MTH5104: Convergence and Continuity 2023-2024 Problem Sheet 2 (Real Numbers)

1. Consider the following sets:
(a) $A=[-1,3]$.
(b) $B=(-1,3)$.
(c) $C=(-1,3) \cap[-3,1]$.
(d) $D=(1,2) \cup[7,8]$.
(e) $E=\left\{z \in \mathbb{R}: z^{3}<2\right\}$.
(f) $F=\left\{n^{2}: n \in \mathbb{N}\right\}$.
(g) $G=\left\{z \in \mathbb{R}: 0<z^{2}<1\right\}$.

For each of (a)-(g), answer the following questions (fully justify your answers):
(i) Does this set have an upper bound?
(ii) Does this set have a supremum?
(iii) Does this set have a maximum?
(iv) Does this set have a lower bound?
(v) Does this set have an infimum?
(vi) Does this set have a minimum?

Solutions. I will provide solutions for (a),(b),(e),(f).
(a) (i) This set has an upper bound, namely $x=3$. Indeed, if $y \in A$ then $y \leq 3$ which shows that 3 is an upper bound. Of course, any $x^{\prime} \geq 3$ will also be an upper bound for A.
(ii) This set has a supremum, namely $x=3$. Indeed, we have already seen that x is an upper bound for A. To show that x is a least upper bound, let $z<x$. If $z \in A$ then $y=(z+x) / 2$ is such that $y \in A$ and $y>z$, which shows that z is not an upper bound for A. If $z \notin A$ (i.e. if $z<-1$) then simply taking $y=-1$ achieves the same result.
(iii) We have $\sup (A)=3 \in A$ and so by Lemma 2.11 we see that A has a maximum, namely $\max (A)=3$.
(iv) This set has a lower bound, namely $x=-1$. Indeed, if $y \in A$ then $y \geq-1$ which shows that -1 is a lower bound. Of course, any $x^{\prime} \leq-1$ will also be a lower bound for A.
(v) This set has an infimum, namely $x=-1$. Indeed, we have already seen that x is a lower bound for A. To show that x is a greatest lower bound, let $z>x$. If $z \in A$ then $y=(z+x) / 2$ is such that $y \in A$ and $y<z$, which shows that z is not a lower bound for A. If $z \notin A$ (i.e. if $z>3$) then simply taking $y=3$ achieves the same result.
(vi) We have $\inf (A)=-1 \in A$ and so by Lemma 2.11 we see that A has a maximum, namely $\min (A)=-1$.
(b) (i) This set has an upper bound, namely $x=3$ (and anything greater than this). The proof is similar to (a)(i) above.
(ii) This set has a supremum, namely $x=3$. The proof is similar to (a)(ii) above.
(iii) This set does not have a maximum. Indeed we have $\sup (B)=3$ but $3 \notin B$ and hence, by Lemma $2.11, B$ does not have a maximum.
(iv) This set has a lower bound, namely $x=-1$ (and anything less than this). The proof is similar to (a)(iv) above.
(v) This set has an infimum, namely $x=-1$. The proof is similar to (a) (v) above.
(vi) This set does not have a minimum. Indeed we have $\inf (B)=-1$ but $-1 \notin B$ and hence, by Lemma $2.11, B$ does not have a maximum.
(e) If $z<0$ then $z^{3}<0<2$. On the other hand if $z \geq 0$ then $z^{3}<2$ if and only if $z<\sqrt[3]{2}$. We conclude that

$$
E=\{z \in \mathbb{R}: z<\sqrt[3]{2}\}
$$

(i) This set has an upper bound, namely $x=\sqrt[3]{2}$ (and any number greater than this). This is clear from the above description of E.
(ii) This set has a supremum, namely $x=\sqrt[3]{2}$. Indeed, we have already seen that x is an upper bound for E. To show it is the least upper bound, suppose that $z \in \mathbb{R}$ with $z<x$. Then choose $y=(z+x) / 2$. We can show (check this yourself!) that $z<y$ and that $y \in E$. Therefore z is not an upper bound for E, and we conclude that x is the least upper bound.
(iii) This set does not have a maximum, by Lemma 2.11: $\sup (E)=\sqrt[3]{2} \notin$ E.
(iv) This set does not have a lower bound! Indeed, suppose for a contradiction that $x \in \mathbb{R}$ is a lower bound for E. This means that for all $y \in E$ we have $x \leq y$. Choose $y \in E$. This means that $y<\sqrt[3]{2}$. Since $x \leq y<\sqrt[3]{2}$ we have $x \in E$ also. But then $x-1<x<\sqrt[3]{2} \in E$ which contradicts the assumption that x is a lower bound for E.
(v) Since E does not have a lower bound, it does not have an infimum (which, when it is defined, is the greatest of all the lower bounds; if there are no lower bounds then there is no infimum).
(vi) Since E does not have an infimum, it does not have a minimum (since by Lemma 2.11 the existence of a minimum implies the existence of an infimum).
(f) We can rewrite G as:

$$
G=\{z \in \mathbb{R}:-1<z<1 \text { and } z \neq 0\}=(-1,1) \backslash\{0\}
$$

The point is that removing $\{0\}$ from $(-1,1)$ does not affect the upper bound, supremum, etc., since it happens in the "middle" of the set. Thus, the following arguments are similar to (b), and I will not repeat them in full.
(i) This set has an upper bound, namely $x=1$ and anything greater.
(ii) This set has a supremum, namely $x=1$.
(iii) This set does not have a maximum because $1 \notin G$.
(iv) This set has a lower bound, namely $x=-1$ and anything less.
(v) This set has an infimum, namely $x=-1$.
(vi) This set does not have a minimum because $-1 \notin G$.
2. Let $A=\{1 / n: n \in \mathbb{N}\}$.
(a) Find, with brief justification, a lower bound for A.
(b) Suppose $x \in \mathbb{R}$ with $x>0$. Is x a lower bound for A ? Justify your answer. (You may use any theorems from the course providing you clearly state which theorem you are using.)
(c) Does A have an infimum? Prove your answer.

Solution We have $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
(a) 0 is a lower bound for A since all $x \in A$ satisfy $x>0$. (Of course, any negative number is also a lower bound.)
(b) Any $x \in \mathbb{R}$ with $x>0$ is not a lower bound since by Corollary 2.16 there is an $n \in \mathbb{N}$ with $\frac{1}{n}<x$, and this $\frac{1}{n} \in A$. This means that we have found something in A which is smaller than x, so x is not a lower bound.
Alternative: $x>0$ is a real number, and hence so is $\frac{1}{x}$. Therefore by Theorem 2.14 there is a natural number n with $n>\frac{1}{x}$, i.e. $\frac{1}{n}<x$. This $\frac{1}{n} \in A$ so x is not a lower bound. (Recall: To show that x is not a lower bound we need to show there is something in A that is smaller than x.)
(c) From our answer to (a) and (b) it follows immediately that 0 is the infimum, for we have shown that 0 is a lower bound and that nothing bigger than 0 is a lower bound. (A correct answer to part (c) needs to contain two observations: First, that zero is a lower bound and secondly that nothing bigger than zero is a lower bound (i.e., part (b) of the question). You do not need to reprove part (b) - it was there for a reason!)
3. Suppose $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ are sets, and that $a=\sup A$ and $b=\sup B$ both exist.
(a) Prove that $A \cap B$ is bounded above by a and also by b. (This means that a and b are both upper bounds for $A \cap B$.)
(b) Suppose $A \cap B \neq \emptyset$. Prove that $A \cap B$ has a supremum, m say, and that $m \leq \min \{a, b\}$.
(c) Assuming $A \cap B \neq \emptyset$, is it necessarily the case that $m=\min \{a, b\}$? Either give a proof or give a counterexample.

Something to think about (not part of the question). What happens in part (b) if $A \cap B=\emptyset$?

Solution.

(a) By definition of supremum, a is an upper bound for A. Let x be any element of $A \cap B$. In particular, x is an element of A, and hence $x \leq a$. Thus a is an upper bound for $A \cap B$. (If $A \cap B=\emptyset$ then a is vacuously an upper bound for $A \cap B$.)
(b) We know from part (a) that for all $x \in A \cap B$, we have $x \leq a$ and $x \leq b$. It follows that $m=\min \{a, b\}$ is an upper bound for $A \cap B$. Since $A \cap B$ is non-empty, it has a supremum (by the completeness axiom). Since the supremum is the least upper bound, it must be less than or equal to any given upper bound such as m.
(c) It is not always the case. E.g., suppose $A=\{0,1\}$ and $B=[0,1)$. Then $\sup (A)=\sup (B)=1$. However, $\sup (A \cap B)=\sup (\{0\})=0<\min \{1,1\}$.
4. First, restudy our proof of Theorem 2.19 from the lecture notes (stating that there exists a number $x \in \mathbb{R}$ with $x^{2}=2$). Modify the proof of Theorem 2.19 to show that there is a real number x with $x^{2}=19$.

Solution. Let $A=\left\{z: z^{2} \leq 19\right\}$. Then $1 \in A$ (since $\left.1^{2}=1 \leq 19\right)$. Hence A is non-empty. Also if $z>10$ then $z^{2}>100 \not \leq 19$; i.e., $z \notin A$. Therefore 10 is an upper bound for A : in particular A is bounded above. Hence, by the completeness axiom A has a supremum $x=\sup (A)$. Note $1 \leq x \leq 10$. We aim to show that $x^{2}=19$. Now, either $x^{2}=19, x^{2}<19$ or $x^{2}>19$, so we aim to show that the latter two cases cannot occur.

Suppose that $x^{2}<19$. We try to get a contradiction by finding a number bigger than x which is in A. Let $\varepsilon=19-x^{2}$. Consider the number $x+1 / n$.

Then

$$
\begin{array}{rlr}
(x+1 / n)^{2} & =x^{2}+2 x / n+1 / n^{2} & \\
& =19-\varepsilon+2 x / n+1 / n^{2} & \\
& \leq 19-\varepsilon+2 x / n+1 / n & \text { since } 1 / n^{2} \leq 1 / n \\
& =19-\varepsilon+(2 x+1) / n & \\
& \leq 19-\varepsilon+21 / n & \text { since } x \leq 10
\end{array}
$$

Hence, if we pick $n>21 / \varepsilon$ (which we can do by Theorem 2.14) we have $(x+1 / n)^{2}<19$: that is $x+1 / n \in A$. Since $x+1 / n>x$ this contradicts the fact that x was an upper bound for A.

Now suppose $x^{2}>19$. We consider the number $(x-1 / n)$. Let $\varepsilon=x^{2}-19$. Then

$$
\begin{aligned}
(x-1 / n)^{2} & =x^{2}-2 x / n+1 / n^{2} \\
& =19+\varepsilon-2 x / n+1 / n^{2}
\end{aligned}
$$

$$
>19+\varepsilon-2 x / n \quad \text { since } 1 / n^{2}>0
$$

$$
>19+\varepsilon-20 / n \quad \text { since } x \leq 10
$$

Hence, if we pick $n>20 / \varepsilon$ we have $(x-1 / n)^{2}>19$. Since $1 / n \leq 1$ and $x \geq 1$ (since $1 \in A$) we see that $x-1 / n \geq 0$. Hence, if $y>x-1 / n$ we have $y^{2}>(x-1 / n)^{2}>19$, so $y \notin A$: i.e., $x-1 / n$ is an upper bound for A. This contradicts the fact that x was the least upper bound.

Since neither of the latter two cases can occur we must have $x^{2}=19$.
5. Challenge. Let $I_{1}, I_{2}, I_{3}, \ldots$ be a decreasing sequence of nested closed intervals, i.e.,

- For all $n \in \mathbb{N}, I_{n}=\left[a_{n}, b_{n}\right]$ is a closed interval.
- $\forall n \in \mathbb{N}: I_{n+1} \subseteq I_{n}$.
- $\forall \varepsilon>0 \exists n \in \mathbb{N}:\left|I_{n}\right|<\varepsilon$, where $\left|I_{n}\right|=b_{n}-a_{n}$ is the length of the interval.

Show, using the Completeness Axiom, that there exists exactly one $x \in \mathbb{R}$ such that $\forall n \in \mathbb{N}: x \in I_{n}$ (this is known as the "nested interval principle").

Solution. Let $I_{1}, I_{2}, I_{3}, \ldots$ be a sequence of intervals with the following properties.

- For all $n \in \mathbb{N}, I_{n}=\left[a_{n}, b_{n}\right]$ is a closed interval.
- $\forall n \in \mathbb{N}: I_{n+1} \subset I_{n}$.
- $\forall \varepsilon>0 \exists n \in \mathbb{N}:\left|I_{n}\right|<\varepsilon$, where $\left|I_{n}\right|=b_{n}-a_{n}$ is the length of the interval.

We first want to show that there exists some $x \in \mathbb{R}$ such that $\forall n \in \mathbb{N}: x \in I_{n}$. Because $A:=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is bounded above (and non-empty), we can set $x:=\sup (A)$. Because every b_{n} is an upper bound for A, we conclude that $a_{n} \leq x \leq b_{n}$ for all $n \in \mathbb{N}$, so $x \in I_{n}$ for all $n \in \mathbb{N}$.
For uniqueness, note that if x and x^{\prime} are two real numbers with $x \neq x^{\prime}$, if we set $\varepsilon:=\left|x-x^{\prime}\right|>0$, there is an interval I_{n} of length $<\varepsilon$. This interval can thus not contain both x and x^{\prime}.
6. Challenge. In Question 5, we proved that the completeness axiom implies the nested interval principle. Now, prove that the two are actually equivalent by showing that the nested interval principle implies the completeness axiom.

Solution. We assume that A is a given non-empty set which is bounded above. We want to show that the supremum $x=\sup (A)$ exists, using only the "nested interval principle". The idea is to construct a decreasing sequence of nested closed intervals $I_{n}=\left[a_{n}, b_{n}\right]$ such that

- All b_{n} are upper bounds for A.
- All a_{n} are not upper bounds for A.

As explained in the hint to the exercise, we start with $I_{1}=\left[a_{1}, b_{1}\right]$, where a_{1} is not an upper bound for A (e.g. $a_{1}=y-1$ for some element $y \in A$) - this exists because A is non-empty - and b_{1} is some upper bound for A - this exists because A is bounded above.

Then we define I_{n} iteratively from I_{n-1} (for $n \geq 2$) as follows: Let m be the midpoint of I_{n-1}, i.e. $m=\frac{a_{n-1}+b_{n-1}}{2}$. We define

$$
I_{n}=\left[a_{n}, b_{n}\right]:= \begin{cases}{\left[a_{n-1}, m\right]} & \text { if } m \text { is an upper bound for } A \\ {\left[m, b_{n-1}\right]} & \text { if } m \text { is not an upper bound for } A\end{cases}
$$

From the nested interval principle, we now know that there exists some x which lies in all intervals $I_{n}=\left[a_{n}, b_{n}\right], \forall n \in \mathbb{N}$. [In case you did not know at all how to solve this problem and read until here, try to prove now that x is actually the supremum we are looking for!]

To prove that x is the supremum of A, we need to check the properties of $\sup (A)$:

1. x is an upper bound for A : Assume towards a contradiction that x is not an upper bound for A. Then $\exists y \in A$ with $y>x$ and hence an interval
$I_{n}=\left[a_{n}, b_{n}\right]$ of length $b_{n}-a_{n}<y-x$. Because $x \in I_{n}$, we get $b_{n}-x<y-x$ and thus $b_{n}<y$. But as $y \in A$ this contradicts the fact that b_{n} is an upper bound for A.
2. x is the supremum for A : Assume towards a contradiction that there is a smaller upper bound $y<x$. Then there is an interval $I_{n}=\left[a_{n}, b_{n}\right]$ of length $b_{n}-a_{n}<x-y$. But because $x \in I_{n}$, we get $x-a_{n}<x-y$ and thus $a_{n}>y$. Because y is an upper bound for A, a_{n} also must be an upper bound for A, which contradicts how we constructed our nested intervals.

The points 1. and 2. together show that x is the $\operatorname{supremum} \sup (A)$ which we were looking for.

