = wk − τ∇E(wk)

for some               and a constant         .  w0 ∈ ℝn τ > 0

Procedure to find a minimum of w!
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⋮
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as an iterate or update 

wk = wk−1 − τ∇E(wk−1)
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w2 = w1 − τ∇E(w1)
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MSE(w) =
1
2s

s

∑
i=1

|w − yi |
2One parameter MSE-model:

∇MSE(w) = w −
1
s

s

∑
i=1

yiGradient:

We have learnt that ∇MSE(w) = w −
1
s

s

∑
i=1

yi = 0 → ŵ = ȳ
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∑
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Gradient descent: wk+1 = wk − τ (wk −
1
s

s

∑
i=1

yi) = (1 − τ)wk +
τ
s

s

∑
i=1

yi

For τ = 1 wk+1 =
1
s

s

∑
i=1

yi

For a general value of ?τ
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General linear MSE-model: MSE(w) =
1
2s

Xw − y
2

Recall: ∇MSE(w) =
1
s

X⊤ (Xw − y)

wk+1 = wk +
τ
s

X⊤(y − Xwk)

= (I −
τ
s

X⊤X) wk +
τ
s

XTy

Gradient descent:

k→∞ (X⊤X)−1 X⊤y

Does this work for any ?τ
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Why (and when) does it work?

Assumption:  is Lipschitz-continuous with constant  (or L-smooth), i.e.E L

∥∇E(x) − ∇E(y)∥ ≤ L∥x − y∥ ∀x, y ∈ ℝn

Then the function 

G(x) :=
L
2

∥x∥2 − E(x)

is convex for all .x ∈ ℝn
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1. that
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Then (converge theorem) we can show
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lim
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E(wk) = E(ŵ) 1/k
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Why (and when) does it work?

• the function     is  smooth


• the function                                   is convex 

for all           

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

1. that


2. as well as                             with rate 

Then (converge theorem) we can show
E(wk+1) ≤ E(wk)

lim
k→∞

E(wk) = E(ŵ) 1/k

Proof: in the lecture notes, but not examinable! 😉
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What is the value of  that allows convergence? τ

Hence the function is  smooth and converge is guaranteed for τ−1 1
τ

=
∥X⊤X∥

s

E(w) =
1
2s

∥Xw − y∥2 → ∇E(w) =
1
s

X⊤(Xw − y)

∥∇E(w) − ∇E(v)∥ =
1
s

∥X⊤X(w − v)∥ ≤
1
s

∥X⊤X∥∥(w − v)∥

This implies convergence for any τ ≤
s

∥X⊤X∥



Gradient descent

32

What can we do if the assumptions are not met?

• the function     is  smooth


• the function                                   is convex 

for all            

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E
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Backtracking:

• the function     is  smooth


• the function                                   is convex 

for all            

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E
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What can we do if the assumptions are not met?

Backtracking: compute        and checkwk+1 E(wk+1) ≤ E(wk)

{keep τ as it is if E(wk+1) ≤ E(wk)
decrease τ if E(wk+1) > E(wk)

• the function     is  smooth


• the function                                   is convex 

for all            

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E
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Remark: in the (modern) machine learning literature… 

…gradient descent is also known as batch gradient descent

…the stepsize     is also known as the learning rate (bad name)τ

Gradient descent
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wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

Can we just compute  for ?∇E(wα) = 0 E(w) := ∥Xw − y∥2/2 + α∥w∥1

We cannot do this, since  is not differentiable!E
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wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

Can we use the same machinery we developed for the other problems?
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wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

No!

We can smooth the one-norm to make this problem differentiable!

Note that we can write 

|w | = max
p∈[−1,1]

wp

The l1 norm is not differentiable in zero
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wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

We can smooth the one-norm to make this problem differentiable!

We can modify slightly the l1 norm to smooth the function 

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ
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Note that we can write 

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

This problem has a closed form solution

̂p = arg max
p∈[−1,1]

wp −
τ
2

|p |2

⇔ ̂p =
1 w > τ
w
τ |w | ≤ τ

−1 w < − τ
Why?
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LASSO
We need to solve

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

The function we are trying to maximize is a parabola of this type

p is bounded by -1 and 1

-1 1

p*
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How do we get the max?

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

∇ |w |τ = w − τp → ̂p =
w
τ

1 ≤ ̂p ≤ 1 → − τ ≤ w ≤ τ

Compute the gradient!
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How do we get the max?

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

∇ |w |τ = w − τp → ̂p =
w
τ

1 ≤ ̂p ≤ 1 → − τ ≤ w ≤ τ

|w | ≤ τ

Compute the gradient!



42

LASSO

Hence, for  the max is obtained substituting p hat in the expression|w | ≤ τ

Hence

|w |τ =
w2

2τ



42

LASSO

Hence, for  the max is obtained substituting p hat in the expression|w | ≤ τ

−
τ
2

|p |2|w | = max
p∈[−1,1]

wp

Hence

|w |τ =
w2

2τ



42
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Hence, for  the max is obtained substituting p hat in the expression|w | ≤ τ

−
τ
2

|p |2|w | = max
p∈[−1,1]

wp = w
w
τ

−
τ
2

w2

τ2
=

w2

2τ

Hence

|w |τ =
w2

2τ
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LASSO
For  instead w > τ ̂p > 1

If the max is larger than one than the parabola is indeed like this 

-1 1

p* And the max is for p=1

This implies |w |τ = w −
τ
2
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For  instead w < − τ ̂p < − 1

If the max is smaller than one than the parabola is instead like this 

-1 1

p* And the max is for p=-1

This implies |w |τ = − w −
τ
2
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Hence

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

has a closed form solution

̂p = arg max
p∈[−1,1]

wp −
τ
2

|p |2

⟹ ̂p =
1 w > τ
w
τ |w | ≤ τ

−1 w < − τ
⟹ |w |τ =

|w | − τ
2 |w | > τ

1
2τ |w |2 |w | ≤ τ
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|w |τ =
|w | − τ

2 |w | > τ
1
2τ |w |2 |w | ≤ τ

The change in the l1 norm allows us to write

∇ |w |τ =
1 w > τ
1
τ w |w | ≤ τ

−1 w < − τ

|w |τ ≤ |w | ≤ |w |τ +
τ
2

for which we observe

as well as
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We can therefore get a differentiable problem by replacing

∥w∥1 =
d

∑
j=0

|wj | Hτ(w) =
d

∑
j=0

|wj |τwith

Smoothed LASSO:

wα = arg min
w∈ℝd+1 { 1

2
∥Xw − y∥2 + αHτ(w)}

How can we solve this problem?

Huber loss

function
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2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant:



49

LASSO
Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant: gradient descent for Eτ(w) :=
1

2
∥Xw − y∥2 + Hτ(w)α :



49

LASSO
Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
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One variant: gradient descent for Eτ(w) :=
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Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant: gradient descent for

wk+1 = wk − τ (X⊤(Xwk − y) + α∇Hτ(wk))

Eτ(w) :=
1

2
∥Xw − y∥2 + Hτ(w)α :

wk+1 = wk − τ∇E(wk)
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Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant: gradient descent for

wk+1 = wk − τ (X⊤(Xwk − y) + α∇Hτ(wk))

Eτ(w) :=
1

2
∥Xw − y∥2 + Hτ(w)α :

wk+1 = wk − τ∇E(wk)

We have two competing terms due to the structure of E
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Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

wk+ 1
2 = wk −

τ
α

X⊤(Xwk − y) We move first towards the 

opposite of the max variation

of MSE

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2 ) We move then towards the 

opposite of the max variation

of the Huber loss function

Converge for 
τ
α

≤ ∥X⊤X∥−1

Converge for any τ
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LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

wk+ 1
2 = wk −

τ
α

X⊤(Xwk − y) We move first towards the 

opposite of the max variation

of MSE

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2 ) We move then towards the 

opposite of the max variation

of the Huber loss function

Converge for 
τ
α

≤ ∥X⊤X∥−1

Converge for any τ

Hence we select 
τ
α

≤ ∥X⊤X∥−1
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Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+ 1
2 =

wk+1 =

α :

Note the following:

w − τ∇ |w |τ = w − {
τ w > τ
w |w | ≤ τ
−τ w < − τ

wk+ 1
2 − τ∇Hτ(wk+ 1

2 )

wk −
τ
α

X⊤(Xwk − y)
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Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+ 1
2 =

wk+1 =

α :

Note the following:

w − τ∇ |w |τ = w − {
τ w > τ
w |w | ≤ τ
−τ w < − τ

= {
w − τ w > τ
0 |w | ≤ τ
w + τ w < − τ

wk+ 1
2 − τ∇Hτ(wk+ 1

2 )

wk −
τ
α

X⊤(Xwk − y)
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LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+ 1
2 =

wk+1 =

α :

Note the following:

w − τ∇ |w |τ = w − {
τ w > τ
w |w | ≤ τ
−τ w < − τ

= {
w − τ w > τ
0 |w | ≤ τ
w + τ w < − τ

=: softτ (w)

wk+ 1
2 − τ∇Hτ(wk+ 1

2 )

wk −
τ
α

X⊤(Xwk − y)

(soft-thresholding)
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Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2 )

wk −
τ
α

X⊤(Xwk − y)
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Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2 )

wk −
τ
α

X⊤(Xwk − y)

The last term can be written as
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LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2 )

wk −
τ
α

X⊤(Xwk − y)

The last term can be written as

wk+1 = softτ(wk+ 1
2 )
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Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2 )

wk −
τ
α

X⊤(Xwk − y)

The last term can be written as

wk+1 = softτ(wk+ 1
2 )

Hence, the soft-thresholding of the previous expression
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Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+1 =

α :

softτ wk −
τ
α

X⊤(Xwk − y)
j

j ∀j ∈ {1,…, d + 1}
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LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+1 =

α :

softτ wk −
τ
α

X⊤(Xwk − y)
j

j

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)

∀j ∈ {1,…, d + 1}
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LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+1 =

α :

softτ wk −
τ
α

X⊤(Xwk − y)
j

j

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)

∀j ∈ {1,…, d + 1}

Special case of proximal gradient descent 

wk+1 = (I + τ∂R)−1(wk − τ∇L(wk))
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E(w) = L(w) + R(w)Suppose we want to minimise
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E(w) = L(w) + R(w)Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1.      is differentiable, i.e.,           exists


2.      has a simple proximal map, i.e., 

L ∇L(w)

R

is easy to compute



Proximal gradient method

54

E(w) = L(w) + R(w)

wk+1 = proxτR (wk − τ∇L(wk))Then:

Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1.      is differentiable, i.e.,           exists


2.      has a simple proximal map, i.e., 

L ∇L(w)

R

is easy to compute
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E(w) = L(w) + R(w)

wk+1 = proxτR (wk − τ∇L(wk))Then:

Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1.      is differentiable, i.e.,           exists


2.      has a simple proximal map, i.e., 

L ∇L(w)

R

is easy to compute

 Proximal gradient method
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For the choice  this reads asR(x) =
1
2

∥x∥2

prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}
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For the choice  this reads asR(x) =
1
2

∥x∥2

prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}
Forget for a second the proximal map, we know how to solve that problem!



Proximal gradient method
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prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}
This is a simple convex optimisation problem. If we define , 

we obtain .

E(x) :=
1
2

∥x − z∥2 +
τ
2

∥x∥2

∇E(x) = x − z + τx

∇E( ̂x) = 0 ⇔ ̂x =
z

1 + τ

The global minimiser satisfies



Proximal gradient method

56

prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}
This is a simple convex optimisation problem. If we define , 

we obtain .

E(x) :=
1
2

∥x − z∥2 +
τ
2

∥x∥2

∇E(x) = x − z + τx

∇E( ̂x) = 0 ⇔ ̂x =
z

1 + τ

The global minimiser satisfies

⟹ prox τ
2 ∥⋅∥2(z) =

z
1 + τ
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Example for a proximal map

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)} :



Proximal gradient method

57

Example for a proximal map

For the choice  this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)} :



Proximal gradient method

57

Example for a proximal map

For the choice  this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)} :

= arg min
x∈C { 1

2
∥x − z∥2}
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Example for a proximal map

For the choice  this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}
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Example for a proximal map

For the choice  this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}
Projection onto convex set !C
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58

Example for a proximal map

For the choice  this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}
Projection onto convex set !C

This might be important in some real applications where we have some 
constraints on the x!



Proximal gradient method
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Example for a proximal map

For the choice  this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}
Projection onto convex set !C

Example: C = {x ∈ ℝ | x ∈ [0,1]}

This might be important in some real applications where we have some 
constraints on the x!
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Special case:

R(w) = {0 w ∈ C
∞ w ∉ C

C = convex set = constraint-set



Constrained optimisation

59

Special case:

R(w) = {0 w ∈ C
∞ w ∉ C

C = convex set = constraint-set

⇒ proxτR(z) = arg min
w∈ℝn

∥w − z∥2 + R(w)

= arg min
w∈C

∥w − z∥2 = projC(z)



Constrained optimisation

59

Special case:

L

C ⇢ RD
w

L(w)

R(w) = {0 w ∈ C
∞ w ∉ C

C = convex set = constraint-set

⇒ proxτR(z) = arg min
w∈ℝn

∥w − z∥2 + R(w)

⇒ wk+1 = projC (wk − τ∇L(wk))
Projected gradient descent

C ⇢ RD
w

w0

PC(w
0)

�rL(w)

= arg min
w∈C

∥w − z∥2 = projC(z)

Standard gradient 

descent might 

bring you out!



Proximal gradient method

60

E(w) = L(w) + R(w)

wk+1 = proxτR (wk − τ∇L(wk))Proximal gradient method:

Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1.      is differentiable, i.e.           exists


2.      has a simple proximal map, i.e. 

L ∇L(w)

R

is easy to compute



Proximal gradient descent
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wk+1 = (I + τ∂R)−1(wk − τ∇L(wk))

Minimise variational regularisation  iteratively viaL(w) + R(w)

where the proximal map is defined as

(I + τ∂R)−1(z) := arg min
w∈ℝd+1 { 1

2
∥w − z∥2 + τR(w)}


