MTH6107 Chaos \& Fractals

Solutions 2

Exercise 1. Order the integers from 1 to 50 inclusive using Sharkovskii's ordering.

$$
\begin{aligned}
& \quad 1 \triangleleft 2 \triangleleft 4 \triangleleft 8 \triangleleft 16 \triangleleft 32 \triangleleft 48 \triangleleft 40 \triangleleft 24 \triangleleft 44 \triangleleft 36 \triangleleft 28 \triangleleft 20 \triangleleft 12 \triangleleft 50 \triangleleft \\
& 46 \triangleleft 42 \triangleleft 38 \triangleleft 34 \triangleleft 30 \triangleleft 26 \triangleleft 22 \triangleleft 18 \triangleleft 14 \triangleleft 10 \triangleleft 6 \triangleleft 49 \triangleleft 47 \triangleleft 45 \triangleleft 43 \triangleleft \\
& 41 \triangleleft 39 \triangleleft 37 \triangleleft 35 \triangleleft 33 \triangleleft 31 \triangleleft 29 \triangleleft 27 \triangleleft 25 \triangleleft 23 \triangleleft 21 \triangleleft 19 \triangleleft 17 \triangleleft 15 \triangleleft 13 \triangleleft \\
& 11 \triangleleft 9 \triangleleft 7 \triangleleft 5 \triangleleft 3
\end{aligned}
$$

Exercise 2. For the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=(x-1)\left(1-3 x^{2} / 2\right)$, determine the orbit of the point 0 .

It is the period-3 orbit $\{0,-1,1\}$.
Exercise 3. Use Sharkovskii's Theorem to show that the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=(x-1)\left(1-3 x^{2} / 2\right)$ has a point of minimal period n for every $n \in \mathbb{N}$.

The map f is certainly continuous, so the existence (see Exercise 2) of an orbit of minimal (i.e. prime) period 3 implies, by Sharkovskii's Theorem, the existence of points of minimal period n for all $n \in \mathbb{N}$.

Exercise 4. Give an example of a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has one fixed point, and no other periodic points.

We might choose $f(x)=2 x$ (or indeed $f(x)=c x$ for any $c \neq 1$). Alternatively, we might choose f to be any order reversing diffeomorphism.

Exercise 5. Give an example of a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has three fixed points, and no other periodic points.

One such example is $f(x)=x^{3}$. Note that the three fixed points are at $-1,0$, and 1 . To see that there are no other periodic points, note that if $x \in(0,1)$ or $x \in(-1,0)$ then $f^{n}(x)$ converges to 0 , if $x \in(1, \infty)$ then $f^{n}(x)$ converges to ∞, while if $x \in(-\infty,-1)$ then $f^{n}(x)$ converges to $-\infty$; therefore if $x \in \mathbb{R} \backslash\{-1,0,1\}$ then x is not periodic.

Exercise 6. Give an example of a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has one fixed point, one orbit of prime period two, and no other periodic points.

One such example is $f(x)=-x^{3}$. Note that the unique fixed point is at 0 (i.e. the unique real solution of $x^{3}+x=0$). The points -1 and 1 are of prime period 2 (together with the point 0 they are the only real solutions of $0=x^{9}-x=x(x+1)(x-1)\left(x^{2}+\right.$ $\left.1)\left(x^{4}+1\right)\right)$. To see that there are no other periodic points, note that if $x \in(0,1)$ or $x \in(-1,0)$ then $f^{n}(x)$ converges to 0 , while if $x \in(1, \infty)$ or $x \in(-\infty,-1)$ then $\left|f^{n}(x)\right|$ converges to ∞; therefore if $x \in \mathbb{R} \backslash\{-1,0,1\}$ then x is not periodic.

Exercise 7. Give an example of a map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has one orbit of minimal period three, and no other periodic points.

Note that the question does not ask for f to be a continuous map (in fact a continuous map with the required properties does not exist, by Sharkovskii's Theorem). However we can easily exhibit a discontinuous map with these properties: for example let f be the map defined by setting $f(-1)=0, f(0)=1, f(1)=-1$, and $f(x)=0$ for all $x \in \mathbb{R} \backslash\{-1,0,1\}$. Then $\{-1,0,1\}$ is an orbit of minimal period 3 , and all points in $\mathbb{R} \backslash\{-1,0,1\}$. are preperiodic but not periodic.

Exercise 8. For the following values of μ, describe the behaviour of the orbit of the point x_{0} under the logistic map $f_{\mu}(x)=\mu x(1-x)$.
(a) $\mu=4 / 5=0.8, x_{0}=3 / 5=0.6$,
(b) $\mu=7 / 5=1.4, x_{0}=1 / 2=0.5$,
(c) $\mu=33 / 10=3.3, x_{0}=13 / 20=0.65$,
(d) $\mu=4, x_{0}=13 / 20=0.65$,
(e) $\mu=4, x_{0}=33 / 50=0.66$.
(a) Letting $x_{i}=f_{0.8}^{i}\left(x_{0}\right)$ then $x_{0}=0.6, x_{1}=0.192, x_{2}=0.124109, x_{3}=0.869646$, $x_{4}=0.0635214$, etc., and $x_{i} \rightarrow 0$ as $i \rightarrow \infty$.
(b) Letting $x_{i}=f_{1.4}^{i}\left(x_{0}\right)$ then $x_{0}=0.5, x_{1}=0.35, x_{2}=0.3185, x_{3}=0.303881$, $x_{4}=0.296152, x_{5}=0.291824, x_{6}=0.289328$, etc., and $x_{i} \rightarrow(\mu-1) / \mu=2 / 7=$ $0.285714 \ldots$ as $i \rightarrow \infty$.
(c) Letting $x_{i}=f_{3.3}^{i}\left(x_{0}\right)$ then $x_{0}=0.65, x_{1}=0.75075, x_{2}=0.617511, x_{3}=$ $0.779431, x_{4}=0.56733, x_{5}=0.81004, x_{6}=0.507788, x_{7}=0.8248, x_{8}=0.476867$, etc., and the orbit is in the basin of attraction of the attracting 2 -cycle $\{0.479427,0.823603\}$.
(d) Letting $x_{i}=f_{4}^{i}\left(x_{0}\right)$ then $x_{0}=0.65, x_{1}=0.91, x_{2}=0.3276, x_{3}=0.881113$, $x_{4}=0.419012, x_{5}=0.973764, x_{6}=0.102192$, and x_{i} does not seem to settle to any discernible pattern.
(e) Letting $x_{i}=f_{4}^{i}\left(x_{0}\right)$ then $x_{0}=0.66, x_{1}=0.8976, x_{2}=0.367657, x_{3}=$ $0.929941, x_{4}=0.260602, x_{5}=0.770754, x_{6}=0.706768$, and x_{i} does not seem to settle to any discernible pattern. Moreover note that this orbit of $x_{0}=0.66$ is already looking rather different to the orbit of 0.65 in (d) above; this is a hallmark of chaos, that two orbits which start close to each other end up looking nothing like each other.

Exercise 9. Let $f(x)=1-(13 / 10) x^{2}=1-1.3 x^{2}$.
Use a computer to determine numerically the first 50 points in the f-orbit of the point 0 , and the first 50 points in the f-orbit of the point $1 / 3$.

What is the period of the attracting orbit of f ?
The points $f^{n}(0)$ for $0 \leq n \leq 50$, listed in order, and to six-digit precision, are: $0,1,-0.3,0.883,-0.0135957,0.99976,-0.299375,0.883487,-0.0147135,0.999719$, $-0.299268,0.88357,-0.0149047,0.999711,-0.299249,0.883585,-0.0149389,0.99971$, $-0.299246,0.883588,-0.014945,0.99971,-0.299245,0.883588,-0.0149461,0.99971$, $-0.299245,0.883588,-0.0149463,0.99971,-0.299245,0.883588,-0.0149464,0.99971$, $-0.299245,0.883588,-0.0149464,0.99971,-0.299245,0.883588,-0.0149464,0.99971$,
$-0.299245,0.883588,-0.0149464,0.99971,-0.299245,0.883588,-0.0149464,0.99971$, -0.299245.

The points $f^{n}(1 / 3)$ for $0 \leq n \leq 50$, listed in order, and to six-digit precision, are: $0.333333,0.855556,0.0484321,0.996951,-0.292084,0.889093,-0.0276328,0.999007$, $-0.29742,0.885003,-0.0182004,0.999569,-0.298881,0.883872,-0.0155975,0.999684$, $-0.299178,0.88364,-0.0150665,0.999705,-0.299233,0.883598,-0.0149681,0.999709$, $-0.299243,0.88359,-0.0149503,0.999709,-0.299245,0.883588,-0.0149471,0.99971$, $-0.299245,0.883588,-0.0149465,0.99971,-0.299245,0.883588,-0.0149464,0.99971$, $-0.299245,0.883588,-0.0149464,0.99971,-0.299245,0.883588,-0.0149464,0.99971$, $-0.299245,0.883588,-0.0149464$.

We observe that there is an attracting period-4 orbit. (Note that the orbits of the points 0 and $1 / 3$ get very close to, but do not ever reach, the attracting period-4 orbit: this can be seen e.g. by using higher precision calculations).

Exercise 10. Let $f(x)=1-\bar{\lambda} x^{2}$ where the value

$$
\bar{\lambda}=\frac{1}{3}\left(2+(25 / 2-3 \sqrt{69} / 2)^{1 / 3}+(25 / 2+3 \sqrt{69} / 2)^{1 / 3}\right) \approx 1.75487766624669276
$$

is the only real root of the polynomial $1-\lambda+2 \lambda^{2}-\lambda^{3}$. (The value $\bar{\lambda}$ is chosen so that 0 is a period-3 point).

Use a computer to determine numerically the first 100 points in the f-orbit $\left\{f^{n}(1 / 3)\right\}_{n=0}^{\infty}$ of the point $1 / 3$.

What is the smallest value $n \in \mathbb{N}$ such that $\left|f^{n}(1 / 3)\right|<1 / 100$?
What is the smallest value $n \in \mathbb{N}$ such that $\left|f^{n}(1 / 3)\right|<1 / 1000$?
What is the smallest value $n \in \mathbb{N}$ such that $\left|f^{n}(1 / 3)\right|<10^{-6}$?
The points $f^{n}(1 / 3)$ for $1 \leq n \leq 100$, listed in order, and to 30-digit precision, are: $0.805013592639256359994499011516,-0.13724300399842469417029663821$,
$0.96694575226767184768572001197,-0.64078269402626004164645869879$,
$0.27944291154913380895156940089,0.86296451470939636812027419337$,
$-0.3068710047569593686982052890,0.8347434973479832615779149072$,
$-0.2227929779137414332615638862,0.9128936444266934943780011606$,
$-0.462470834722877354274795755,0.624668040593139431299310199$,
$0.315228903426547703378679718,0.825619102184820392690376406$,
-0.19620692439734415711846210, 0.93244219864825837155853729,
$-0.52577567356143373447667293,0.51488151456471208844976748$,
$0.5347767116008343248170330,0.4981293253769257634425915$,
$0.5645572474949496531308910,0.440676816409665405875317$,
$0.659209677538190472251826,0.237404925862833321711402$,
$0.901093166428749540446619,-0.42490607879351239322009$,
$0.68316530324758072393065,0.18097256558688413584035$,
$0.94252587959735727599594,-0.55895440835686168480563$,
$0.4517235169974377326302,0.6419099543643334229536$,
$0.2769054838324370250360,0.8654418646983001916738$,
-0.314385158446140295665, 0.826551352348052206649,
-0.198909850463220240671, 0.930568039437850485450 ,
$-0.51964838166587839212,0.52612259112985583610$,
$0.51424112111767277215,0.53593325213070198278$,
0.4959562261974700898 ,
$0.5683482158251312064,0.4331399524841365631$,
$0.6707670177035603671,0.210430713400598154$,
$0.922292112646636361,-0.492738850670532420$,
$0.573930487549630478,0.42194995730815767$,
$0.68755848035855309,0.17040498648317265$,
$0.94904210903116106,-0.58058483919556888$,
$0.4084680202002492,0.7072054641238396$,
$0.1223162412565804,0.9737448139215746$,
$-0.663938085140423,0.226425740924948$,
$0.910029850533003,-0.453309535923899$,
$0.639391003750132,0.28256941087727$,
$0.85988096450028,-0.29754825130899$,
$0.84463197275508,-0.2519352890099$,
$0.8886154755092,-0.3857171488023$,
$0.7389133039021,0.041849305308$,
$0.9969265698084,-0.744107254770$,
$0.028331946076,0.9985913611565$,
$-0.7499371706938,0.013046692428$,
$0.9997012914215,-0.7538294288025$,
$0.002775309669,0.99998648332896$,
$-0.75483022635905,0.00012568499267$,
$0.99999997227869346,-0.7548775689516907$,
$2.577768562 \times 10^{-7}, 0.9999999999998833902961$,
$-0.754877666246283488519,1.084338691 \times 10^{-12}$,
$0.999999999999999999999997936632,-0.75487766624669276004950165444$,
$1.918700 \times 10^{-23}, 1.00000000000000000000000000000$,
$-0.75487766624669276004950889636,0 \times 10^{-30}$,
$1.00000000000000000000000000000,-0.75487766624669276004950889636,0 \times 10^{-30}$
Although the orbit containing 0 is attracting, we see that the orbit of the point $1 / 3$ takes some time to become close to this orbit. We see that the smallest value n such that $\left|f^{n}(1 / 3)\right|<1 / 100$ is $n=82$ (note that $f^{82}(1 / 3) \approx 0.002775309669$), the smallest value n such that $\left|f^{n}(1 / 3)\right|<1 / 1000$ is $n=85$ (note that $f^{85}(1 / 3) \approx$ $0.00012568499267)$, and the smallest value n such that $\left|f^{n}(1 / 3)\right|<10^{-6}$ is $n=88$ (note that $f^{88}(1 / 3) \approx 2.577768562 \times 10^{-7}$).

Note that once $n>80$, the convergence of $f^{n}(1 / 3)$ to the period- 3 orbit is very rapid; in particular, the computed numerical values of $f^{97}(1 / 3)$ and $f^{100}(1 / 3)$ are indistinguishable from 0 (to 30 digit precision), and $f^{95}(1 / 3)$ and $f^{98}(1 / 3)$ are indistinguishable from 1 (to 30 digit precision).

