
MTH5104: Convergence and Continuity 2023–2024

Problem Sheet 2 (Real Numbers)

1. Consider the following sets:

(a) A = [−1, 3].

(b) B = (−1, 3).

(c) C = (−1, 3) ∩ [−3, 1].

(d) D = (1, 2) ∪ [7, 8].

(e) E = {z ∈ R : z3 < 2}.
(f) F = {n2 : n ∈ N}.
(g) G = {z ∈ R : 0 < z2 < 1}.

For each of (a)-(g), answer the following questions (fully justify your answers):

(i) Does this set have an upper bound?

(ii) Does this set have a supremum?

(iii) Does this set have a maximum?

(iv) Does this set have a lower bound?

(v) Does this set have an infimum?

(vi) Does this set have a minimum?

Solutions. I will provide solutions for (a),(b),(e),(f).

(a) (i) This set has an upper bound, namely x = 3. Indeed, if y ∈ A then
y ≤ 3 which shows that 3 is an upper bound. Of course, any x′ ≥ 3
will also be an upper bound for A.

(ii) This set has a supremum, namely x = 3. Indeed, we have already
seen that x is an upper bound for A. To show that x is a least upper
bound, let z < x. If z ∈ A then y = (z+x)/2 is such that y ∈ A and
y > z, which shows that z is not an upper bound for A. If z 6∈ A
(i.e. if z < −1) then simply taking y = −1 achieves the same result.

(iii) We have sup(A) = 3 ∈ A and so by Lemma 2.11 we see that A has
a maximum, namely max(A) = 3.

(iv) This set has a lower bound, namely x = −1. Indeed, if y ∈ A then
y ≥ −1 which shows that −1 is a lower bound. Of course, any
x′ ≤ −1 will also be a lower bound for A.
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(v) This set has an infimum, namely x = −1. Indeed, we have already
seen that x is a lower bound for A. To show that x is a greatest
lower bound, let z > x. If z ∈ A then y = (z + x)/2 is such that
y ∈ A and y < z, which shows that z is not a lower bound for A.
If z 6∈ A (i.e. if z > 3) then simply taking y = 3 achieves the same
result.

(vi) We have inf(A) = −1 ∈ A and so by Lemma 2.11 we see that A has
a maximum, namely min(A) = −1.

(b) (i) This set has an upper bound, namely x = 3 (and anything greater
than this). The proof is similar to (a)(i) above.

(ii) This set has a supremum, namely x = 3. The proof is similar to
(a)(ii) above.

(iii) This set does not have a maximum. Indeed we have sup(B) = 3 but
3 6∈ B and hence, by Lemma 2.11, B does not have a maximum.

(iv) This set has a lower bound, namely x = −1 (and anything less than
this). The proof is similar to (a)(iv) above.

(v) This set has an infimum, namely x = −1. The proof is similar to
(a)(v) above.

(vi) This set does not have a minimum. Indeed we have inf(B) = −1 but
−1 6∈ B and hence, by Lemma 2.11, B does not have a maximum.

(e) If z < 0 then z3 < 0 < 2. On the other hand if z ≥ 0 then z3 < 2 if and
only if z < 3

√
2. We conclude that

E = {z ∈ R : z <
3
√

2}.

(i) This set has an upper bound, namely x = 3
√

2 (and any number
greater than this). This is clear from the above description of E.

(ii) This set has a supremum, namely x = 3
√

2. Indeed, we have already
seen that x is an upper bound for E. To show it is the least upper
bound, suppose that z ∈ R with z < x. Then choose y = (z + x)/2.
We can show (check this yourself!) that z < y and that y ∈ E.
Therefore z is not an upper bound for E, and we conclude that x is
the least upper bound.

(iii) This set does not have a maximum, by Lemma 2.11: sup(E) = 3
√

2 6∈
E.

(iv) This set does not have a lower bound! Indeed, suppose for a con-
tradiction that x ∈ R is a lower bound for E. This means that for
all y ∈ E we have x ≤ y. Choose y ∈ E. This means that y < 3

√
2.

Since x ≤ y < 3
√

2 we have x ∈ E also. But then x−1 < x < 3
√

2 ∈ E
which contradicts the assumption that x is a lower bound for E.

(v) Since E does not have a lower bound, it does not have an infimum
(which, when it is defined, is the greatest of all the lower bounds; if
there are no lower bounds then there is no infimum).
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(vi) Since E does not have an infimum, it does not have a minimum
(since by Lemma 2.11 the existence of a minimum implies the exis-
tence of an infimum).

(f) We can rewrite G as:

G = {z ∈ R : −1 < z < 1 and z 6= 0} = (−1, 1) \ {0}.

The point is that removing {0} from (−1, 1) does not affect the upper
bound, supremum, etc., since it happens in the “middle” of the set. Thus,
the following arguments are similar to (b), and I will not repeat them in
full.

(i) This set has an upper bound, namely x = 1 and anything greater.

(ii) This set has a supremum, namely x = 1.

(iii) This set does not have a maximum because 1 6∈ G.

(iv) This set has a lower bound, namely x = −1 and anything less.

(v) This set has an infimum, namely x = −1.

(vi) This set does not have a minimum because −1 6∈ G.

2. Let A = {1/n : n ∈ N}.

(a) Find, with brief justification, a lower bound for A.

(b) Suppose x ∈ R with x > 0. Is x a lower bound for A? Justify your answer.
(You may use any theorems from the course providing you clearly state
which theorem you are using.)

(c) Does A have an infimum? Prove your answer.

Solution We have A = { 1n : n ∈ N}.

(a) 0 is a lower bound for A since all x ∈ A satisfy x > 0. (Of course, any
negative number is also a lower bound.)

(b) Any x ∈ R with x > 0 is not a lower bound since by Corollary 2.16 there
is an n ∈ N with 1

n < x, and this 1
n ∈ A. This means that we have found

something in A which is smaller than x, so x is not a lower bound.

Alternative: x > 0 is a real number, and hence so is 1
x . Therefore by

Theorem 2.14 there is a natural number n with n > 1
x , i.e. 1

n < x. This
1
n ∈ A so x is not a lower bound. (Recall: To show that x is not a lower
bound we need to show there is something in A that is smaller than x.)

(c) From our answer to (a) and (b) it follows immediately that 0 is the infi-
mum, for we have shown that 0 is a lower bound and that nothing bigger
than 0 is a lower bound. (A correct answer to part (c) needs to con-
tain two observations: First, that zero is a lower bound and secondly that
nothing bigger than zero is a lower bound (i.e., part (b) of the question).
You do not need to reprove part (b) – it was there for a reason! )
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3. Suppose A ⊆ R and B ⊆ R are sets, and that a = supA and b = supB both
exist.

(a) Prove that A∩B is bounded above by a and also by b. (This means that
a and b are both upper bounds for A ∩B.)

(b) Suppose A ∩B 6= ∅. Prove that A ∩B has a supremum, m say, and that
m ≤ min{a, b}.

(c) Assuming A∩B 6= ∅, is it necessarily the case that m = min{a, b}? Either
give a proof or give a counterexample.

Something to think about (not part of the question). What happens in part (b)
if A ∩B = ∅?

Solution.

(a) By definition of supremum, a is an upper bound for A. Let x be any
element of A ∩ B. In particular, x is an element of A, and hence x ≤ a.
Thus a is an upper bound for A ∩ B. (If A ∩ B = ∅ then a is vacuously
an upper bound for A ∩B.)

(b) We know from part (a) that for all x ∈ A ∩B, we have x ≤ a and x ≤ b.
It follows that m = min{a, b} is an upper bound for A ∩B. Since A ∩B
is non-empty, it has a supremum (by the completeness axiom). Since the
supremum is the least upper bound, it must be less than or equal to any
given upper bound such as m.

(c) It is not always the case. E.g., suppose A = {0, 1} and B = [0, 1). Then
sup(A) = sup(B) = 1. However, sup(A∩B) = sup({0}) = 0 < min{1, 1}.

4. First, restudy our proof of Theorem 2.19 from the lecture notes (stating that
there exists a number x ∈ R with x2 = 2). Modify the proof of Theorem 2.19
to show that there is a real number x with x2 = 19.

Solution. Let A = {z : z2 ≤ 19}. Then 1 ∈ A (since 12 = 1 ≤ 19). Hence
A is non-empty. Also if z > 10 then z2 > 100 6≤ 19; i.e., z /∈ A. Therefore
10 is an upper bound for A: in particular A is bounded above. Hence, by the
completeness axiom A has a supremum x = sup(A). Note 1 ≤ x ≤ 10. We
aim to show that x2 = 19. Now, either x2 = 19, x2 < 19 or x2 > 19, so we
aim to show that the latter two cases cannot occur.

Suppose that x2 < 19. We try to get a contradiction by finding a number
bigger than x which is in A. Let ε = 19− x2. Consider the number x + 1/n.
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Then

(x + 1/n)2 = x2 + 2x/n + 1/n2

= 19− ε + 2x/n + 1/n2

≤ 19− ε + 2x/n + 1/n since 1/n2 ≤ 1/n

= 19− ε + (2x + 1)/n

≤ 19− ε + 21/n since x ≤ 10

Hence, if we pick n > 21/ε (which we can do by Theorem 2.14) we have
(x + 1/n)2 < 19: that is x + 1/n ∈ A. Since x + 1/n > x this contradicts the
fact that x was an upper bound for A.

Now suppose x2 > 19. We consider the number (x − 1/n). Let ε = x2 − 19.
Then

(x− 1/n)2 = x2 − 2x/n + 1/n2

= 19 + ε− 2x/n + 1/n2

> 19 + ε− 2x/n since 1/n2 > 0

> 19 + ε− 20/n since x ≤ 10

Hence, if we pick n > 20/ε we have (x − 1/n)2 > 19. Since 1/n ≤ 1 and
x ≥ 1 (since 1 ∈ A) we see that x − 1/n ≥ 0. Hence, if y > x − 1/n we have
y2 > (x − 1/n)2 > 19, so y 6∈ A: i.e., x − 1/n is an upper bound for A. This
contradicts the fact that x was the least upper bound.

Since neither of the latter two cases can occur we must have x2 = 19.

5. Challenge. Let I1, I2, I3, . . . be a decreasing sequence of nested closed inter-
vals, i.e.,

• For all n ∈ N, In = [an, bn] is a closed interval.

• ∀n ∈ N : In+1 ⊆ In.

• ∀ε > 0 ∃n ∈ N : |In| < ε, where |In| = bn−an is the length of the interval.

Show, using the Completeness Axiom, that there exists exactly one x ∈ R such
that ∀n ∈ N : x ∈ In (this is known as the “nested interval principle”).

Solution. Let I1, I2, I3, . . . be a sequence of intervals with the following
properties.

• For all n ∈ N, In = [an, bn] is a closed interval.

• ∀n ∈ N : In+1 ⊂ In.
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• ∀ε > 0 ∃n ∈ N : |In| < ε, where |In| = bn−an is the length of the interval.

We first want to show that there exists some x ∈ R such that ∀n ∈ N : x ∈ In.
Because A := {a1, a2, a3, . . .} is bounded above (and non-empty), we can set
x := sup(A). Because every bn is an upper bound for A, we conclude that
an ≤ x ≤ bn for all n ∈ N, so x ∈ In for all n ∈ N.

For uniqueness, note that if x and x′ are two real numbers with x 6= x′, if we
set ε := |x − x′| > 0, there is an interval In of length < ε. This interval can
thus not contain both x and x′.

6. Challenge. In Question 5, we proved that the completeness axiom implies
the nested interval principle. Now, prove that the two are actually equivalent
by showing that the nested interval principle implies the completeness axiom.

Solution. We assume that A is a given non-empty set which is bounded
above. We want to show that the supremum x = sup(A) exists, using only the
“nested interval principle”. The idea is to construct a decreasing sequence of
nested closed intervals In = [an, bn] such that

• All bn are upper bounds for A.

• All an are not upper bounds for A.

As explained in the hint to the exercise, we start with I1 = [a1, b1], where a1
is not an upper bound for A (e.g. a1 = y − 1 for some element y ∈ A) – this
exists because A is non-empty – and b1 is some upper bound for A – this exists
because A is bounded above.

Then we define In iteratively from In−1 (for n ≥ 2) as follows: Let m be the

midpoint of In−1, i.e. m = an−1+bn−1

2 . We define

In = [an, bn] :=

{
[an−1,m] if m is an upper bound for A,

[m, bn−1] if m is not an upper bound for A.

From the nested interval principle, we now know that there exists some x
which lies in all intervals In = [an, bn], ∀n ∈ N. [In case you did not know at
all how to solve this problem and read until here, try to prove now that x is
actually the supremum we are looking for!]

To prove that x is the supremum of A, we need to check the properties of
sup(A):

1. x is an upper bound for A: Assume towards a contradiction that x is
not an upper bound for A. Then ∃y ∈ A with y > x and hence an interval
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In = [an, bn] of length bn−an < y−x. Because x ∈ In, we get bn−x < y−x
and thus bn < y. But as y ∈ A this contradicts the fact that bn is an upper
bound for A.

2. x is the supremum for A: Assume towards a contradiction that there is a
smaller upper bound y < x. Then there is an interval In = [an, bn] of length
bn−an < x−y. But because x ∈ In, we get x−an < x−y and thus an > y.
Because y is an upper bound for A, an also must be an upper bound for A,
which contradicts how we constructed our nested intervals.

The points 1. and 2. together show that x is the supremum sup(A) which we
were looking for.

7


