
n.perra@qmul.ac.uk

Machine Learning with Python

MTH786U/P 2022/23

Nicola Perra, Queen Mary University of London (QMUL)

Lecture 5: From ridge regression to the LASSO

mailto:n.perra@qmul.ac.uk

Recap: Ridge regression

2

ŵ = arg min
w { 1

2
∥Xw − y∥2 +

α
2

∥w∥2}
Two weeks ago we learned about the minimisation problem

that is known as Tikhonov regularisation

or ridge regression

Andrey Tikhonov, 1906 - 1993

Recap: Ridge regression

2

ŵ = arg min
w { 1

2
∥Xw − y∥2 +

α
2

∥w∥2}
Two weeks ago we learned about the minimisation problem

that is known as Tikhonov regularisation

or ridge regression

Andrey Tikhonov, 1906 - 1993

Standard regression term

Recap: Ridge regression

2

ŵ = arg min
w { 1

2
∥Xw − y∥2 +

α
2

∥w∥2}
Two weeks ago we learned about the minimisation problem

that is known as Tikhonov regularisation

or ridge regression

Andrey Tikhonov, 1906 - 1993

Standard regression term Regularisation term

Recap: Ridge regression

2

ŵ = arg min
w { 1

2
∥Xw − y∥2 +

α
2

∥w∥2}
Two weeks ago we learned about the minimisation problem

that is known as Tikhonov regularisation

or ridge regression

Andrey Tikhonov, 1906 - 1993

Standard regression term Regularisation term

Regularisation parameter

Variational regularisation

3

A more general form of the previous problem is variational regularisation

ŵ = arg min
w

{L(w) + R(w)}

Variational regularisation

3

A more general form of the previous problem is variational regularisation

ŵ = arg min
w

{L(w) + R(w)}

Data term/

Regression term

Variational regularisation

3

A more general form of the previous problem is variational regularisation

ŵ = arg min
w

{L(w) + R(w)}

Data term/

Regression term

Regularisation
term

Variational regularisation

3

A more general form of the previous problem is variational regularisation

ŵ = arg min
w

{L(w) + R(w)}

Data term/

Regression term

Regularisation
term

Previous example: L(w) =
1
2

∥Xw − y∥2 R(w) =
α
2

∥w∥2

ℓ1 regularisation / the lasso

4

Variational regularisation: ŵ = arg min
w

{L(w) + R(w)}

ℓ1 regularisation / the lasso

4

R(w) = α∥w∥1 := α
n

∑
k=1

|wk | L(w) =
1
2

∥Xw − y∥2Choose and

Variational regularisation: ŵ = arg min
w

{L(w) + R(w)}

ℓ1 regularisation / the lasso

4

R(w) = α∥w∥1 := α
n

∑
k=1

|wk | L(w) =
1
2

∥Xw − y∥2

ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

Choose and

⇒

Variational regularisation: ŵ = arg min
w

{L(w) + R(w)}

ℓ1 regularisation / the lasso

4

R(w) = α∥w∥1 := α
n

∑
k=1

|wk | L(w) =
1
2

∥Xw − y∥2

ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

What is the advantage of using the one-norm over the two-norm?

Choose and

⇒

Variational regularisation: ŵ = arg min
w

{L(w) + R(w)}

ℓ1 regularisation / the lasso

4

R(w) = α∥w∥1 := α
n

∑
k=1

|wk | L(w) =
1
2

∥Xw − y∥2

ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

What is the advantage of using the one-norm over the two-norm?

Sparsity!

Choose and

⇒

Variational regularisation: ŵ = arg min
w

{L(w) + R(w)}

ℓ1 regularisation / the lasso

5

ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

Sparsity means that only relatively few elements of will be non-zeroŵ

ℓ1 regularisation / the lasso

5

ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

Sparsity means that only relatively few elements of will be non-zeroŵ

Sparsity ≅ simplicity! (Occam’s razor)

ℓ1 regularisation / the lasso

5

ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

Sparsity means that only relatively few elements of will be non-zeroŵ

Sparsity ≅ simplicity! (Occam’s razor)

Implicit reduction of parameters

ℓ1 regularisation / the lasso

5

ŵ = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

Sparsity means that only relatively few elements of will be non-zeroŵ

Sparsity ≅ simplicity! (Occam’s razor)

Implicit reduction of parameters

LASSO = Least Absolute Shrinkage and Selection Operator

ℓ1 regularisation / the lasso

6

Example: fit line with just one input/output data sample (x, y)

x − axis

y − axis

y = w1x + w0

(x, y)

7

Example: fit line with just one input/output data sample

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)

ℓ1 regularisation / the lasso

7

Example: fit line with just one input/output data sample

Which solution do we pick?

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)

ℓ1 regularisation / the lasso

ℓ1 regularisation / the lasso

8

Example: fit line with just one input/output data sample

Simplicity idea:

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)

ℓ1 regularisation / the lasso

8

Example: fit line with just one input/output data sample

Simplicity idea:

Let either or be zero!w0 w1

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)

ℓ1 regularisation / the lasso

9

Example: fit line with just one input/output data sample

Simplicity idea:

w0 = 0

y = xw1

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)

ℓ1 regularisation / the lasso

10

Example: fit line with just one input/output data sample

Simplicity idea:

w1 = 0

y = w0

y = w1x + w0

x − axis

y − axis

(x, y)

(x, y)

ℓ1 regularisation / the lasso

11

ℓ1 regularisation / the lasso

11

In general, why (or how) does the norm make sparse?ℓ1 ŵ

ℓ1 regularisation / the lasso

12

The solution of the problem

is a point in this space

y = w0 + w1x

w1

w0

We can indeed write

w0 = y − w1x

ℓ1 regularisation / the lasso

13

Minimise

subject to
w1

w0

w2
0 + w2

1

w0 = − w1x + y

ℓ1 regularisation / the lasso

14

w2
0 + w2

1

Minimise

subject to
w1

w0

w0 = − w1x + y

ℓ1 regularisation / the lasso

14

w2
0 + w2

1

Minimise

subject to

(ŵ0, ŵ1)⊤

w1

w0

w0 = − w1x + y

ℓ1 regularisation / the lasso

14

w2
0 + w2

1

Minimise

subject to

(ŵ0, ŵ1)⊤

ŵ = (ŵ0, ŵ1)⊤ most likely not sparse

w1

w0

w0 = − w1x + y

ℓ1 regularisation / the lasso

15

Minimise

subject to
w1

w0

|w0 | + |w1 |

w0 = − w1x + y

ℓ1 regularisation / the lasso

15

Minimise

subject to
w1

w0

|w0 | + |w1 |

w0 = − w1x + y

ℓ1 regularisation / the lasso

16

|w0 | + |w1 |

Minimise

subject to

w0 = − w1x + y

w1

w0

ℓ1 regularisation / the lasso

16

|w0 | + |w1 |

Minimise

subject to

(ŵ0, ŵ1)⊤

w0 = − w1x + y

w1

w0

ℓ1 regularisation / the lasso

16

|w0 | + |w1 |

Minimise

subject to

(ŵ0, ŵ1)⊤

ŵ = (ŵ0, ŵ1)⊤
most likely sparse!

One of the coordinates

must be zero

w0 = − w1x + y

w1

w0

CHAPTER 4. TYPICAL FIDELITIES AND SINGULAR REGULARIZATION ENERGIES 67

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Dense

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Sparse

Figure 4.1: A dense and a sparse signal. The `
2-norm of signal 4.1(a) is 1.5431, while the `

2-norm of
4.1(b) is 1.7472. The di↵erence in the `

1-norm is much more significant. The `
1-norm of 4.1(a) is 20.0615

and therefore large in comparison to the `
1-norm of 4.1(b), which is 6.2931.

The `
1 norm can be used not just for recovering sparse signals but also for promoting sparse

solutions with respect to a certain basis. If a function u can be represented as u =
P

n

j=1hu,'ji'j

with respect to the basis ('j)j2{1,...,n} the functional

J(u) =
nX

j=1

|hu,'ji|

would be a reasonable choice for a regularizer if u has a sparse representation with respect to '.

4.1.3 L1 Regularization and Regularization with Radon Measures

As the continuous analogue of the discrete `
1 regularization we could consider the L

1 norm as a
regularizer, i.e.

J(u) = kukL1(⌦) ,

for a function u : ⌦ ⇢ Rd ! R, d 2 N, in L
1(⌦). Similar to `

1 regularization it might be even
more reasonable to consider not just the L1-norm of a signal as a regularizer but also the L1-norm
of a suitable operator applied to that signal, i.e.

J(u) = kBukL1(⇥) , (4.4)

with B : U(⌦) ! L
1(⇥), for a suitable Banach space U(⌦) and suitable sets ⌦ and ⇥. Unfor-

tunately, as we have already discovered in Section 2.5.5, the space L
1 might be too restrictive,

depending on the operator B. We have seen that e.g. for B = r the regularization (4.4) only
allows functions u to be in W

1,1(⌦), which is not desirable. To overcome this problem we have
considered the distributional representation and therefore transferred the L

1-type problem to the
space of Radon measures. A general approach for sparsity-promoting regularization in measure
spaces has been considered in [19]. In the cited work, linear inverse problems of the form

K
⇤
µ = g

ℓ1 regularisation / the lasso

17

CHAPTER 4. TYPICAL FIDELITIES AND SINGULAR REGULARIZATION ENERGIES 67

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Dense

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Sparse

Figure 4.1: A dense and a sparse signal. The `
2-norm of signal 4.1(a) is 1.5431, while the `

2-norm of
4.1(b) is 1.7472. The di↵erence in the `

1-norm is much more significant. The `
1-norm of 4.1(a) is 20.0615

and therefore large in comparison to the `
1-norm of 4.1(b), which is 6.2931.

The `
1 norm can be used not just for recovering sparse signals but also for promoting sparse

solutions with respect to a certain basis. If a function u can be represented as u =
P

n

j=1hu,'ji'j

with respect to the basis ('j)j2{1,...,n} the functional

J(u) =
nX

j=1

|hu,'ji|

would be a reasonable choice for a regularizer if u has a sparse representation with respect to '.

4.1.3 L1 Regularization and Regularization with Radon Measures

As the continuous analogue of the discrete `
1 regularization we could consider the L

1 norm as a
regularizer, i.e.

J(u) = kukL1(⌦) ,

for a function u : ⌦ ⇢ Rd ! R, d 2 N, in L
1(⌦). Similar to `

1 regularization it might be even
more reasonable to consider not just the L1-norm of a signal as a regularizer but also the L1-norm
of a suitable operator applied to that signal, i.e.

J(u) = kBukL1(⇥) , (4.4)

with B : U(⌦) ! L
1(⇥), for a suitable Banach space U(⌦) and suitable sets ⌦ and ⇥. Unfor-

tunately, as we have already discovered in Section 2.5.5, the space L
1 might be too restrictive,

depending on the operator B. We have seen that e.g. for B = r the regularization (4.4) only
allows functions u to be in W

1,1(⌦), which is not desirable. To overcome this problem we have
considered the distributional representation and therefore transferred the L

1-type problem to the
space of Radon measures. A general approach for sparsity-promoting regularization in measure
spaces has been considered in [19]. In the cited work, linear inverse problems of the form

K
⇤
µ = g

ℓ1 regularisation / the lasso

17

∥signal in a)∥2 ≈ 1.5431 ∥signal in a)∥1 ≈ 20.061

CHAPTER 4. TYPICAL FIDELITIES AND SINGULAR REGULARIZATION ENERGIES 67

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Dense

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Sparse

Figure 4.1: A dense and a sparse signal. The `
2-norm of signal 4.1(a) is 1.5431, while the `

2-norm of
4.1(b) is 1.7472. The di↵erence in the `

1-norm is much more significant. The `
1-norm of 4.1(a) is 20.0615

and therefore large in comparison to the `
1-norm of 4.1(b), which is 6.2931.

The `
1 norm can be used not just for recovering sparse signals but also for promoting sparse

solutions with respect to a certain basis. If a function u can be represented as u =
P

n

j=1hu,'ji'j

with respect to the basis ('j)j2{1,...,n} the functional

J(u) =
nX

j=1

|hu,'ji|

would be a reasonable choice for a regularizer if u has a sparse representation with respect to '.

4.1.3 L1 Regularization and Regularization with Radon Measures

As the continuous analogue of the discrete `
1 regularization we could consider the L

1 norm as a
regularizer, i.e.

J(u) = kukL1(⌦) ,

for a function u : ⌦ ⇢ Rd ! R, d 2 N, in L
1(⌦). Similar to `

1 regularization it might be even
more reasonable to consider not just the L1-norm of a signal as a regularizer but also the L1-norm
of a suitable operator applied to that signal, i.e.

J(u) = kBukL1(⇥) , (4.4)

with B : U(⌦) ! L
1(⇥), for a suitable Banach space U(⌦) and suitable sets ⌦ and ⇥. Unfor-

tunately, as we have already discovered in Section 2.5.5, the space L
1 might be too restrictive,

depending on the operator B. We have seen that e.g. for B = r the regularization (4.4) only
allows functions u to be in W

1,1(⌦), which is not desirable. To overcome this problem we have
considered the distributional representation and therefore transferred the L

1-type problem to the
space of Radon measures. A general approach for sparsity-promoting regularization in measure
spaces has been considered in [19]. In the cited work, linear inverse problems of the form

K
⇤
µ = g

ℓ1 regularisation / the lasso

17

∥signal in a)∥2 ≈ 1.5431

∥signal in b)∥2 ≈ 1.7472 ∥signal in b)∥1 ≈ 6.2931

∥signal in a)∥1 ≈ 20.061

CHAPTER 4. TYPICAL FIDELITIES AND SINGULAR REGULARIZATION ENERGIES 67

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Dense

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Sparse

Figure 4.1: A dense and a sparse signal. The `
2-norm of signal 4.1(a) is 1.5431, while the `

2-norm of
4.1(b) is 1.7472. The di↵erence in the `

1-norm is much more significant. The `
1-norm of 4.1(a) is 20.0615

and therefore large in comparison to the `
1-norm of 4.1(b), which is 6.2931.

The `
1 norm can be used not just for recovering sparse signals but also for promoting sparse

solutions with respect to a certain basis. If a function u can be represented as u =
P

n

j=1hu,'ji'j

with respect to the basis ('j)j2{1,...,n} the functional

J(u) =
nX

j=1

|hu,'ji|

would be a reasonable choice for a regularizer if u has a sparse representation with respect to '.

4.1.3 L1 Regularization and Regularization with Radon Measures

As the continuous analogue of the discrete `
1 regularization we could consider the L

1 norm as a
regularizer, i.e.

J(u) = kukL1(⌦) ,

for a function u : ⌦ ⇢ Rd ! R, d 2 N, in L
1(⌦). Similar to `

1 regularization it might be even
more reasonable to consider not just the L1-norm of a signal as a regularizer but also the L1-norm
of a suitable operator applied to that signal, i.e.

J(u) = kBukL1(⇥) , (4.4)

with B : U(⌦) ! L
1(⇥), for a suitable Banach space U(⌦) and suitable sets ⌦ and ⇥. Unfor-

tunately, as we have already discovered in Section 2.5.5, the space L
1 might be too restrictive,

depending on the operator B. We have seen that e.g. for B = r the regularization (4.4) only
allows functions u to be in W

1,1(⌦), which is not desirable. To overcome this problem we have
considered the distributional representation and therefore transferred the L

1-type problem to the
space of Radon measures. A general approach for sparsity-promoting regularization in measure
spaces has been considered in [19]. In the cited work, linear inverse problems of the form

K
⇤
µ = g

ℓ1 regularisation / the lasso

17

∥signal in a)∥2 ≈ 1.5431

∥signal in b)∥2 ≈ 1.7472 ∥signal in b)∥1 ≈ 6.2931

∥signal in a)∥1 ≈ 20.061

Lasso would select the sparse solution!

HOW TO SOLVE LASSO OR MORE IN GENERAL

OPTIMIZATION PROBLEMS?

18

Why optimisation?

19

In the previous lectures, we have studied regression problems of the form

ŵ = arg min
w∈ℝd+1

E(w)

Why optimisation?

19

In the previous lectures, we have studied regression problems of the form

ŵ = arg min
w∈ℝd+1

E(w)

For

E(w) =

where is linear in , we have seen that we can compute by solving
a linear system of equations

f w ŵ

1
2s

s

∑
i=1

| f(xi, w) − yi |
2MSE(w) = ,

Why optimisation?

20

In the previous lectures, we have studied regression problems of the form

ŵ = arg min
w∈ℝd+1

E(w)

For

where is linear in , we have seen that we can compute by solving
a linear system of equations

f w ŵ

E(w) =
1
2s

s

∑
i=1

| f(xi, w) − yi |
2 ,+

α
2

∥w∥2

Why optimisation?

20

In the previous lectures, we have studied regression problems of the form

ŵ = arg min
w∈ℝd+1

E(w)

For

where is linear in , we have seen that we can compute by solving
a linear system of equations

f w ŵ

But: how do we minimise in general?E

E(w) =
1
2s

s

∑
i=1

| f(xi, w) − yi |
2 ,+

α
2

∥w∥2

Grid search?

21

How about using grid search?

Evaluate a function at points on
a grid and record smallest value

E

Grid search?

21

How about using grid search?

Advantages:

Evaluate a function at points on
a grid and record smallest value

E

Grid search?

21

How about using grid search?

Advantages:

Evaluate a function at points on
a grid and record smallest value

E

• works for any kind of function!

Grid search?

21

How about using grid search?

Advantages:

Evaluate a function at points on
a grid and record smallest value

E

• works for any kind of function!
• very easy to implement

Grid search?

21

How about using grid search?

Advantages:

Disadvantages:

Evaluate a function at points on
a grid and record smallest value

E

• works for any kind of function!
• very easy to implement

Grid search?

21

How about using grid search?

Advantages:

Disadvantages:

Evaluate a function at points on
a grid and record smallest value

E

• works for any kind of function!
• very easy to implement

• computationally infeasible for large no. of parameters

Grid search?

21

How about using grid search?

Advantages:

Disadvantages:

Evaluate a function at points on
a grid and record smallest value

E

• works for any kind of function!
• very easy to implement

• computationally infeasible for large no. of parameters
• no guarantee that we compute a minimum

Smooth optimisation

22

Smooth functions (continuously differentiable) allow the application
of more systematic searches compared to grid search

E ∈ C1(ℝd+1) ⇒ ∇E exists and is continuous

Smooth optimisation

23

Example for smooth optimisation: gradient descent

wk+1 = wk − τ∇E(wk)

for some and a constant . w0 ∈ ℝn τ > 0

Procedure to find a minimum of w!

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

⋮

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

⋮
wk = wk−1 − τ∇E(wk−1)

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

⋮

Every step of the procedure is also known
as an iterate or update

wk = wk−1 − τ∇E(wk−1)

Gradient descent

24

©Wikimedia commons

Gradient descent is an iterative procedure.

Let us remember that the gradient points the direction of max growth

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

⋮

Every step of the procedure is also known
as an iterate or update

wk = wk−1 − τ∇E(wk−1)

Gradient descent

25

©Mathworks

Gradient descent is an iterative procedure

Every step of the procedure is also known
as an iterate or update

Gradient descent

25

©Mathworks

Gradient descent is an iterative procedure

Every step of the procedure is also known
as an iterate or update

w1 = w0 − τ∇E(w0)

Gradient descent

25

©Mathworks

Gradient descent is an iterative procedure

Every step of the procedure is also known
as an iterate or update

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

Gradient descent

25

©Mathworks

Gradient descent is an iterative procedure

Every step of the procedure is also known
as an iterate or update

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))

Gradient descent

25

©Mathworks

Gradient descent is an iterative procedure

Every step of the procedure is also known
as an iterate or update

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

Gradient descent

25

©Mathworks

Gradient descent is an iterative procedure

Every step of the procedure is also known
as an iterate or update

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

⋮

Gradient descent

25

©Mathworks

Gradient descent is an iterative procedure

Every step of the procedure is also known
as an iterate or update

w1 = w0 − τ∇E(w0)
w2 = w1 − τ∇E(w1)

= w0 − τ∇E(w0) − τ∇E(w0 − τ∇E(w0))
w3 = w2 − τ∇E(w2)

⋮
wk = wk−1 − τ∇E(wk−1)

Gradient descent: examples

26

MSE(w) =
1
2s

s

∑
i=1

|w − yi |
2One parameter MSE-model:

Gradient descent: examples

26

MSE(w) =
1
2s

s

∑
i=1

|w − yi |
2One parameter MSE-model:

∇MSE(w) = w −
1
s

s

∑
i=1

yiGradient:

Gradient descent: examples

26

MSE(w) =
1
2s

s

∑
i=1

|w − yi |
2One parameter MSE-model:

∇MSE(w) = w −
1
s

s

∑
i=1

yiGradient:

We have learnt that ∇MSE(w) = w −
1
s

s

∑
i=1

yi = 0 → ŵ = ȳ

Gradient descent: examples

27

Gradient descent: examples

27

Gradient descent: wk+1 = wk − τ (wk −
1
s

s

∑
i=1

yi) = (1 − τ)wk +
τ
s

s

∑
i=1

yi

Gradient descent: examples

27

Gradient descent: wk+1 = wk − τ (wk −
1
s

s

∑
i=1

yi) = (1 − τ)wk +
τ
s

s

∑
i=1

yi

For τ = 1 wk+1 =
1
s

s

∑
i=1

yi

Gradient descent: examples

27

Gradient descent: wk+1 = wk − τ (wk −
1
s

s

∑
i=1

yi) = (1 − τ)wk +
τ
s

s

∑
i=1

yi

For τ = 1 wk+1 =
1
s

s

∑
i=1

yi

For a general value of ?τ

Gradient descent: examples

28

General linear MSE-model: MSE(w) =
1
2s

Xw − y
2

Gradient descent: examples

28

General linear MSE-model: MSE(w) =
1
2s

Xw − y
2

Recall: ∇MSE(w) =
1
s

X⊤ (Xw − y)

Gradient descent: examples

28

General linear MSE-model: MSE(w) =
1
2s

Xw − y
2

Recall: ∇MSE(w) =
1
s

X⊤ (Xw − y)

wk+1 = wk +
τ
s

X⊤(y − Xwk)Gradient descent:

Gradient descent: examples

28

General linear MSE-model: MSE(w) =
1
2s

Xw − y
2

Recall: ∇MSE(w) =
1
s

X⊤ (Xw − y)

wk+1 = wk +
τ
s

X⊤(y − Xwk)

= (I −
τ
s

X⊤X) wk +
τ
s

XTy

Gradient descent:

Gradient descent: examples

28

General linear MSE-model: MSE(w) =
1
2s

Xw − y
2

Recall: ∇MSE(w) =
1
s

X⊤ (Xw − y)

wk+1 = wk +
τ
s

X⊤(y − Xwk)

= (I −
τ
s

X⊤X) wk +
τ
s

XTy

Gradient descent:

k→∞ (X⊤X)−1 X⊤y

Gradient descent: examples

28

General linear MSE-model: MSE(w) =
1
2s

Xw − y
2

Recall: ∇MSE(w) =
1
s

X⊤ (Xw − y)

wk+1 = wk +
τ
s

X⊤(y − Xwk)

= (I −
τ
s

X⊤X) wk +
τ
s

XTy

Gradient descent:

k→∞ (X⊤X)−1 X⊤y

Does this work for any ?τ

Gradient descent

29

Why (and when) does it work?

Gradient descent

29

Why (and when) does it work?

Assumption: is Lipschitz-continuous with constant (or L-smooth), i.e.E L

∥∇E(x) − ∇E(y)∥ ≤ L∥x − y∥ ∀x, y ∈ ℝn

Gradient descent

29

Why (and when) does it work?

Assumption: is Lipschitz-continuous with constant (or L-smooth), i.e.E L

∥∇E(x) − ∇E(y)∥ ≤ L∥x − y∥ ∀x, y ∈ ℝn

Then the function

G(x) :=
L
2

∥x∥2 − E(x)

is convex for all .x ∈ ℝn

Gradient descent

30

Why (and when) does it work?

• the function is smooth

• the function is convex

for all

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

Gradient descent

30

Why (and when) does it work?

• the function is smooth

• the function is convex

for all

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

1. that

2. as well as with rate

Then (converge theorem) we can show
E(wk+1) ≤ E(wk)

lim
k→∞

E(wk) = E(ŵ) 1/k

Gradient descent

30

Why (and when) does it work?

• the function is smooth

• the function is convex

for all

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

1. that

2. as well as with rate

Then (converge theorem) we can show
E(wk+1) ≤ E(wk)

lim
k→∞

E(wk) = E(ŵ) 1/k

Proof:

Gradient descent

30

Why (and when) does it work?

• the function is smooth

• the function is convex

for all

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

1. that

2. as well as with rate

Then (converge theorem) we can show
E(wk+1) ≤ E(wk)

lim
k→∞

E(wk) = E(ŵ) 1/k

Proof: in the lecture notes, but not examinable! 😉

Gradient descent: examples

31

What is the value of that allows convergence? τ

Gradient descent: examples

31

What is the value of that allows convergence? τ

E(w) =
1
2s

∥Xw − y∥2 → ∇E(w) =
1
s

X⊤(Xw − y)

Gradient descent: examples

31

What is the value of that allows convergence? τ

E(w) =
1
2s

∥Xw − y∥2 → ∇E(w) =
1
s

X⊤(Xw − y)

∥∇E(w) − ∇E(v)∥ =
1
s

∥X⊤X(w − v)∥

Gradient descent: examples

31

What is the value of that allows convergence? τ

E(w) =
1
2s

∥Xw − y∥2 → ∇E(w) =
1
s

X⊤(Xw − y)

∥∇E(w) − ∇E(v)∥ =
1
s

∥X⊤X(w − v)∥ ≤
1
s

∥X⊤X∥∥(w − v)∥

Gradient descent: examples

31

What is the value of that allows convergence? τ

Hence the function is smooth and converge is guaranteed for τ−1 1
τ

=
∥X⊤X∥

s

E(w) =
1
2s

∥Xw − y∥2 → ∇E(w) =
1
s

X⊤(Xw − y)

∥∇E(w) − ∇E(v)∥ =
1
s

∥X⊤X(w − v)∥ ≤
1
s

∥X⊤X∥∥(w − v)∥

Gradient descent: examples

31

What is the value of that allows convergence? τ

Hence the function is smooth and converge is guaranteed for τ−1 1
τ

=
∥X⊤X∥

s

E(w) =
1
2s

∥Xw − y∥2 → ∇E(w) =
1
s

X⊤(Xw − y)

∥∇E(w) − ∇E(v)∥ =
1
s

∥X⊤X(w − v)∥ ≤
1
s

∥X⊤X∥∥(w − v)∥

This implies convergence for any τ ≤
s

∥X⊤X∥

Gradient descent

32

What can we do if the assumptions are not met?

• the function is smooth

• the function is convex

for all

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

Gradient descent

32

What can we do if the assumptions are not met?

Backtracking:

• the function is smooth

• the function is convex

for all

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

Gradient descent

32

What can we do if the assumptions are not met?

Backtracking: compute and checkwk+1 E(wk+1) ≤ E(wk)

{keep τ as it is if E(wk+1) ≤ E(wk)
decrease τ if E(wk+1) > E(wk)

• the function is smooth

• the function is convex

for all

τ−1Assumptions:

G(w) :=
1
2τ

∥w∥2 − E(w)

w ∈ ℝn

E

33

Remark: in the (modern) machine learning literature…

Gradient descent

33

Remark: in the (modern) machine learning literature…

…gradient descent is also known as batch gradient descent

Gradient descent

33

Remark: in the (modern) machine learning literature…

…gradient descent is also known as batch gradient descent

…the stepsize is also known as the learning rate (bad name)τ

Gradient descent

SOLVING LASSO

34

LASSO

35

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

LASSO

35

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

Can we just compute for ?∇E(wα) = 0 E(w) := ∥Xw − y∥2/2 + α∥w∥1

LASSO

35

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

Can we just compute for ?∇E(wα) = 0 E(w) := ∥Xw − y∥2/2 + α∥w∥1

We cannot do this, since is not differentiable!E

36

LASSO

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

Can we use the same machinery we developed for the other problems?

37

LASSO

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

No!

The l1 norm is not differentiable in zero

37

LASSO

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

No!

We can smooth the one-norm to make this problem differentiable!

The l1 norm is not differentiable in zero

37

LASSO

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

No!

We can smooth the one-norm to make this problem differentiable!

Note that we can write

|w | = max
p∈[−1,1]

wp

The l1 norm is not differentiable in zero

38

LASSO

wα = arg min
w { 1

2
∥Xw − y∥2 + α∥w∥1}

How can we solve the LASSO computationally?

We can smooth the one-norm to make this problem differentiable!

We can modify slightly the l1 norm to smooth the function

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

39

LASSO
Note that we can write

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

39

LASSO
Note that we can write

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

This problem has a closed form solution

̂p = arg max
p∈[−1,1]

wp −
τ
2

|p |2

39

LASSO
Note that we can write

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

This problem has a closed form solution

̂p = arg max
p∈[−1,1]

wp −
τ
2

|p |2

⇔ ̂p =
1 w > τ
w
τ |w | ≤ τ

−1 w < − τ

39

LASSO
Note that we can write

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

This problem has a closed form solution

̂p = arg max
p∈[−1,1]

wp −
τ
2

|p |2

⇔ ̂p =
1 w > τ
w
τ |w | ≤ τ

−1 w < − τ
Why?

40

LASSO
We need to solve

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

40

LASSO
We need to solve

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

The function we are trying to maximize is a parabola of this type

40

LASSO
We need to solve

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

The function we are trying to maximize is a parabola of this type

p is bounded by -1 and 1

-1 1

p*

LASSO
How do we get the max?

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

LASSO
How do we get the max?

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

Compute the gradient!

LASSO
How do we get the max?

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

∇ |w |τ = w − τp → ̂p =
w
τ

Compute the gradient!

LASSO
How do we get the max?

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

∇ |w |τ = w − τp → ̂p =
w
τ

1 ≤ ̂p ≤ 1 → − τ ≤ w ≤ τ

Compute the gradient!

LASSO
How do we get the max?

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

∇ |w |τ = w − τp → ̂p =
w
τ

1 ≤ ̂p ≤ 1 → − τ ≤ w ≤ τ

|w | ≤ τ

Compute the gradient!

42

LASSO

Hence, for the max is obtained substituting p hat in the expression|w | ≤ τ

Hence

|w |τ =
w2

2τ

42

LASSO

Hence, for the max is obtained substituting p hat in the expression|w | ≤ τ

−
τ
2

|p |2|w | = max
p∈[−1,1]

wp

Hence

|w |τ =
w2

2τ

42

LASSO

Hence, for the max is obtained substituting p hat in the expression|w | ≤ τ

−
τ
2

|p |2|w | = max
p∈[−1,1]

wp = w
w
τ

−
τ
2

w2

τ2
=

w2

2τ

Hence

|w |τ =
w2

2τ

43

LASSO
For instead w > τ ̂p > 1

43

LASSO
For instead w > τ ̂p > 1

If the max is larger than one than the parabola is indeed like this

43

LASSO
For instead w > τ ̂p > 1

If the max is larger than one than the parabola is indeed like this

-1 1

p*

43

LASSO
For instead w > τ ̂p > 1

If the max is larger than one than the parabola is indeed like this

-1 1

p* And the max is for p=1

43

LASSO
For instead w > τ ̂p > 1

If the max is larger than one than the parabola is indeed like this

-1 1

p* And the max is for p=1

This implies |w |τ = w −
τ
2

44

LASSO
For instead w < − τ ̂p < − 1

44

LASSO
For instead w < − τ ̂p < − 1

If the max is smaller than one than the parabola is instead like this

44

LASSO
For instead w < − τ ̂p < − 1

If the max is smaller than one than the parabola is instead like this

-1 1

p*

44

LASSO
For instead w < − τ ̂p < − 1

If the max is smaller than one than the parabola is instead like this

-1 1

p* And the max is for p=-1

44

LASSO
For instead w < − τ ̂p < − 1

If the max is smaller than one than the parabola is instead like this

-1 1

p* And the max is for p=-1

This implies |w |τ = − w −
τ
2

45

LASSO
Hence

−
τ
2

|p |2|w | = max
p∈[−1,1]

wpτ

has a closed form solution

̂p = arg max
p∈[−1,1]

wp −
τ
2

|p |2

⟹ ̂p =
1 w > τ
w
τ |w | ≤ τ

−1 w < − τ
⟹ |w |τ =

|w | − τ
2 |w | > τ

1
2τ |w |2 |w | ≤ τ

46

LASSO

τ =
1
10

47

LASSO

|w |τ =
|w | − τ

2 |w | > τ
1
2τ |w |2 |w | ≤ τ

The change in the l1 norm allows us to write

∇ |w |τ =
1 w > τ
1
τ w |w | ≤ τ

−1 w < − τ

for which we observe

47

LASSO

|w |τ =
|w | − τ

2 |w | > τ
1
2τ |w |2 |w | ≤ τ

The change in the l1 norm allows us to write

∇ |w |τ =
1 w > τ
1
τ w |w | ≤ τ

−1 w < − τ

|w |τ ≤ |w | ≤ |w |τ +
τ
2

for which we observe

as well as

48

LASSO
We can therefore get a differentiable problem by replacing

∥w∥1 =
d

∑
j=0

|wj | Hτ(w) =
d

∑
j=0

|wj |τwith Huber loss

function

48

LASSO
We can therefore get a differentiable problem by replacing

∥w∥1 =
d

∑
j=0

|wj | Hτ(w) =
d

∑
j=0

|wj |τwith

Smoothed LASSO:

wα = arg min
w∈ℝd+1 { 1

2
∥Xw − y∥2 + αHτ(w)}

Huber loss

function

48

LASSO
We can therefore get a differentiable problem by replacing

∥w∥1 =
d

∑
j=0

|wj | Hτ(w) =
d

∑
j=0

|wj |τwith

Smoothed LASSO:

wα = arg min
w∈ℝd+1 { 1

2
∥Xw − y∥2 + αHτ(w)}

How can we solve this problem?

Huber loss

function

49

LASSO
Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant:

49

LASSO
Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant: gradient descent for Eτ(w) :=
1

2
∥Xw − y∥2 + Hτ(w)α :

49

LASSO
Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant: gradient descent for Eτ(w) :=
1

2
∥Xw − y∥2 + Hτ(w)α :

wk+1 = wk − τ∇E(wk)

49

LASSO
Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant: gradient descent for

wk+1 = wk − τ (X⊤(Xwk − y) + α∇Hτ(wk))

Eτ(w) :=
1

2
∥Xw − y∥2 + Hτ(w)α :

wk+1 = wk − τ∇E(wk)

49

LASSO
Smoothed LASSO: wα = arg min

w∈ℝd+1 { 1
2

∥Xw − y∥2 + αHτ(w)}
How can we solve this problem?

One variant: gradient descent for

wk+1 = wk − τ (X⊤(Xwk − y) + α∇Hτ(wk))

Eτ(w) :=
1

2
∥Xw − y∥2 + Hτ(w)α :

wk+1 = wk − τ∇E(wk)

We have two competing terms due to the structure of E

50

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

50

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

wk+ 1
2 = wk −

τ
α

X⊤(Xwk − y) We move first towards the

opposite of the max variation

of MSE

50

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

wk+ 1
2 = wk −

τ
α

X⊤(Xwk − y) We move first towards the

opposite of the max variation

of MSE

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2) We move then towards the

opposite of the max variation

of the Huber loss function

50

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

wk+ 1
2 = wk −

τ
α

X⊤(Xwk − y) We move first towards the

opposite of the max variation

of MSE

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2) We move then towards the

opposite of the max variation

of the Huber loss function

Converge for
τ
α

≤ ∥X⊤X∥−1

50

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

wk+ 1
2 = wk −

τ
α

X⊤(Xwk − y) We move first towards the

opposite of the max variation

of MSE

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2) We move then towards the

opposite of the max variation

of the Huber loss function

Converge for
τ
α

≤ ∥X⊤X∥−1

Converge for any τ

50

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α

wk+ 1
2 = wk −

τ
α

X⊤(Xwk − y) We move first towards the

opposite of the max variation

of MSE

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2) We move then towards the

opposite of the max variation

of the Huber loss function

Converge for
τ
α

≤ ∥X⊤X∥−1

Converge for any τ

Hence we select
τ
α

≤ ∥X⊤X∥−1

51

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+ 1
2 =

wk+1 =

α :

Note the following:

w − τ∇ |w |τ = w − {
τ w > τ
w |w | ≤ τ
−τ w < − τ

wk+ 1
2 − τ∇Hτ(wk+ 1

2)

wk −
τ
α

X⊤(Xwk − y)

51

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+ 1
2 =

wk+1 =

α :

Note the following:

w − τ∇ |w |τ = w − {
τ w > τ
w |w | ≤ τ
−τ w < − τ

= {
w − τ w > τ
0 |w | ≤ τ
w + τ w < − τ

wk+ 1
2 − τ∇Hτ(wk+ 1

2)

wk −
τ
α

X⊤(Xwk − y)

51

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+ 1
2 =

wk+1 =

α :

Note the following:

w − τ∇ |w |τ = w − {
τ w > τ
w |w | ≤ τ
−τ w < − τ

= {
w − τ w > τ
0 |w | ≤ τ
w + τ w < − τ

=: softτ (w)

wk+ 1
2 − τ∇Hτ(wk+ 1

2)

wk −
τ
α

X⊤(Xwk − y)

(soft-thresholding)

52

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2)

wk −
τ
α

X⊤(Xwk − y)

52

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2)

wk −
τ
α

X⊤(Xwk − y)

The last term can be written as

52

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2)

wk −
τ
α

X⊤(Xwk − y)

The last term can be written as

wk+1 = softτ(wk+ 1
2)

52

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)
α :

wk+ 1
2 =

wk+1 = wk+ 1
2 − τ∇Hτ(wk+ 1

2)

wk −
τ
α

X⊤(Xwk − y)

The last term can be written as

wk+1 = softτ(wk+ 1
2)

Hence, the soft-thresholding of the previous expression

()()

53

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+1 =

α :

softτ wk −
τ
α

X⊤(Xwk − y)
j

j ∀j ∈ {1,…, d + 1}

()()

53

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+1 =

α :

softτ wk −
τ
α

X⊤(Xwk − y)
j

j

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)

∀j ∈ {1,…, d + 1}

()()

53

LASSO
Alternative: forward-forward splitting for Eτ(w) :=

1
2

∥Xw − y∥2 + Hτ(w)

wk+1 =

α :

softτ wk −
τ
α

X⊤(Xwk − y)
j

j

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)

∀j ∈ {1,…, d + 1}

Special case of proximal gradient descent

wk+1 = (I + τ∂R)−1(wk − τ∇L(wk))

Proximal gradient method

54

E(w) = L(w) + R(w)Suppose we want to minimise

Proximal gradient method

54

E(w) = L(w) + R(w)Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1. is differentiable, i.e., exists

2. has a simple proximal map, i.e.,

L ∇L(w)

R

is easy to compute

Proximal gradient method

54

E(w) = L(w) + R(w)

wk+1 = proxτR (wk − τ∇L(wk))Then:

Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1. is differentiable, i.e., exists

2. has a simple proximal map, i.e.,

L ∇L(w)

R

is easy to compute

Proximal gradient method

54

E(w) = L(w) + R(w)

wk+1 = proxτR (wk − τ∇L(wk))Then:

Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1. is differentiable, i.e., exists

2. has a simple proximal map, i.e.,

L ∇L(w)

R

is easy to compute

 Proximal gradient method

Proximal gradient method

55

For the choice this reads asR(x) =
1
2

∥x∥2

prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}

Proximal gradient method

55

For the choice this reads asR(x) =
1
2

∥x∥2

prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}
Forget for a second the proximal map, we know how to solve that problem!

Proximal gradient method

56

prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}
This is a simple convex optimisation problem. If we define ,

we obtain .

E(x) :=
1
2

∥x − z∥2 +
τ
2

∥x∥2

∇E(x) = x − z + τx

∇E(̂x) = 0 ⇔ ̂x =
z

1 + τ

The global minimiser satisfies

Proximal gradient method

56

prox τ
2 ∥⋅∥2(z) = arg min

x { 1
2

∥x − z∥2 +
τ
2

∥x∥2}
This is a simple convex optimisation problem. If we define ,

we obtain .

E(x) :=
1
2

∥x − z∥2 +
τ
2

∥x∥2

∇E(x) = x − z + τx

∇E(̂x) = 0 ⇔ ̂x =
z

1 + τ

The global minimiser satisfies

⟹ prox τ
2 ∥⋅∥2(z) =

z
1 + τ

Proximal gradient method

57

Example for a proximal map

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)} :

Proximal gradient method

57

Example for a proximal map

For the choice this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)} :

Proximal gradient method

57

Example for a proximal map

For the choice this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)} :

= arg min
x∈C { 1

2
∥x − z∥2}

Proximal gradient method

58

Example for a proximal map

For the choice this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}

Proximal gradient method

58

Example for a proximal map

For the choice this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}
Projection onto convex set !C

Proximal gradient method

58

Example for a proximal map

For the choice this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}
Projection onto convex set !C

This might be important in some real applications where we have some
constraints on the x!

Proximal gradient method

58

Example for a proximal map

For the choice this reads asR(x) = {0 x ∈ C
∞ x ∉ C

proxτR(z) = arg min
x { 1

2
∥x − z∥2 + τR(x)}

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

= arg min
x∈C

{∥x − z∥}
Projection onto convex set !C

Example: C = {x ∈ ℝ | x ∈ [0,1]}

This might be important in some real applications where we have some
constraints on the x!

Constrained optimisation

59

Special case:

R(w) = {0 w ∈ C
∞ w ∉ C

C = convex set = constraint-set

Constrained optimisation

59

Special case:

R(w) = {0 w ∈ C
∞ w ∉ C

C = convex set = constraint-set

⇒ proxτR(z) = arg min
w∈ℝn

∥w − z∥2 + R(w)

= arg min
w∈C

∥w − z∥2 = projC(z)

Constrained optimisation

59

Special case:

L

C ⇢ RD
w

L(w)

R(w) = {0 w ∈ C
∞ w ∉ C

C = convex set = constraint-set

⇒ proxτR(z) = arg min
w∈ℝn

∥w − z∥2 + R(w)

⇒ wk+1 = projC (wk − τ∇L(wk))
Projected gradient descent

C ⇢ RD
w

w0

PC(w
0)

�rL(w)

= arg min
w∈C

∥w − z∥2 = projC(z)

Standard gradient

descent might

bring you out!

Proximal gradient method

60

E(w) = L(w) + R(w)

wk+1 = proxτR (wk − τ∇L(wk))Proximal gradient method:

Suppose we want to minimise

proxτR(z) := arg min
x { 1

2
∥x − z∥2 + τR(x)}

Assumptions: 1. is differentiable, i.e. exists

2. has a simple proximal map, i.e.

L ∇L(w)

R

is easy to compute

Proximal gradient descent

61

wk+1 = (I + τ∂R)−1(wk − τ∇L(wk))

Minimise variational regularisation iteratively viaL(w) + R(w)

where the proximal map is defined as

(I + τ∂R)−1(z) := arg min
w∈ℝd+1 { 1

2
∥w − z∥2 + τR(w)}

