Machine Learning with Python
MTH786U/P 2022/23

Nicola Perra, Queen Mary University of London (QMUL)

n.perra@gmul.ac.uk


mailto:n.perra@qmul.ac.uk

Recap: Ridge regression

Two weeks ago we learned about the minimisation problem

A - 1 » , @ y
w = arg min < —||Xw —y||* + —||w]||
W g )

that is known as Tikhonov regularisation
or ridge regression

Andrey Tikhonov, 1906 - 1993




Recap: Ridge regression

Two weeks ago we learned about the minimisation problem

A - 1 » , @ y
w = argmin < —||Xw — y||* + —||w]||
W g )

Standard regression term

that is known as Tikhonov regularisation
or ridge regression

Andrey Tikhonov, 1906 - 1993




Recap: Ridge regression

Two weeks ago we learned about the minimisation problem

Standard regression term Regularisation term

that is known as Tikhonov regularisation
or ridge regression

Andrey Tikhonov, 1906 - 1993




Recap: Ridge regression
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that is known as Tikhonov regularisation
or ridge regression

Andrey Tikhonov, 1906 - 1993
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4 Previous example: L(w) = EHXW — || R(w) = %HWHZ
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Variational regularisation: w = argmin {L(w) + R(w)}
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Choose R(w) = a|lw||, := az | w; | and L(w) == Xw —y||°
k=1 2
. . 1 )
= W = arg min EHXw—yH + a||w||,
W
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What is the advantage of using the one-norm over the two-norm?
!ﬂ{ Sparsity!
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Example: fit line with just one input/output data sample (x,y)
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Which solution do we pick?
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Example: fit line with just one input/output data sample (x,y)
y — axis

Simplicity idea:
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Let either wy or w be zero!
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Example: fit line with just one input/output data sample (x,y)
y — axis

Simplicity idea:

(x, y) wr =0
Yy = Wy

X — axis
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In general, why (or how) does the #! norm make W sparse?

b
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€1 regularisation / the lasso

The solution of the problem "o

y=Wy+ WX

is a point in this space

We can indeed write

b

)J W0=y—W1x
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wWo Lo
§ Minimise
(W03W1)

[wol + [w]

subject to

AN
N

most likely sparse!

!A{ W= (Wp,W;)' One of the coordinates
must be zero
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Lasso would select the sparse solution!




OW TO SOLVE LASSO OR MORE IN GENERAL

h
l,pj;PTIMIZATION PROBLEMS?




Why optimisation?

In the previous lectures, we have studied regression problems of the form
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Why optimisation?

In the previous lectures, we have studied regression problems of the form

A\

w = arg min E(w)

Rd+1
For
E(W) = —Z NERDESAE +—uwu2 ,
lq where f is linear in w, we have seen that we can compute w by solving

' a linear system of equations
But: how do we minimise £ in general?
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Grid search?

How about using grid search?

e works for any kind of function!

Advantages: [
e Very easy to implement

b

Disadvantages:  ° computationally infeasible for large no. of parameters
.{ e NO guarantee that we compute a minimum




Smooth optimisation

Smooth functions (continuously differentiable) allow the application
of more systematic searches compared to grid search

E € CYR% = VE exists and is continuous

b

)




Smooth optimisation

Example for smooth optimisation: gradient descent

witl = wk — t VE(WY)

for some w' € R” and a constant z> 0.

lq Procedure to find a minimum of w!

)




Gradient descent

Gradient descent is an iterative procedure.
Let us remember that the gradient points the direction of max growth
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Gradient descent
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Let us remember that the gradient points the direction of max growth
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4 Every step of the procedure is also known
as an iterate or update
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Gradient descent is an iterative procedure
w! = w' -t VEW")
w? =w! — tVE(wW))
=w’) -t VEW’) =t VEW’ — t VE(W"))
w> = w? — 1 VE(W?)
wt = wl - VE(wW 1)
l’ Every step of the procedure is also known

' as an iterate or update

©Mathworks

25




Gradient descent: examples

One parameter MSE-model: MSE(w) = 1 2 (W —y.|°
28 =1

)




Gradient descent: examples

One parameter MSE-model: MSE(w) = 1 2 (W —y.|°
28 =1
. 1 &
Gradient: VMSE(W) = w — — 2 y,
> =1

b

)




Gradient descent: examples

One parameter MSE-model: MSE(w) = 1 2 (W —y.|°
28 =1
. 1 &
Gradient: VMSE(W) = w — — Z y,
> =1

1 A)
We have learnt that VMSEw) = w — — Z y=0->w=Yy
S
=1

b
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Gradient descent: examples

. 1 \) \)
Gradient descent: wktl =k _ 7 (Wk — — Z Yi) — (1 = D)wk + — Z y,
S =1 S il
For7 =1 wk+1=lzs‘,y
> =1 |
lq For a general value of 77
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1
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T
Gradient descent: wf! = wk + —XT(y — Xw5)
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Gradient descent

Why (and when) does it work?

Assumption: E is Lipschitz-continuous with constant L (or L-smooth), i.e.
IVE(x) — VE(W| < Llx-y|[| Vx,yeR"

Then the function

X L
G(x) = —|[x][* = E(x)

2
!ﬂ{: is convex for all x € R".
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Why (and when) does it work?

1

Assumptions: e the function £ is 7 ~ smooth

. 1 .
e the function G(w) := 2—HwH2 — E(w) is convex
T

for all w e R”

Then (converge theorem) we can show
lﬂ 1.that Ew'™) < E(w¥)

) ' 2.as well as lim E(w") = E(w) with rate 1/k
k— 00
Proof:

in the lecture notes, but not examinable! @&
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What is the value of 7 that allows convergence?

1 1
E(w) = > | Xw —y||* = VE(w) = —X"(Xw — y)
S )

]
|IVE(W) — VE(V)|| = ?HX X(w—=v)| < lHXTXH (W = V)|l
A)

| I XX

lq Hence the function is 7~ smooth and converge is guaranteed for — =

S
.{ This implies convergence for any 7 < T~
[ XX

T \)
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Gradient descent

Assumptions: . the function E is 7~ smooth

. 1 .
e the function G(w) := 2—HwH2 — E(w) is convex
T

for all w e R”

What can we do if the assumptions are not met?

Backtracking: compute w**! and check E(w*!) < E(w")

b

keep r as it is if E(wt) < E(wh)
!J decrease if E(W) > E(wh)




Gradient descent

Remark: in the (modern) machine learning literature...
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Remark: in the (modern) machine learning literature...

...gradient descent is also known as batch gradient descent
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Gradient descent

Remark: in the (modern) machine learning literature...
...gradient descent is also known as batch gradient descent

...the stepsize 7 is also known as the learning rate (bad name)

b

)
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How can we solve the LASSO computationally?
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LASSO

How can we solve the LASSO computationally?

2

W

1
W, = arg min {—HXW — sz + anHl}

Can we just compute VE(w,) = 0 for E(w) := || Xw —y||*/2 + a||w||,?
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LASSO

How can we solve the LASSO computationally?

I 2
~IXw = y||I* + al|w]|,

W _ = arg min
|

W

Can we just compute VE(w,) = 0 for E(w) := || Xw —y||*/2 + a||w||,?

We cannot do this, since £ is not differentiable!
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LASSO

How can we solve the LASSO computationally?

I 2
~IXw = y||I* + al|w]|,

W _ = arg min
|

W

Can we use the same machinery we developed for the other problems?

b
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LASSO

No!

I 2
—IXw = y[|* + allw]|,

W _ = arg min
= i

\u4

The |1 norm is not differentiable in zero

b
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LASSO

No!

I 2
—IXw = y[|* + allw]|,

W _ = arg min
= i

\u4

The |1 norm is not differentiable in zero

We can smooth the one-norm to make this problem differentiable!
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LASSO

No!

1 2
—IXw = y[|* + allw]|,

W _ = arg min
= i

\u4

The |1 norm is not differentiable in zero

We can smooth the one-norm to make this problem differentiable!

lq Note that we can write

lw| = max wp




LASSO

How can we solve the LASSO computationally?

I 2
~IXw = y||I* + al|w]|,

W _ = arg min
|

W

We can smooth the one-norm to make this problem differentiable!

lq We can modify slightly the |1 norm to smooth the function

'w|_ = ma “1p
— X wp -
L opel-1,1] 2 P




LASSO

Note that we can write

'w|. = ma “1p
— X wp -
L ope[-1,1] 2 P
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LASSO

Note that we can write

'w|. = ma “1p
— X wp -
L ope[-1,1] 2 P

This problem has a closed form solution

.
p = arg max wp——\p\z
pe[—1,1] 2

b
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LASSO

Note that we can write

'w|. = ma “1p
— X wp -
L ope[-1,1] 2 P

This problem has a closed form solution

.
p = arg max wp——\p\z
pe[—1,1] 2

lq 1 w>7

S ﬁ: . ‘W‘ST
-1 w< -1




LASSO

Note that we can write

'w|. = ma “1p
— X wp -
L ope[-1,1] 2 P

This problem has a closed form solution

.
p = arg max wp——\p\z
pe[—1,1] 2

lq 1 w>7

& p=q7 Iwl<t Why?
-1 w< -7




LASSO

We need to solve

'w|. = ma “1p
— X wp - —
U pel-1,1] 2 P
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LASSO

We need to solve

'w|. = ma “1p
— X wp - —
U pel-1,1] 2 P

The function we are trying to maximize is a parabola of this type
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LASSO

We need to solve

'w|. = ma “1p
— X wp - —
U pel-1,1] 2 P

The function we are trying to maximize is a parabola of this type

A p is bounded by -1 and 1




LASSO

How do we get the max?

'w|_ = max “1p
— wp —_ -
U pel-1,1] 2 P
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LASSO

How do we get the max?

'w|_ = max “1p
— wp —_ —
T pel-1,1] 2 P

Compute the gradient!

b

)




LASSO

How do we get the max?

'w|_ = max “1p
— wp —_ —
T pel-1,1] 2 P

Compute the gradient!

Viwl =w—1p —p=—
T

b

of




LASSO

How do we get the max?

'w|_ = max “1p
— wp —_ —
T pel-1,1] 2 P

Compute the gradient!

V‘W‘T=W—Tp —>ﬁ=—
T

lq |1 <p<Ll->—-7175w<r7

of




LASSO

How do we get the max?

'w|. = ma “1p
— X wp - —
T pel-1,1] 2 P

Compute the gradient!

V‘W‘T=W—Tp —>ﬁ=—

IA
S
IN
S

F 1 <p<l—>-—-1

o W<
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Hence, for | w| < 7 the max is obtained substituting p hat in the expression

Hence
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Hence, for | w| < 7 the max is obtained substituting p hat in the expression

Hence
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Hence, for | w| < 7 the max is obtained substituting p hat in the expression

Hence
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For w > tinstead p > 1

b
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LASSO

For w > tinstead p > 1

If the max is larger than one than the parabola is indeed like this
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For w > tinstead p > 1

If the max is larger than one than the parabola is indeed like this




LASSO

For w > tinstead p > 1

If the max is larger than one than the parabola is indeed like this

p” And the max is for p=1




LASSO

For w > tinstead p > 1

If the max is larger than one than the parabola is indeed like this

And the max is for p=1

.
This implies |w| =w — 5
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Forw < — rinstead p < — 1

b
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LASSO

For w < — rinstead p < — 1

If the max is smaller than one than the parabola is instead like this
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LASSO

Forw < — rinstead p < — 1

If the max is smaller than one than the parabola is instead like this

p*
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Forw < — rinstead p < — 1

If the max is smaller than one than the parabola is instead like this

p” And the max is for p=-1




LASSO

For w < — rinstead p < — 1

If the max is smaller than one than the parabola is instead like this

p” And the max is for p=-1

.
This implies |w| = —w — —
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Hence

'w|. = ma “1p
— X wp -
L ope[-1,1] 2 P

has a closed form solution

.
p = arg max wp——\p\z
pe[—1,1] 2

b

1
A W _
-1 w< -1 -
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1.0 -
0.8 -
0.6 -
0.4 -
021 —— |w|

ge
0.0 -

~1.00-0.75-0.50—-0.25 0.00 0.25 0.50 0.75 1.00
W-axXIS
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The change in the |1 norm allows us to write

T

wl==5 lwl>7
W, = :
T 1 2
—lwl™ w| <7
for which we observe 1 w>1
Viw| = Lw o |w| <t
T

l’ -1 w<-—-7
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LASSO

The change in the |1 norm allows us to write

T

wl==5 lwl>7
W, = :
T 1 2
—lwl™ w| <7
for which we observe 1 w>1
Viw| = Lw o |w| <t
T

l’ -1 w<-—-7

T
n{ as well as Wi, <wl<|wl+-




LASSO

We can therefore get a differentiable problem by replacing

d d
Iwll, = ) [w;] - Hw) =Y |w]|  Huber loss
| j=20 ] W jzzo Vile function
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LASSO

We can therefore get a differentiable problem by replacing

d d
wll. = " . H (W) = W Hubel.’ loss
1wl ]ZO\ | with ]ZO\ e gioet ¢

Smoothed LASSO:

1
W, = arg min {EHXw—yH2+aHT(W)}

F WERd-H

)




LASSO

We can therefore get a differentiable problem by replacing

. d
W= i ' H (w) = W, Hubel.’ loss
Wil j:ZO‘ ;i with j:ZO‘ jl: function

Smoothed LASSO:

1
W, = arg min {EHXW—YHZ+0¢HT(W)}

!4 How can we solve this problem?
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, 1
Smoothed LASSO: W, =arg min {EHXW —y|I* + OtHT(W)}

How can we solve this problem?

One variant:

b
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LASSO

, 1
Smoothed LASSO: W, =arg min {EHXW —y|I* + OtHT(W)}

How can we solve this problem?

One variant: gradient descent for E(w) := 2—HXw —y||I* +a H(w):

b
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LASSO

, 1
Smoothed LASSO: W, =arg min {EHXW —y|I* + OtHT(W)}

How can we solve this problem?

One variant: gradient descent for E(w) := 2—HXw —y||I* +a H(w):

wtl = wk — ¢V E(wF)

b
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LASSO

, 1
Smoothed LASSO: W, =arg min {EHXW —y|I* + OtHT(W)}

How can we solve this problem?

One variant: gradient descent for E(w) := 2—HXw —y||I* +a H(w):

wtl = wk — ¢V E(wF)

l’ witl = whk— ¢ (XT(ka —Yy)+ CZVHT(Wk)>
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LASSO

, 1
Smoothed LASSO: W, =arg min {EHXW —y|I* + OtHT(W)}

How can we solve this problem?

One variant: gradient descent for E(w) := 2—HXw —y||I* +a H(w):

wtl = wk — ¢V E(wF)
by Wit = wh — 7 (XT(ka _y)+ aVHT(Wk)>

’ We have two competing terms due to the structure of E
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1
Alternative: forward-forward splitting for E (w) := z_aHXW —-ylI*+ H/(w)
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1
Alternative: forward-forward splitting for E (w) := z_aHXW —-ylI*+ H/(w)

Wt = wh— SXT(Xwk — y)
o

We move first towards the

opposite of the max variation
of MSE
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1
Alternative: forward-forward splitting for E (w) := z_aHXW —-ylI*+ H/(w)

We move first towards the

opposite of the max variation
of MSE

W = wh = ZXT(Xwk — )
o

1 1
witl — Wk — cV (WhH) We move then towards ’ghe.
v opposite of the max variation
of the Huber loss function
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1
Alternative: forward-forward splitting for E (w) := z_aHXW —-ylI*+ H/(w)

4 _ 1 T We move first towards the
converge for a IXX wo=w aX (AwW" —y) ofmz/\osséte of the max variation
0

1 1
witl — Wk — cV (WhH) We move then towards ’ghe.
v opposite of the max variation
of the Huber loss function

of
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1
Alternative: forward-forward splitting for E (w) := z_aHXW —-ylI*+ H/(w)

4 _ 1 T We move first towards the
converge for a IXX wo=w aX (AwW" —y) ofmz/\osséte of the max variation
0

k+1 kL L We move then towards the
%% — 2 — H 2 . oo
Converge for any 7 W TVH (W) opposite of the max variation
l’ of the Huber loss function

of
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1
Alternative: forward-forward splitting for E (w) := z_aHXW —-ylI*+ H/(w)

v _ 1 T We move first towards the
T 1 k
Converge for a < IX°X] W= wh - ;X (Xw" — ) opposite of the max variation
of MSE

k+1 kL L We move then towards the
W — 2 — 2 ) oo
Converge for any 7 W TVH (W) opposite of the max variation
l’ of the Huber loss function

t Ty (=1
4 Hence we select — < || X' X]|
a
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1
Alternative: forward-forward splitting for E (w) := 2—HXW —-ylI*+ H/(w):
04

w7 = wk— —XT(XwK — )
a

1 1
Wk+1 — Wk+2 _ TVHT(Wk_l_z)

Note the following:

l' T W>T7T
w—tVIw| =w-<w |w|<7

)

-7 W< —7T
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1
Alternative: forward-forward splitting for E (w) := 2—HXW —-ylI*+ H/(w):
04

w7 = wk— —XT(XwK — )
a

1 1
Wk+1 — Wk+2 _ TVHT(Wk_l_z)

Note the following:

lﬂ T W>7T W—1T W>T
w—tV|w| =w-<w |w|<7t =<0 lw| <7

' —T w<—7 wW+71T w<—7
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

w7 = wk— —XT(XwK — )
a

1 1
Wk+1 — Wk+7 _ TVHT(Wk_I_?)

Note the following:

lﬂ T W>T W—T W>T
w—tV|w|l =w-<w |w|<7 0 lw| <7

! ' w+1T w<-—r7

-7 W< —7T

: soft, (w) (soft-thresholding)

51
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

w7 = wk— —XT(XwK — y)
a

1 1
Wk+1 — Wk+7 _ TVHT(Wk_I_j)

)
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

1 T
wtT = wh— —XT(Xw —y)
a

1 1
witl = wits — tVH (wht2)

The last term can be written as

of

b
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

Wk_l_% — Wk . lXT(ka _ y)
04

! 1
Wk+1 — Wk+7 _ TVHT(WIH_Z)

The last term can be written as

lﬂ witl = SOftT(WkJF%)

of
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

Wk_l_% — Wk . lXT(ka _ y)
04

1 1
Wk+l — Wk+2 _ TVHT(WIH_Z)

The last term can be written as

lﬂ witl = SOftT(WkJF%)

ﬂ{ Hence, the soft-thresholding of the previous expression
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

04

W}‘“ = SOftT<(Wk—1XT(XWk— y)) ) Viell,...,.d+ 1}
J

b
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

04

W;‘“ = SOftT<(Wk—lXT(XWk— y)) ) Viell,...,.d+ 1}
J

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)

b
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1
Alternative: forward-forward splitting for E (w) := 2_aHXW —-ylI*+ H/(w):

04

W}‘“ = Softf<(wk—lXT(ka— y)) ) Viell,...,.d+ 1}
J

This algorithm is also known as ISTA (= iterative soft-thresholding algorithm)

Special case of proximal gradient descent

b

24 wtl = (I + 70R) ™1 (W* — t VL(WY))




Proximal gradient method

Suppose we want to minimise E(w) = L(w) + R(w)
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Proximal gradient method

Suppose we want to minimise E(w) = L(w) + R(w)

Assumptions: 1. L is differentiable, i.e., VL(w) exists

2. R has a simple proximal map, i.e.,

1
. - 2
prox ,(z) := arg min {EHX — z||* + TR(X)}

X

lq 1S easy to compute
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Suppose we want to minimise E(w) = L(w) + R(w)

Assumptions: 1. L is differentiable, i.e., VL(w) exists

2. R has a simple proximal map, i.e.,

1
. - 2
prox ,(z) := arg min {EHX — z||* + TR(X)}

X

lq 1S easy to compute

!.{ Then: wit! = prox_, (w" — t VL(w"))




Proximal gradient method

Suppose we want to minimise E(w) = L(w) + R(w)

Assumptions: 1. L is differentiable, i.e., VL(w) exists

2. R has a simple proximal map, i.e.,

1
. - 2
prox ,(z) := arg min {EHX — z||* + TR(X)}

X

lq 1S easy to compute

!4 Then: wt! = prox_, (w*—tVL(w"))  Proximal gradient method




Proximal gradient method

For the choice R(x) = EHXHZ this reads as

Prox

@) = argmin 4 [lx — 2l + Zlx|P
21l N ) )

)




Proximal gradient method

For the choice R(x) = EHXHZ this reads as

Prox

@) = argmin 4 [lx — 2l + Zlx|P
21 n 4§ 5 5

Forget for a second the proximal map, we know how to solve that problem!

b
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Proximal gradient method

1 T
X 2 X 2

prOX%”.”z(z) = arg min

T
This is a simple convex optimisation problem. If we define E(x) := EHX —7||* + EHXHZ,

we obtain VE(x) = x —z+ 7x. The global minimiser satisfies

$

VER =0 & &=

l’ l+7

)




Proximal gradient method
Prox, , (2) = arg min {éux — 2l + gnxw}

T
This is a simple convex optimisation problem. If we define E(x) := EHX —7||* + EHXHZ,

we obtain VE(x) = x —z+ 7x. The global minimiser satisfies

VER) =0 o  f=—

l’ l+7

4
!ﬂ{; = PO T




Proximal gradient method

Example for a proximal map

1
. - 2
prox ,(z) := arg min {EHX — Z||* + TR(X)}

X

)




Proximal gradient method

Example for a proximal map

1
. - 2
prox ,(z) := arg min {EHX — Z||* + TR(X)}

X

For the choice R(X) = {go i ; g this reads as

2

X

| 1
l. prox ,(z) = arg min {—HX —z||* + TR(X)}

)




Proximal gradient method

Example for a proximal map

1
. - 2
prox ,(z) := arg min {EHX — Z||* + TR(X)}

X

. 0 xe(C, .
For the choice R(x) = {Oo X & C this reads as
1 1
prox .(z) = arg min {—HX —z||* + TR(X)} = arg min {—HX — ZHZ}
lﬂ g x | 2 xeC | 2

)




Proximal gradient method

Example for a proximal map
1
prox_.(z) := arg min {EHX —z||” + TR(X)}

For the choice R(x) = {gc i ; g this reads as

1
_ - > _ ' _
prox ,(z) = arg min {EHX —z||“ + TR(X)} = arg min {lIx —z|| }

b
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Proximal gradient method

Example for a proximal map
1
prox_.(z) := arg min {EHX —z||” + TR(X)}

For the choice R(x) = {gc i ; g this reads as

1
_ - > _ ' _
prox ,(z) = arg min {EHX —z||“ + TR(X)} = arg min {lIx —z|| }

lq Projection onto convex set (!
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Proximal gradient method

Example for a proximal map
1
prox_.(z) := arg min {EHX —z||” + TR(X)}

For the choice R(x) = {gc i ; g this reads as

1
_ - > _ ' _
prox ,(z) = arg min {EHX —z||“ + TR(X)} = arg min {lIx —z|| }

lq Projection onto convex set (!

This might be important in some real applications where we have some
! ' constraints on the x!




Proximal gradient method

Example for a proximal map
1
prox_.(z) := arg min {EHX —z||” + TR(X)}

For the choice R(x) = {SO i ; g this reads as

1
_ - > _ ' _
prox ,(z) = arg min {EHX —z||“ + TR(X)} = arg min {lIx —z|| }

lq Projection onto convex set (!

This might be important in some real applications where we have some
! ' constraints on the x!

Example: C={xe R |x € [0,1]}




Constrained optimisation

Special case:

K= g

C = convex set = constraint-set
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Constrained optimisation

Special case:

K= g

C = convex set = constraint-set

= Prox ,(z) = arg min |[jw — z||> + R(w)
weR"

l’ = arg min [|w — z||* = proj(z)

)

welC




Constrained optimisation
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C = convex set = constraint-set

Standard gradient
descent might
bring you out!

= Prox ,(z) = arg min |[jw — z||> + R(w)
weR"

Y = argmin [|w — z||> = proj (2

welC

4 = whtl = proj . (wk — TVL(wk))

Projected gradient descent — C Cc R”




Proximal gradient method

Suppose we want to minimise E(w) = L(w) + R(w)

Assumptions: 1. L is differentiable, i.e. VL(w) exists

2. R has a simple proximal map, i.e.

1
. - 2
prox ,(z) := arg min {EHX — Z||* + TR(X)}

X

lq 1S easy to compute

!J Proximal gradient method: w*‘*! = prox_, (w" — 7 VL(w"))




Proximal gradient descent

Minimise variational regularisation L(w) + R(w) iteratively via

wtl = (1 + TdR)_l(Wk — TVL(Wk))

where the proximal map is defined as

(I + 0R)"!(z) := arg min {lHW —z||* + TR(W)}

F WERd_H

)

2




