Machine Learning with Python MTH786U/P 2022/23

Lecture 5: From ridge regression to the LASSO

Nicola Perra, Queen Mary University of London (QMUL)

Recap: Ridge regression

Two weeks ago we learned about the minimisation problem

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}\right\}
$$

that is known as Tikhonov regularisation or ridge regression

Recap: Ridge regression

Two weeks ago we learned about the minimisation problem

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}\right\}
$$

Standard regression term
that is known as Tikhonov regularisation or ridge regression

Andrey Tikhonov, 1906-1993

Recap: Ridge regression

Two weeks ago we learned about the minimisation problem

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}\right\}
$$

Standard regression term
that is known as Tikhonov regularisation or ridge regression

Andrey Tikhonov, 1906-1993

Recap: Ridge regression

Two weeks ago we learned about the minimisation problem

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}\right\}
$$

Standard regression term Regularisation term Regularisation parameter
that is known as Tikhonov regularisation or ridge regression

Andrey Tikhonov, 1906-1993

Variational regularisation

A more general form of the previous problem is variational regularisation

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}
$$

Variational regularisation

A more general form of the previous problem is variational regularisation

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}
$$

Data term/
Regression term

Variational regularisation

A more general form of the previous problem is variational regularisation

Variational regularisation

A more general form of the previous problem is variational regularisation

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}
$$

Data term/
Regression term

Regularisation term

Previous example:

$$
L(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}
$$

$$
R(\mathbf{w})=\frac{\alpha}{2}\|\mathbf{w}\|^{2}
$$

\&1 regularisation / the lasso

Variational regularisation:

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}
$$

<1 regularisation / the lasso

Variational regularisation: $\quad \hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}$
Choose $\quad R(\mathbf{w})=\alpha\|\mathbf{w}\|_{1}:=\alpha \sum_{k=1}^{n}\left|w_{k}\right| \quad$ and $\quad L(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}$

<1 regularisation / the lasso

Variational regularisation: $\quad \hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}$
Choose $\quad R(\mathbf{w})=\alpha\|\mathbf{w}\|_{1}:=\alpha \sum_{k=1}^{n}\left|w_{k}\right| \quad$ and $\quad L(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}$

$$
\Rightarrow \quad \hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

<1 regularisation / the lasso

Variational regularisation: $\quad \hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}$
Choose $\quad R(\mathbf{w})=\alpha\|\mathbf{w}\|_{1}:=\alpha \sum_{k=1}^{n}\left|w_{k}\right| \quad$ and $\quad L(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}$

$$
\Rightarrow \quad \hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

What is the advantage of using the one-norm over the two-norm?

<1 regularisation / the lasso

Variational regularisation: $\quad \hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\{L(\mathbf{w})+R(\mathbf{w})\}$
Choose $\quad R(\mathbf{w})=\alpha\|\mathbf{w}\|_{1}:=\alpha \sum_{k=1}^{n}\left|w_{k}\right| \quad$ and $\quad L(\mathbf{w})=\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}$

$$
\Rightarrow \quad \hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

What is the advantage of using the one-norm over the two-norm?

l1 regularisation / the lasso

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

Sparsity means that only relatively few elements of $\hat{\mathbf{w}}$ will be non-zero

l1 regularisation / the lasso

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

Sparsity means that only relatively few elements of $\hat{\mathbf{w}}$ will be non-zero

Sparsity \cong simplicity! (Occam's razor)

l1 regularisation / the lasso

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

Sparsity means that only relatively few elements of $\hat{\mathbf{w}}$ will be non-zero

Sparsity \cong simplicity! (Occam's razor)

Implicit reduction of parameters

l1 regularisation / the lasso

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

Sparsity means that only relatively few elements of $\hat{\mathbf{w}}$ will be non-zero

Sparsity \cong simplicity! (Occam's razor)

Implicit reduction of parameters

LASSO = Least Absolute Shrinkage and Selection Operator

<1 regularisation / the lasso

Example: fit line with just one input/output data sample (x, y)

<1 regularisation / the lasso

Example: fit line with just one input/output data sample (x, y)

\&1 regularisation / the lasso

Example: fit line with just one input/output data sample (x, y)

Which solution do we pick?

$$
y=w_{1} x+w_{0}
$$

\&1 regularisation / the lasso

Example: fit line with just one input/output data sample (x, y)

<1 regularisation / the lasso

Example: fit line with just one input/output data sample (x, y)

Simplicity idea:

Let either w_{0} or w_{1} be zero!

$$
y=w_{1} x+w_{0}
$$

<1 regularisation / the lasso

Example: fit line with just one input/output data sample (x, y)
Simplicity idea:

<1 regularisation / the lasso

Example: fit line with just one input/output data sample (x, y)

\&1 regularisation / the lasso

l1 regularisation / the lasso

In general, why (or how) does the ℓ^{1} norm make \hat{w} sparse?

\&1 regularisation / the lasso

The solution of the problem
$y=w_{0}+w_{1} x$
is a point in this space

We can indeed write

$$
w_{0}=y-w_{1} x
$$

\&1 regularisation / the lasso

Minimise
$\sqrt{w_{0}^{2}+w_{1}^{2}}$
subject to

$$
w_{0}=-w_{1} x+y
$$

\&1 regularisation / the lasso

Minimise
$\sqrt{w_{0}^{2}+w_{1}^{2}}$
subject to

$$
w_{0}=-w_{1} x+y
$$

\&1 regularisation / the lasso

Minimise
$\sqrt{w_{0}^{2}+w_{1}^{2}}$
subject to

$$
w_{0}=-w_{1} x+y
$$

<1 regularisation / the lasso

\&1 regularisation / the lasso

Minimise
$\left|w_{0}\right|+\left|w_{1}\right|$
subject to

$$
w_{0}=-w_{1} x+y
$$

\&1 regularisation / the lasso

Minimise
$\left|w_{0}\right|+\left|w_{1}\right|$
subject to

$$
w_{0}=-w_{1} x+y
$$

e1 regularisation / the lasso

Minimise
$\left|w_{0}\right|+\left|w_{1}\right|$
subject to
$w_{0}=-w_{1} x+y$

e1 regularisation / the lasso

Minimise
$\left|w_{0}\right|+\left|w_{1}\right|$
subject to
$w_{0}=-w_{1} x+y$

e1 regularisation / the lasso

\&1 regularisation / the lasso

(a) Dense

(b) Sparse

\&1 regularisation / the lasso

(a) Dense
$\|$ signal in a) $\|_{2} \approx 1.5431$

(b) Sparse
$\|$ signal in a) $\|_{1} \approx 20.061$

\&1 regularisation / the lasso

(a) Dense
$\|$ signal in a) $\|_{2} \approx 1.5431$
$\|$ signal in b) $\|_{2} \approx 1.7472$

(b) Sparse
$\|$ signal in a) $\|_{1} \approx 20.061$ $\|$ signal in b) $\|_{1} \approx 6.2931$

\&1 regularisation / the lasso

 OPTIMIZATION PROBLEMS?

Why optimisation?

In the previous lectures, we have studied regression problems of the form

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}} E(\mathbf{w})
$$

Why optimisation?

In the previous lectures, we have studied regression problems of the form

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}} E(\mathbf{w})
$$

For

$$
E(\mathbf{w})=\operatorname{MSE}(\mathbf{w})=\frac{1}{2 s} \sum_{i=1}^{s}\left|f\left(x_{i}, w\right)-y_{i}\right|^{2}
$$

where f is linear in w, we have seen that we can compute \hat{w} by solving a linear system of equations

Why optimisation?

In the previous lectures, we have studied regression problems of the form

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}} E(\mathbf{w})
$$

For

$$
E(\mathbf{w})=\frac{1}{2 s} \sum_{i=1}^{s}\left|f\left(x_{i}, w\right)-y_{i}\right|^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}
$$

where f is linear in w, we have seen that we can compute \hat{w} by solving a linear system of equations

Why optimisation?

In the previous lectures, we have studied regression problems of the form

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}} E(\mathbf{w})
$$

For

$$
E(\mathbf{w})=\frac{1}{2 s} \sum_{i=1}^{s}\left|f\left(x_{i}, w\right)-y_{i}\right|^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}
$$

where f is linear in w, we have seen that we can compute \hat{w} by solving a linear system of equations

But: how do we minimise E in general?

Grid search?

How about using grid search?

> Evaluate a function E at points on a grid and record smallest value

Grid search?

How about using grid search?

Evaluate a function E at points on a grid and record smallest value

Advantages:

Grid search?

How about using grid search?

Evaluate a function E at points on a grid and record smallest value

Advantages:

- works for any kind of function!

Grid search?

How about using grid search?

Evaluate a function E at points on a grid and record smallest value

Advantages:

- works for any kind of function!
- very easy to implement

Grid search?

How about using grid search?

Evaluate a function E at points on a grid and record smallest value

Advantages:

- works for any kind of function!
- very easy to implement

Disadvantages:

Grid search?

How about using grid search?

Evaluate a function E at points on a grid and record smallest value

Advantages:

- works for any kind of function!
- very easy to implement

Disadvantages:

- computationally infeasible for large no. of parameters

Grid search?

How about using grid search?

Evaluate a function E at points on a grid and record smallest value

Advantages:

- works for any kind of function!
- very easy to implement

Disadvantages:

- computationally infeasible for large no. of parameters
- no guarantee that we compute a minimum

Smooth optimisation

Smooth functions (continuously differentiable) allow the application of more systematic searches compared to grid search

$$
E \in C^{1}\left(\mathbb{R}^{d+1}\right) \quad \Rightarrow \quad \nabla E \text { exists and is continuous }
$$

Smooth optimisation

Example for smooth optimisation: gradient descent

$$
\mathbf{w}^{k+1}=\mathbf{w}^{k}-\tau \nabla E\left(\mathbf{w}^{k}\right)
$$

for some $\mathbf{w}^{0} \in \mathbb{R}^{n}$ and a constant $\tau>0$.

Procedure to find a minimum of $w!$

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\mathbf{w}^{1}=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)
$$

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\begin{aligned}
& \mathbf{w}^{1}=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
& \mathbf{w}^{2}=\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right)
\end{aligned}
$$

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
& =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right)
\end{aligned}
$$

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
& =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
\mathbf{w}^{3} & =\mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right)
\end{aligned}
$$

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
& =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
\mathbf{w}^{3} & =\mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right)
\end{aligned}
$$

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\begin{aligned}
& \mathbf{w}^{1}=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
& \mathbf{w}^{2}=\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
&=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
& \mathbf{w}^{3}= \mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right) \\
& \vdots \\
& \mathbf{w}^{k}=\mathbf{w}^{k-1}-\tau \nabla E\left(\mathbf{w}^{k-1}\right)
\end{aligned}
$$

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\begin{aligned}
& \mathbf{w}^{1}=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
& \mathbf{w}^{2}=\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
&=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
& \mathbf{w}^{3}= \mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right) \\
& \vdots \\
& \mathbf{w}^{k}=\mathbf{w}^{k-1}-\tau \nabla E\left(\mathbf{w}^{k-1}\right)
\end{aligned}
$$

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth

$$
\begin{aligned}
& \mathbf{w}^{1}=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
& \mathbf{w}^{2}=\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
&=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
& \mathbf{w}^{3}= \mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right) \\
& \vdots \\
& \mathbf{w}^{k}=\mathbf{w}^{k-1}-\tau \nabla E\left(\mathbf{w}^{k-1}\right)
\end{aligned}
$$

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure

$$
\mathbf{w}^{1}=\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)
$$

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right)
\end{aligned}
$$

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
& =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right)
\end{aligned}
$$

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
& =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
\mathbf{w}^{3} & =\mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right)
\end{aligned}
$$

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
& =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
\mathbf{w}^{3} & =\mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right)
\end{aligned}
$$

Every step of the procedure is also known as an iterate or update

Gradient descent

Gradient descent is an iterative procedure

$$
\begin{aligned}
\mathbf{w}^{1} & =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right) \\
\mathbf{w}^{2} & =\mathbf{w}^{1}-\tau \nabla E\left(\mathbf{w}^{1}\right) \\
& =\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)-\tau \nabla E\left(\mathbf{w}^{0}-\tau \nabla E\left(\mathbf{w}^{0}\right)\right) \\
\mathbf{w}^{3} & =\mathbf{w}^{2}-\tau \nabla E\left(\mathbf{w}^{2}\right) \\
& \vdots \\
\mathbf{w}^{k} & =\mathbf{w}^{k-1}-\tau \nabla E\left(\mathbf{w}^{k-1}\right)
\end{aligned}
$$

Every step of the procedure is also known as an iterate or update

Gradient descent: examples

One parameter MSE-model: $\quad \operatorname{MSE}(w)=\frac{1}{2 s} \sum_{i=1}^{s}\left|w-y_{i}\right|^{2}$

Gradient descent: examples

One parameter MSE-model:

$$
\operatorname{MSE}(w)=\frac{1}{2 s} \sum_{i=1}^{s}\left|w-y_{i}\right|^{2}
$$

Gradient:
$\nabla \operatorname{MSE}(w)=w-\frac{1}{s} \sum_{i=1}^{s} y_{i}$

Gradient descent: examples

One parameter MSE-model:

$$
\operatorname{MSE}(w)=\frac{1}{2 s} \sum_{i=1}^{s}\left|w-y_{i}\right|^{2}
$$

Gradient:

$$
\nabla \operatorname{MSE}(w)=w-\frac{1}{s} \sum_{i=1}^{s} y_{i}
$$

We have learnt that

$$
\nabla \operatorname{MSE}(w)=w-\frac{1}{s} \sum_{i=1}^{s} y_{i}=0 \rightarrow \hat{w}=\bar{y}
$$

Gradient descent: examples

Gradient descent: examples

Gradient descent:

$$
w^{k+1}=w^{k}-\tau\left(w^{k}-\frac{1}{s} \sum_{i=1}^{s} y_{i}\right)=(1-\tau) w^{k}+\frac{\tau}{s} \sum_{i=1}^{s} y_{i}
$$

Gradient descent: examples

Gradient descent:

$$
w^{k+1}=w^{k}-\tau\left(w^{k}-\frac{1}{s} \sum_{i=1}^{s} y_{i}\right)=(1-\tau) w^{k}+\frac{\tau}{s} \sum_{i=1}^{s} y_{i}
$$

For $\tau=1$

$$
w^{k+1}=\frac{1}{s} \sum_{i=1}^{s} y_{i}
$$

Gradient descent: examples

Gradient descent: $\quad w^{k+1}=w^{k}-\tau\left(w^{k}-\frac{1}{s} \sum_{i=1}^{s} y_{i}\right)=(1-\tau) w^{k}+\frac{\tau}{s} \sum_{i=1}^{s} y_{i}$
For $\tau=1 \quad w^{k+1}=\frac{1}{s} \sum_{i=1}^{s} y_{i}$
For a general value of τ ?

Gradient descent: examples

General linear MSE-model: $\quad \operatorname{MSE}(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2}$

Gradient descent: examples

General linear MSE-model: $\quad \operatorname{MSE}(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2}$
Recall: $\quad \nabla \operatorname{MSE}(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X w}-\mathbf{y})$

Gradient descent: examples

General linear MSE-model: $\quad \operatorname{MSE}(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2}$
Recall: $\quad \nabla \operatorname{MSE}(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X w}-\mathbf{y})$
Gradient descent: $\quad \mathbf{w}^{k+1}=\mathbf{w}^{k}+\frac{\tau}{s} \mathbf{X}^{\top}\left(\mathbf{y}-\mathbf{X} \mathbf{w}^{k}\right)$

Gradient descent: examples

General linear MSE-model: $\quad \operatorname{MSE}(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2}$
Recall: $\quad \nabla \operatorname{MSE}(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X w}-\mathbf{y})$
Gradient descent: $\quad \mathbf{w}^{k+1}=\mathbf{w}^{k}+\frac{\tau}{s} \mathbf{X}^{\top}\left(\mathbf{y}-\mathbf{X} \mathbf{w}^{k}\right)$

$$
=\left(I-\frac{\tau}{s} \mathbf{X}^{\top} \mathbf{X}\right) \mathbf{w}^{k}+\frac{\tau}{s} \mathbf{X}^{T} \mathbf{y}
$$

Gradient descent: examples

General linear MSE-model: $\quad \operatorname{MSE}(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2}$
Recall: $\quad \nabla \operatorname{MSE}(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X w}-\mathbf{y})$
Gradient descent: $\quad \mathbf{w}^{k+1}=\mathbf{w}^{k}+\frac{\tau}{s} \mathbf{X}^{\top}\left(\mathbf{y}-\mathbf{X} \mathbf{w}^{k}\right)$

$$
=\left(I-\frac{\tau}{s} \mathbf{X}^{\top} \mathbf{X}\right) \mathbf{w}^{k}+\frac{\tau}{s} \mathbf{X}^{T} \mathbf{y} \quad \xrightarrow{k \rightarrow \infty}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Gradient descent: examples

General linear MSE-model: $\quad \operatorname{MSE}(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2}$
Recall: $\quad \nabla \operatorname{MSE}(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X w}-\mathbf{y})$
Gradient descent: $\quad \mathbf{w}^{k+1}=\mathbf{w}^{k}+\frac{\tau}{s} \mathbf{X}^{\top}\left(\mathbf{y}-\mathbf{X} \mathbf{w}^{k}\right)$
$=\left(I-\frac{\tau}{s} \mathbf{X}^{\top} \mathbf{X}\right) \mathbf{w}^{k}+\frac{\tau}{s} \mathbf{X}^{T} \mathbf{y} \quad \xrightarrow{k \rightarrow \infty}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
Does this work for any τ ?

Gradient descent

Why (and when) does it work?

Gradient descent

Why (and when) does it work?
Assumption: E is Lipschitz-continuous with constant L (or L-smooth), i.e.

$$
\|\nabla E(\mathbf{x})-\nabla E(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \quad \forall x, y \in \mathbb{R}^{n}
$$

Gradient descent

Why (and when) does it work?

Assumption: E is Lipschitz-continuous with constant L (or L-smooth), i.e.

$$
\|\nabla E(\mathbf{x})-\nabla E(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \quad \forall x, y \in \mathbb{R}^{n}
$$

Then the function

$$
G(x):=\frac{L}{2}\|\mathbf{x}\|^{2}-E(\mathbf{x})
$$

is convex for all $\mathbf{x} \in \mathbb{R}^{n}$.

Gradient descent

Why (and when) does it work?
Assumptions: • the function E is τ^{-1} smooth

- the function $G(\mathbf{w}):=\frac{1}{2 \tau}\|\mathbf{w}\|^{2}-E(\mathbf{w})$ is convex for all $\mathbf{w} \in \mathbb{R}^{n}$

Gradient descent

Why (and when) does it work?

$$
\text { Assumptions: • the function } E \text { is } \tau^{-1} \text { smooth }
$$

- the function $G(\mathbf{w}):=\frac{1}{2 \tau}\|\mathbf{w}\|^{2}-E(\mathbf{w})$ is convex for all $\mathbf{w} \in \mathbb{R}^{n}$

Then (converge theorem) we can show

1. that $E\left(\mathbf{w}^{k+1}\right) \leq E\left(\mathbf{w}^{k}\right)$
2. as well as $\lim _{k \rightarrow \infty} E\left(\mathbf{w}^{k}\right)=E(\hat{\mathbf{w}})$ with rate $1 / k$

Gradient descent

Why (and when) does it work?
Assumptions: • the function E is τ^{-1} smooth

- the function $G(\mathbf{w}):=\frac{1}{2 \tau}\|\mathbf{w}\|^{2}-E(\mathbf{w})$ is convex for all $\mathbf{w} \in \mathbb{R}^{n}$

Then (converge theorem) we can show

1. that $E\left(\mathbf{w}^{k+1}\right) \leq E\left(\mathbf{w}^{k}\right)$
2. as well as $\lim _{k \rightarrow \infty} E\left(\mathbf{w}^{k}\right)=E(\hat{\mathbf{w}})$ with rate $1 / k$

Proof:

Gradient descent

Why (and when) does it work?

$$
\text { Assumptions: • the function } E \text { is } \tau^{-1} \text { smooth }
$$

- the function $G(\mathbf{w}):=\frac{1}{2 \tau}\|\mathbf{w}\|^{2}-E(\mathbf{w})$ is convex for all $\mathbf{w} \in \mathbb{R}^{n}$

Then (converge theorem) we can show

1. that $E\left(\mathbf{w}^{k+1}\right) \leq E\left(\mathbf{w}^{k}\right)$
2. as well as $\lim _{k \rightarrow \infty} E\left(\mathbf{w}^{k}\right)=E(\hat{\mathbf{w}})$ with rate $1 / k$

Proof: in the lecture notes, but not examinable!

Gradient descent: examples

What is the value of τ that allows convergence?

Gradient descent: examples

What is the value of τ that allows convergence?

$$
E(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2} \rightarrow \nabla E(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X w}-\mathbf{y})
$$

Gradient descent: examples

What is the value of τ that allows convergence?

$$
\begin{aligned}
& E(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2} \rightarrow \nabla E(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{y}) \\
& \|\nabla E(\mathbf{w})-\nabla E(\mathbf{v})\|=\frac{1}{s}\left\|\mathbf{X}^{\top} \mathbf{X}(\mathbf{w}-\mathbf{v})\right\|
\end{aligned}
$$

Gradient descent: examples

What is the value of τ that allows convergence?

$$
\begin{gathered}
E(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2} \rightarrow \nabla E(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{y}) \\
\|\nabla E(\mathbf{w})-\nabla E(\mathbf{v})\|=\frac{1}{s}\left\|\mathbf{X}^{\top} \mathbf{X}(\mathbf{w}-\mathbf{v})\right\| \leq \frac{1}{s}\left\|\mathbf{X}^{\top} \mathbf{X}\right\|\|(\mathbf{w}-\mathbf{v})\|
\end{gathered}
$$

Gradient descent: examples

What is the value of τ that allows convergence?

$$
\begin{gathered}
E(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2} \rightarrow \nabla E(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{y}) \\
\|\nabla E(\mathbf{w})-\nabla E(\mathbf{v})\|=\frac{1}{s}\left\|\mathbf{X}^{\top} \mathbf{X}(\mathbf{w}-\mathbf{v})\right\| \leq \frac{1}{s}\left\|\mathbf{X}^{\top} \mathbf{X}\right\|\|(\mathbf{w}-\mathbf{v})\|
\end{gathered}
$$

Hence the function is τ^{-1} smooth and converge is guaranteed for $\frac{1}{\tau}=\frac{\left\|\mathbf{X}^{\top} \mathbf{X}\right\|}{s}$

Gradient descent: examples

What is the value of τ that allows convergence?

$$
\begin{gathered}
E(\mathbf{w})=\frac{1}{2 s}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2} \rightarrow \nabla E(\mathbf{w})=\frac{1}{s} \mathbf{X}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{y}) \\
\|\nabla E(\mathbf{w})-\nabla E(\mathbf{v})\|=\frac{1}{s}\left\|\mathbf{X}^{\top} \mathbf{X}(\mathbf{w}-\mathbf{v})\right\| \leq \frac{1}{s}\left\|\mathbf{X}^{\top} \mathbf{X}\right\|\|(\mathbf{w}-\mathbf{v})\|
\end{gathered}
$$

Hence the function is τ^{-1} smooth and converge is guaranteed for $\frac{1}{\tau}=\frac{\left\|\mathbf{X}^{\top} \mathbf{X}\right\|}{s}$ This implies convergence for any $\tau \leq \frac{s}{\left\|\mathbf{X}^{\top} \mathbf{X}\right\|}$

Gradient descent

Assumptions: • the function E is τ^{-1} smooth

- the function $G(\mathbf{w}):=\frac{1}{2 \tau}\|\mathbf{w}\|^{2}-E(\mathbf{w})$ is convex for all $\mathbf{w} \in \mathbb{R}^{n}$

What can we do if the assumptions are not met?

Gradient descent

Assumptions: • the function E is τ^{-1} smooth

- the function $G(\mathbf{w}):=\frac{1}{2 \tau}\|\mathbf{w}\|^{2}-E(\mathbf{w})$ is convex for all $\mathbf{w} \in \mathbb{R}^{n}$

What can we do if the assumptions are not met?

Backtracking:

Gradient descent

Assumptions: • the function E is τ^{-1} smooth

- the function $G(\mathbf{w}):=\frac{1}{2 \tau}\|\mathbf{w}\|^{2}-E(\mathbf{w})$ is convex for all $\mathbf{w} \in \mathbb{R}^{n}$

What can we do if the assumptions are not met?

Backtracking: compute \mathbf{w}^{k+1} and check $E\left(\mathbf{w}^{k+1}\right) \leq E\left(\mathbf{w}^{k}\right)$

$$
\begin{cases}\text { keep } \tau \text { as it is } & \text { if } E\left(\mathbf{w}^{k+1}\right) \leq E\left(\mathbf{w}^{k}\right) \\ \text { decrease } \tau & \text { if } E\left(\mathbf{w}^{k+1}\right)>E\left(\mathbf{w}^{k}\right)\end{cases}
$$

Gradient descent

Remark: in the (modern) machine learning literature...

Gradient descent

Remark: in the (modern) machine learning literature...
...gradient descent is also known as batch gradient descent

Gradient descent

Remark: in the (modern) machine learning literature...
...gradient descent is also known as batch gradient descent
...the stepsize τ is also known as the learning rate (bad name)

SOLVING LASSO

LASSO

How can we solve the LASSO computationally?

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

LASSO

How can we solve the LASSO computationally?

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

Can we just compute $\nabla E\left(\mathbf{w}_{\alpha}\right)=0$ for $E(\mathbf{w}):=\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2} / 2+\alpha\|\mathbf{w}\|_{1}$?

LASSO

How can we solve the LASSO computationally?

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

Can we just compute $\nabla E\left(\mathbf{w}_{\alpha}\right)=0$ for $E(\mathbf{w}):=\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2} / 2+\alpha\|\mathbf{w}\|_{1}$?

We cannot do this, since E is not differentiable!

LASSO

How can we solve the LASSO computationally?

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

Can we use the same machinery we developed for the other problems?

LASSO

No!

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

The 11 norm is not differentiable in zero

LASSO

No!

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

The 11 norm is not differentiable in zero

We can smooth the one-norm to make this problem differentiable!

LASSO

No!

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

The 11 norm is not differentiable in zero
We can smooth the one-norm to make this problem differentiable!

Note that we can write

$$
|\mathbf{w}|=\max _{p \in[-1,1]} \mathbf{w} p
$$

LASSO

How can we solve the LASSO computationally?

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w}}\left\{\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha\|\mathbf{w}\|_{1}\right\}
$$

We can smooth the one-norm to make this problem differentiable!

We can modify slightly the 11 norm to smooth the function

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

LASSO

Note that we can write

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

LASSO

Note that we can write

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

This problem has a closed form solution

$$
\hat{p}=\arg \max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

LASSO

Note that we can write

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

This problem has a closed form solution

$$
\begin{aligned}
& \hat{p}=\underset{p \in[-1,1]}{\arg \max _{p} w p-\frac{\tau}{2}|p|^{2}} \\
\Leftrightarrow & \hat{p}= \begin{cases}1 & w>\tau \\
\frac{w}{\tau} & |w| \leq \tau \\
-1 & w<-\tau\end{cases}
\end{aligned}
$$

LASSO

Note that we can write

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

This problem has a closed form solution

$$
\begin{aligned}
& \hat{p}=\underset{p \in[-1,1]}{\arg \max _{p} w-\frac{\tau}{2}|p|^{2}} \\
\Leftrightarrow & \hat{p}=\left\{\begin{array}{ll}
1 & w>\tau \\
\frac{w}{\tau} & |w| \leq \tau \\
-1 & w<-\tau
\end{array} \quad\right. \text { Why? }
\end{aligned}
$$

LASSO

We need to solve

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

LASSO

We need to solve

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

The function we are trying to maximize is a parabola of this type

LASSO

We need to solve

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

The function we are trying to maximize is a parabola of this type

p is bounded by -1 and 1

LASSO

How do we get the max?

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

LASSO

How do we get the max?

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

Compute the gradient!

LASSO

How do we get the max?

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

Compute the gradient!

$$
\nabla|\mathbf{w}|_{\tau}=w-\tau p \quad \rightarrow \hat{p}=\frac{w}{\tau}
$$

LASSO

How do we get the max?

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

Compute the gradient!

$$
\begin{gathered}
\nabla|\mathbf{w}|_{\tau}=w-\tau p \quad \rightarrow \hat{p}=\frac{w}{\tau} \\
1 \leq \hat{p} \leq 1 \rightarrow-\tau \leq w \leq \tau
\end{gathered}
$$

LASSO

How do we get the max?

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

Compute the gradient!

$$
\begin{gathered}
\nabla|\mathbf{w}|_{\tau}=w-\tau p \quad \rightarrow \hat{p}=\frac{w}{\tau} \\
1 \leq \hat{p} \leq 1 \rightarrow-\tau \leq w \leq \tau \\
|w| \leq \tau
\end{gathered}
$$

LASSO

Hence, for $|w| \leq \tau$ the max is obtained substituting p hat in the expression

Hence

$$
|\mathbf{w}|_{\tau}=\frac{w^{2}}{2 \tau}
$$

LASSO

Hence, for $|w| \leq \tau$ the max is obtained substituting p hat in the expression

$$
|\mathbf{w}|=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

Hence

$$
|\mathbf{w}|_{\tau}=\frac{w^{2}}{2 \tau}
$$

LASSO

Hence, for $|w| \leq \tau$ the max is obtained substituting p hat in the expression

$$
|\mathbf{w}|=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}=w \frac{w}{\tau}-\frac{\tau}{2} \frac{w^{2}}{\tau^{2}}=\frac{w^{2}}{2 \tau}
$$

Hence

$$
|\mathbf{w}|_{\tau}=\frac{w^{2}}{2 \tau}
$$

LASSO

For $w>\tau$ instead $\hat{p}>1$

LASSO

For $w>\tau$ instead $\hat{p}>1$

If the max is larger than one than the parabola is indeed like this

LASSO

For $w>\tau$ instead $\hat{p}>1$

If the max is larger than one than the parabola is indeed like this

LASSO

For $w>\tau$ instead $\hat{p}>1$

If the max is larger than one than the parabola is indeed like this

And the max is for $p=1$

LASSO

For $w>\tau$ instead $\hat{p}>1$

If the max is larger than one than the parabola is indeed like this

And the max is for $p=1$

This implies $|w|_{\tau}=w-\frac{\tau}{2}$

LASSO

For $w<-\tau$ instead $\hat{p}<-1$

LASSO

For $w<-\tau$ instead $\hat{p}<-1$

If the max is smaller than one than the parabola is instead like this

LASSO

For $w<-\tau$ instead $\hat{p}<-1$

If the max is smaller than one than the parabola is instead like this

LASSO

For $w<-\tau$ instead $\hat{p}<-1$

If the max is smaller than one than the parabola is instead like this

And the max is for $p=-1$

LASSO

For $w<-\tau$ instead $\hat{p}<-1$

If the max is smaller than one than the parabola is instead like this

And the max is for $p=-1$

This implies $|w|_{\tau}=-w-\frac{\tau}{2}$

LASSO

Hence

$$
|\mathbf{w}|_{\tau}=\max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

has a closed form solution

$$
\hat{p}=\arg \max _{p \in[-1,1]} w p-\frac{\tau}{2}|p|^{2}
$$

$$
\Longrightarrow \quad \hat{p}=\left\{\begin{array}{ll}
1 & w>\tau \\
\frac{w}{\tau} & |w| \leq \tau \\
-1 & w<-\tau
\end{array} \quad \Longrightarrow \quad|\mathbf{w}|_{\tau}= \begin{cases}|w|-\frac{\tau}{2} & |w|>\tau \\
\frac{1}{2 \tau}|w|^{2} & |w| \leq \tau\end{cases}\right.
$$

LASSO

LASSO

The change in the 11 norm allows us to write

$$
|\mathbf{w}|_{\tau}= \begin{cases}|w|-\frac{\tau}{2} & |w|>\tau \\ \frac{1}{2 \tau}|w|^{2} & |w| \leq \tau\end{cases}
$$

for which we observe

$$
\nabla|\mathbf{w}|_{\tau}= \begin{cases}1 & w>\tau \\ \frac{1}{\tau} w & |w| \leq \tau \\ -1 & w<-\tau\end{cases}
$$

LASSO

The change in the 11 norm allows us to write

$$
|\mathbf{w}|_{\tau}= \begin{cases}|w|-\frac{\tau}{2} & |w|>\tau \\ \frac{1}{2 \tau}|w|^{2} & |w| \leq \tau\end{cases}
$$

for which we observe

$$
\nabla|\mathbf{w}|_{\tau}= \begin{cases}1 & w>\tau \\ \frac{1}{\tau} w & |w| \leq \tau \\ -1 & w<-\tau\end{cases}
$$

as well as

$$
|\mathbf{w}|_{\tau} \leq|\mathbf{w}| \leq|\mathbf{w}|_{\tau}+\frac{\tau}{2}
$$

LASSO

We can therefore get a differentiable problem by replacing

$$
\|\mathbf{w}\|_{1}=\sum_{j=0}^{d}\left|w_{j}\right| \quad \text { with } \quad H_{\tau}(\mathbf{w})=\sum_{j=0}^{d}\left|w_{j}\right|_{\tau} \quad \begin{aligned}
& \text { Huber loss } \\
& \text { function }
\end{aligned}
$$

LASSO

We can therefore get a differentiable problem by replacing

$$
\|\mathbf{w}\|_{1}=\sum_{j=0}^{d}\left|w_{j}\right| \quad \text { with } \quad H_{\tau}(\mathbf{w})=\sum_{j=0}^{d}\left|w_{j}\right|_{\tau} \quad \begin{aligned}
& \text { Huber loss } \\
& \text { function }
\end{aligned}
$$

Smoothed LASSO:

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})\right\}
$$

LASSO

We can therefore get a differentiable problem by replacing

$$
\|\mathbf{w}\|_{1}=\sum_{j=0}^{d}\left|w_{j}\right| \quad \text { with } \quad H_{\tau}(\mathbf{w})=\sum_{j=0}^{d}\left|w_{j}\right|_{\tau} \quad \begin{aligned}
& \text { Huber loss } \\
& \text { function }
\end{aligned}
$$

Smoothed LASSO:

$$
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})\right\}
$$

How can we solve this problem?

LASSO

Smoothed LASSO: $\quad \mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})\right\}$
How can we solve this problem?
One variant:

LASSO

Smoothed LASSO: $\quad \mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})\right\}$
How can we solve this problem?
One variant: gradient descent for $E_{\tau}(\mathbf{w}):=\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})$:

LASSO

Smoothed LASSO: $\quad \mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})\right\}$
How can we solve this problem?
One variant: gradient descent for $E_{\tau}(\mathbf{w}):=\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})$:

$$
\mathbf{w}^{k+1}=\mathbf{w}^{k}-\tau \nabla E\left(\mathbf{w}^{k}\right)
$$

LASSO

Smoothed LASSO: $\quad \mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})\right\}$
How can we solve this problem?
One variant: gradient descent for $E_{\tau}(\mathbf{w}):=\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})$:

$$
\begin{gathered}
\mathbf{w}^{k+1}=\mathbf{w}^{k}-\tau \nabla E\left(\mathbf{w}^{k}\right) \\
\mathbf{w}^{k+1}=\mathbf{w}^{k}-\tau\left(\mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right)+\alpha \nabla H_{\tau}\left(\mathbf{w}^{k}\right)\right)
\end{gathered}
$$

LASSO

Smoothed LASSO: $\quad \mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})\right\}$
How can we solve this problem?
One variant: gradient descent for $E_{\tau}(\mathbf{w}):=\frac{1}{2}\|\mathbf{X w}-\mathbf{y}\|^{2}+\alpha H_{\tau}(\mathbf{w})$:

$$
\begin{gathered}
\mathbf{w}^{k+1}=\mathbf{w}^{k}-\tau \nabla E\left(\mathbf{w}^{k}\right) \\
\mathbf{w}^{k+1}=\mathbf{w}^{k}-\tau\left(\mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right)+\alpha \nabla H_{\tau}\left(\mathbf{w}^{k}\right)\right)
\end{gathered}
$$

We have two competing terms due to the structure of E

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$

$$
\mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right) \begin{aligned}
& \text { We move first towards the } \\
& \text { opposite of the max variation }
\end{aligned}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$

$$
\mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right) \begin{aligned}
& \text { We move first towards the } \\
& \text { opposite of the max variation } \\
& \text { of MSE }
\end{aligned}
$$

$$
\mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right) \begin{aligned}
& \text { We move then towards the } \\
& \text { opposite of the max variation } \\
& \text { of the Huber loss function }
\end{aligned}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$

$$
\begin{array}{ll}
\text { Converge for } \frac{\tau}{\alpha} \leq\left\|\mathbf{X}^{\top} \mathbf{X}\right\|^{-1} & \mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right) \\
\begin{array}{l}
\text { We move first towards the } \\
\text { opposite of the max variation } \\
\text { of MSE }
\end{array} \\
\mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right) & \begin{array}{l}
\text { We move then towards the } \\
\text { opposite of the max variation } \\
\text { of the Huber loss function }
\end{array}
\end{array}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$

Converge for $\frac{\tau}{\alpha} \leq\left\|\mathbf{X}^{\top} \mathbf{X}\right\|^{-1}$

Converge for any τ

$$
\mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right)
$$

We move first towards the opposite of the max variation of MSE

$$
\mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
$$

We move then towards the opposite of the max variation of the Huber loss function

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$

Converge for $\frac{\tau}{\alpha} \leq\left\|\mathbf{X}^{\top} \mathbf{X}\right\|^{-1}$

Converge for any τ

$$
\mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right)
$$

We move first towards the opposite of the max variation of MSE

$$
\mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
$$

We move then towards the opposite of the max variation of the Huber loss function

$$
\text { Hence we select } \frac{\tau}{\alpha} \leq\left\|\mathbf{X}^{\top} \mathbf{X}\right\|^{-1}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\begin{aligned}
& \mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right) \\
& \mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
\end{aligned}
$$

Note the following:

$$
w-\tau \nabla|w|_{\tau}=w- \begin{cases}\tau & w>\tau \\ w & |w| \leq \tau \\ -\tau & w<-\tau\end{cases}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\begin{aligned}
& \mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right) \\
& \mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
\end{aligned}
$$

Note the following:

$$
w-\tau \nabla|w|_{\tau}=w-\left\{\begin{array}{ll}
\tau & w>\tau \\
w & |w| \leq \tau \\
-\tau & w<-\tau
\end{array}= \begin{cases}w-\tau & w>\tau \\
0 & |w| \leq \tau \\
w+\tau & w<-\tau\end{cases}\right.
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\begin{aligned}
& \mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{\mathbf{k}}-\mathbf{y}\right) \\
& \mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
\end{aligned}
$$

Note the following:

$$
\begin{aligned}
w-\tau \nabla|w|_{\tau}=w- \begin{cases}\tau & w>\tau \\
w & |w| \leq \tau \\
-\tau & w<-\tau\end{cases} & = \begin{cases}w-\tau & w>\tau \\
0 & |w| \leq \tau \\
w+\tau & w<-\tau\end{cases} \\
& =: \operatorname{soft}_{\tau}(w) \quad \text { (soft-thresholding) }
\end{aligned}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\begin{aligned}
& \mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right) \\
& \mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
\end{aligned}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\begin{aligned}
\mathbf{w}^{k+\frac{1}{2}} & =\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right) \\
\mathbf{w}^{k+1} & =\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
\end{aligned}
$$

The last term can be written as

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\begin{aligned}
& \mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right) \\
& \mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
\end{aligned}
$$

The last term can be written as

$$
\mathbf{w}^{k+1}=\operatorname{soft}_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\begin{aligned}
& \mathbf{w}^{k+\frac{1}{2}}=\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right) \\
& \mathbf{w}^{k+1}=\mathbf{w}^{k+\frac{1}{2}}-\tau \nabla H_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
\end{aligned}
$$

The last term can be written as

$$
\mathbf{w}^{k+1}=\operatorname{soft}_{\tau}\left(\mathbf{w}^{k+\frac{1}{2}}\right)
$$

Hence, the soft-thresholding of the previous expression

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\mathbf{w}_{j}^{k+1}=\operatorname{soft}_{\tau}\left(\left(\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right)\right)_{j}\right) \quad \forall j \in\{1, \ldots, d+1\}
$$

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\mathbf{w}_{j}^{k+1}=\operatorname{soft}_{\tau}\left(\left(\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right)\right)_{j}\right) \quad \forall j \in\{1, \ldots, d+1\}
$$

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)

LASSO

Alternative: forward-forward splitting for $E_{\tau}(\mathbf{w}):=\frac{1}{2 \alpha}\|\mathbf{X w}-\mathbf{y}\|^{2}+H_{\tau}(\mathbf{w})$:

$$
\mathbf{w}_{j}^{k+1}=\operatorname{soft}_{\tau}\left(\left(\mathbf{w}^{k}-\frac{\tau}{\alpha} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w}^{k}-\mathbf{y}\right)\right)_{j}\right) \quad \forall j \in\{1, \ldots, d+1\}
$$

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)
Special case of proximal gradient descent

$$
\mathbf{w}^{k+1}=(I+\tau \partial R)^{-1}\left(\mathbf{w}^{k}-\tau \nabla L\left(\mathbf{w}^{k}\right)\right)
$$

Proximal gradient method

Suppose we want to minimise $\quad E(\mathbf{w})=L(\mathbf{w})+R(\mathbf{w})$

Proximal gradient method

Suppose we want to minimise $\quad E(\mathbf{w})=L(\mathbf{w})+R(\mathbf{w})$
Assumptions: 1. L is differentiable, i.e., $\nabla L(\mathbf{w})$ exists
2. R has a simple proximal map, i.e.,

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

is easy to compute

Proximal gradient method

Suppose we want to minimise $\quad E(\mathbf{w})=L(\mathbf{w})+R(\mathbf{w})$
Assumptions: 1. L is differentiable, i.e., $\nabla L(\mathbf{w})$ exists
2. R has a simple proximal map, i.e.,

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

is easy to compute
Then:

$$
\mathbf{w}^{k+1}=\operatorname{prox}_{\tau R}\left(\mathbf{w}^{k}-\tau \nabla L\left(\mathbf{w}^{k}\right)\right)
$$

Proximal gradient method

Suppose we want to minimise $\quad E(\mathbf{w})=L(\mathbf{w})+R(\mathbf{w})$
Assumptions: 1. L is differentiable, i.e., $\nabla L(\mathbf{w})$ exists
2. R has a simple proximal map, i.e.,

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

is easy to compute

$$
\mathbf{w}^{k+1}=\operatorname{prox}_{\tau R}\left(\mathbf{w}^{k}-\tau \nabla L\left(\mathbf{w}^{k}\right)\right)
$$

Proximal gradient method

Proximal gradient method

For the choice $R(x)=\frac{1}{2}\|x\|^{2}$ this reads as

$$
\operatorname{prox}_{\frac{\tau}{2}\|\cdot\| \|^{2}}(z)=\arg \min _{x}\left\{\frac{1}{2}\|x-z\|^{2}+\frac{\tau}{2}\|x\|^{2}\right\}
$$

Proximal gradient method

For the choice $R(x)=\frac{1}{2}\|x\|^{2}$ this reads as

$$
\operatorname{prox}_{\frac{\tau}{2}\|\cdot\|^{2}}(z)=\arg \min _{x}\left\{\frac{1}{2}\|x-z\|^{2}+\frac{\tau}{2}\|x\|^{2}\right\}
$$

Forget for a second the proximal map, we know how to solve that problem!

Proximal gradient method

$$
\operatorname{prox}_{\frac{\tau}{2}\|\cdot\| \|^{2}}(z)=\arg \min _{x}\left\{\frac{1}{2}\|x-z\|^{2}+\frac{\tau}{2}\|x\|^{2}\right\}
$$

This is a simple convex optimisation problem. If we define $E(x):=\frac{1}{2}\|x-z\|^{2}+\frac{\tau}{2}\|x\|^{2}$, we obtain $\nabla E(x)=x-z+\tau x$. The global minimiser satisfies

$$
\nabla E(\hat{x})=0 \quad \Leftrightarrow \quad \hat{x}=\frac{z}{1+\tau}
$$

Proximal gradient method

$$
\operatorname{prox}_{\frac{\tau}{2}\|\cdot\|^{2}}(z)=\arg \min _{x}\left\{\frac{1}{2}\|x-z\|^{2}+\frac{\tau}{2}\|x\|^{2}\right\}
$$

This is a simple convex optimisation problem. If we define $E(x):=\frac{1}{2}\|x-z\|^{2}+\frac{\tau}{2}\|x\|^{2}$, we obtain $\nabla E(x)=x-z+\tau x$. The global minimiser satisfies

$$
\begin{aligned}
& \nabla E(\hat{x})=0 \quad \Leftrightarrow \quad \hat{x}=\frac{z}{1+\tau} \\
& \Longrightarrow \quad \operatorname{prox}_{\frac{\tau}{2}\|\cdot\| \|^{2}}(z)=\frac{z}{1+\tau}
\end{aligned}
$$

Proximal gradient method

Example for a proximal map

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\} \quad:
$$

Proximal gradient method

Example for a proximal map

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\} \quad:
$$

For the choice $R(\mathbf{x})=\left\{\begin{array}{ll}0 & \mathbf{x} \in C \\ \infty & \mathbf{x} \notin C\end{array}\right.$ this reads as

$$
\operatorname{prox}_{\tau R}(\mathbf{z})=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

Proximal gradient method

Example for a proximal map

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\} \quad:
$$

For the choice $R(\mathbf{x})=\left\{\begin{array}{ll}0 & \mathbf{x} \in C \\ \infty & \mathbf{x} \notin C\end{array}\right.$ this reads as

$$
\operatorname{prox}_{\tau R}(\mathbf{z})=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}=\arg \min _{\mathbf{x} \in C}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}\right\}
$$

Proximal gradient method

Example for a proximal map

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

For the choice $R(\mathbf{x})=\left\{\begin{array}{ll}0 & \mathbf{x} \in C \\ \infty & \mathbf{x} \notin C\end{array}\right.$ this reads as

$$
\operatorname{prox}_{\tau R}(\mathbf{z})=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}=\arg \min _{\mathbf{x} \in C}\{\|\mathbf{x}-\mathbf{z}\|\}
$$

Proximal gradient method

Example for a proximal map

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

For the choice $R(\mathbf{x})=\left\{\begin{array}{ll}0 & \mathbf{x} \in C \\ \infty & \mathbf{x} \notin C\end{array}\right.$ this reads as

$$
\operatorname{prox}_{\tau R}(\mathbf{z})=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}=\arg \min _{\mathbf{x} \in C}\{\|\mathbf{x}-\mathbf{z}\|\}
$$

Projection onto convex set C !

Proximal gradient method

Example for a proximal map

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

For the choice $R(\mathbf{x})=\left\{\begin{array}{ll}0 & \mathbf{x} \in C \\ \infty & \mathbf{x} \notin C\end{array}\right.$ this reads as

$$
\operatorname{prox}_{\tau R}(\mathbf{z})=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}=\arg \min _{\mathbf{x} \in C}\{\|\mathbf{x}-\mathbf{z}\|\}
$$

Projection onto convex set C !
This might be important in some real applications where we have some constraints on the x !

Proximal gradient method

Example for a proximal map

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

For the choice $R(\mathbf{x})=\left\{\begin{array}{ll}0 & \mathbf{x} \in C \\ \infty & \mathbf{x} \notin C\end{array}\right.$ this reads as

$$
\operatorname{prox}_{\tau R}(\mathbf{z})=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}=\arg \min _{\mathbf{x} \in C}\{\|\mathbf{x}-\mathbf{z}\|\}
$$

Projection onto convex set C !
This might be important in some real applications where we have some constraints on the x !

$$
\text { Example: } C=\{x \in \mathbb{R} \mid x \in[0,1]\}
$$

Constrained optimisation

Special case:

$$
\begin{aligned}
& R(w)= \begin{cases}0 & w \in C \\
\infty & w \notin C\end{cases} \\
& C=\text { convex set }=\text { constraint-set }
\end{aligned}
$$

Constrained optimisation

Special case:

$$
R(w)= \begin{cases}0 & w \in C \\ \infty & w \notin C\end{cases}
$$

$$
C=\text { convex set }=\text { constraint }- \text { set }
$$

$$
\Rightarrow \operatorname{prox}_{\tau R}(z)=\arg \min _{w \in \mathbb{R}^{n}}\|w-z\|^{2}+R(w)
$$

$$
=\arg \min _{w \in C}\|w-z\|^{2}=\operatorname{proj}_{C}(z)
$$

Constrained optimisation

Special case:

$$
R(w)= \begin{cases}0 & w \in C \\ \infty & w \notin C\end{cases}
$$

$C=$ convex set $=$ constraint-set

$$
\begin{aligned}
\Rightarrow \quad \operatorname{prox}_{\tau R}(z) & =\arg \min _{w \in \mathbb{R}^{n}}\|w-z\|^{2}+R(w) \\
& =\arg \min _{w \in C}\|w-z\|^{2}=\operatorname{proj}_{C}(z) \\
& \Rightarrow w^{k+1}=\operatorname{proj}_{C}\left(w^{k}-\tau \nabla L\left(w^{k}\right)\right)
\end{aligned}
$$

Projected gradient descent

Proximal gradient method

Suppose we want to minimise $\quad E(\mathbf{w})=L(\mathbf{w})+R(\mathbf{w})$
Assumptions: 1. L is differentiable, i.e. $\nabla L(\mathbf{w})$ exists
2. R has a simple proximal map, i.e.

$$
\operatorname{prox}_{\tau R}(\mathbf{z}):=\arg \min _{\mathbf{x}}\left\{\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|^{2}+\tau R(\mathbf{x})\right\}
$$

is easy to compute
Proximal gradient method: $\quad \mathbf{w}^{k+1}=\operatorname{prox}_{\tau R}\left(\mathbf{w}^{k}-\tau \nabla L\left(\mathbf{w}^{k}\right)\right)$

Proximal gradient descent

Minimise variational regularisation $L(\mathbf{w})+R(\mathbf{w})$ iteratively via

$$
\mathbf{w}^{k+1}=(I+\tau \partial R)^{-1}\left(\mathbf{w}^{k}-\tau \nabla L\left(\mathbf{w}^{k}\right)\right)
$$

where the proximal map is defined as

$$
(I+\tau \partial R)^{-1}(\mathbf{z}):=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|\mathbf{w}-\mathbf{z}\|^{2}+\tau R(\mathbf{w})\right\}
$$

