MTH6107 Chaos \& Fractals

Exercises 2

Exercise 1. Order the integers from 1 to 50 inclusive using Sharkovskii's ordering.

Exercise 2. For the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=(x-1)\left(1-3 x^{2} / 2\right)$, determine the orbit of the point 0 .

Exercise 3. Use Sharkovskii's Theorem to show that the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=(x-1)\left(1-3 x^{2} / 2\right)$ has a point of minimal period n for every $n \in \mathbb{N}$.

Exercise 4. Give an example of a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has one fixed point, and no other periodic points.

Exercise 5. Give an example of a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has three fixed points, and no other periodic points.

Exercise 6. Give an example of a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has one fixed point, one orbit of prime period two, and no other periodic points.

Exercise 7. Give an example of a map $f: \mathbb{R} \rightarrow \mathbb{R}$ which has one orbit of prime period three, and no other periodic points.

Exercise 8. For the following values of μ, describe the behaviour of the orbit of the point x_{0} under the logistic map $f_{\mu}(x)=\mu x(1-x)$.
(a) $\mu=4 / 5=0.8, x_{0}=3 / 5=0.6$,
(b) $\mu=7 / 5=1.4, x_{0}=1 / 2=0.5$,
(c) $\mu=33 / 10=3.3, x_{0}=13 / 20=0.65$,
(d) $\mu=4, x_{0}=13 / 20=0.65$,
(e) $\mu=4, x_{0}=33 / 50=0.66$.

Exercise 9. Let $f(x)=1-(13 / 10) x^{2}=1-1.3 x^{2}$.
Use a computer to determine numerically the first 50 points in the f-orbit of the point 0 , and the first 50 points in the f-orbit of the point $1 / 3$.

What is the period of the attracting orbit of f ?

Exercise 10. Let $f(x)=1-\bar{\lambda} x^{2}$ where the value

$$
\bar{\lambda}=\frac{1}{3}\left(2+(25 / 2-3 \sqrt{69} / 2)^{1 / 3}+(25 / 2+3 \sqrt{69} / 2)^{1 / 3}\right) \approx 1.75487766624669276
$$

is the only real root of the polynomial $1-\lambda+2 \lambda^{2}-\lambda^{3}$. (The value $\bar{\lambda}$ is chosen so that 0 is a period- 3 point).

Use a computer to determine numerically the first 100 points in the f-orbit $\left\{f^{n}(1 / 3)\right\}_{n=0}^{\infty}$ of the point $1 / 3$.

What is the smallest value $n \in \mathbb{N}$ such that $\left|f^{n}(1 / 3)\right|<1 / 100$?
What is the smallest value $n \in \mathbb{N}$ such that $\left|f^{n}(1 / 3)\right|<1 / 1000$?
What is the smallest value $n \in \mathbb{N}$ such that $\left|f^{n}(1 / 3)\right|<10^{-6}$?

