Lecture 3B MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's lecture

- Conjugate priors for the normal likelihood
- Update a gamma prior for the inverse of the normal variance given a normal likelihood with known mean and unknown variance.

- $y_1, \ldots, y_n \sim N(\mu, \sigma^2)$, μ is unknown, σ^2 is known
- We saw that a normal prior distribution for μ is conjugate in this case.
- It's conjugate because it results in a posterior in the same family as the prior.

Normal example, known variance

Observed data $y_1, \ldots, y_n \sim N(\mu, \sigma^2)$. • Prior distribution $\mu \sim N(\mu_0, \sigma_0^2)$. $\mu_0 \int \sigma_0^2 dre Inaun$ The posterior distribution is $\mu \sim \textit{N}(\mu_1, \sigma_1^2)$ $\mu_{1} = \left(\frac{\mu_{0}}{\sigma_{0}^{2}} + \frac{n\bar{y}}{\sigma^{2}}\right) / \left(\frac{1}{\sigma_{0}^{2}} + \frac{n}{\sigma^{2}}\right)$ $\sigma_{1}^{2} = 1 / \left(\frac{1}{\sigma_{0}^{2}} + \frac{n}{\sigma^{2}}\right)$ where

Normal example, known variance

• If we set
$$a = \frac{1}{\sigma_0^2}$$
, $b = \frac{n}{\sigma^2}$, we can rewrite μ_1 and σ_1^2 as

$$\mu_1 = \frac{a\mu_0 + b\bar{y}}{a+b}, \quad \sigma_1^2 = \frac{1}{a+b}$$
(1)

- The posterior mean μ_1 is a weighted average of the prior mean μ_0 and sample average \overline{y} .
- If *n* is large then the weight *b* is large and \overline{y} will have a strong influence on the posterior.
- If σ_0^2 is small then the weight *a* is large and μ_0 will have a strong influence on the posterior

On a basketball team the free throw percentage over all players is a N(75, 36) distribution. In a given year individual players free throw percentage is $N(\theta; 16)$ where θ is their career average. This season, Sophie Lee made 85 percent of her free throws.

(1) What is the posterior expected values of her career percentage θ ?

Solution This is a normal/normal conjugate/lite/ihoude pair example. Pavameter of interest is 0, the average free throw We assume $\partial \sim N(75, 36)$, the prior distrib. percentage. My data, X is an individual's free throw percentage in a given year We observed x=85, Suphie's this year free throw percentage, $x \sim N(0, 16) \rightarrow licelichood$ We want to find the posterior mean By the normal-normal updating formulas (7), $Q = \frac{1}{\sigma_0^2} = \frac{1}{36}$, $b = \frac{n}{\delta^2} = \frac{1}{16}$ Po=75 1 X=85 Thus, $\gamma_1 = \frac{a \rho_0 + b x}{a + 6} = \frac{(7/36)75 + (7/16)85}{7(36 + 7/16)}$ = 81, 9

My posterior density is N(81:9,11.1) For O vv N(82,77)

The posterior density, $p(\theta|x)$ is $p(\theta|x) = \frac{p(\theta)x p(x|\theta)}{p(x)}$ Bayes numerator total prob. of data plo(x) is a density so rémust satisfy. $\frac{hy}{p(\theta|x)} > 0 \forall \theta$ $\int p(\theta|\pi)d\theta = 1$

For the normal example, we found that $\frac{1}{p[0] \times p(0] \times} = Cre \times p\left(-\frac{(0-p_i)^2}{2\delta_i^2}\right)$ To be a censity we need to calculate (P(R)) and divide the Boyes numerator with p(n). You will) find, $\frac{p(O|X)p(O|X)}{p(X)} = \frac{Crexp(-10-1/1)}{251^2}$ $\frac{T}{\sqrt{2}\pi59}\left(-\frac{1}{259}\left(\frac{9-\mu_{1}}{9}\right)\right)$ we that d~N(PI JI)

- Observed data $y_1, \ldots, y_n \sim N(\mu, \sigma^2)$.
- Suppose that μ is known and σ is unknown.
- It is easier to work with $\tau = 1/\sigma^2$.
- au is known as the precision.
- τ is the reciprocal of the variance, so large τ means small variance and hence high precision.

- In this case, a gamma prior is conjugate for au.
- Prior $\tau \sim \text{Gamma}(\alpha, \beta)$. • Posterior $\tau \sim \text{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n}(y_i - \mu)^2}{2}\right)$
- The family of gamma distributions is conjugate to the normal likelihood for the normal precision parameter τ, if the mean μ is known.

Prost The likelihood, p(y1, -, yn 10), is (by independence) $p[y_{1}, .., y_{n}|\sigma^{2}] = \prod_{i=1}^{n} \prod_{i=1}^{n} \exp \left\{ \frac{1}{2\sigma^{2}} \left[\frac{y_{i}}{y_{i}} - p \right]^{2} \right\}$ $\vec{z}_{z1} = \left(\frac{1}{2\pi\sigma^9}\right)^{n/2} \exp\left\{\frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} - \frac{1}{2\sigma^2} - \frac{1}{2\sigma^2}\right)^{n/2}$ Let $T = 7/0^2$. Then $p[y_{1}, y_{n}|T] = \left(\frac{T}{2\pi}\right)^{n/2} exp\left(\frac{T}{2}\right)^{2} \left(\frac{T}{2}\right)^{n/2}$ α $T^{n/2} exp = T Z (yi-p)$ $\chi \sim Gomma(a,b)$ $f(\chi) \propto \chi^{a-1} \exp(-b\chi)$ We see that the litelihoud has the form of a gamma distribution.

My postena densty, p/0/97, yn) p[0/y1,-,yn)& T X $exp = T \left[\frac{y_{i-p}}{2} + B \right]$ We recognise this to be the gamma density with parameters posterior parameters $\left(\frac{N}{2}\right)$ $\sum (y_i - \mu)^2$

- If μ and τ are unknown then there is a bivariate distribution which is conjugate.
- Marginal distribution

 $\tau\sim {\rm Gamma}$

and conditional distribution

 $\mu \mid \tau \sim \text{Normal.}$

- The joint prior distribution is the product of these two.
- The posterior is of the same form.
- We're not going into details in this module.