Lecture 8

7 Seasonal Models

Some times series exhibits certain cyclical /periodical behavior.

Example: Quarterly earning per share of a company of Johnson and Johnson
for the period 1st quarter 1960 to the last quarter 1980, see Figure 2.13. This
data possess some specific characteristics:

e the earnings grew exponentially and had a strong seasonality;
— e e

e the volatility of the earnings increased over time.
R ———— et

Note: the cyclical pattern repeats itself every year, so that then periodicity
of the series is 4 (length of the cycle is 4 quarters). If monthly data are con-
sidered, for example monthly sales of Wal-Mart stores, then the periodicity
is 12.

~ Seasonal models are useful dealing with environmental times series, e.g.
pricing weather derivatives and energy future prices.

e In applications seasonalify can be removed from the data, leading to
a seasonally adjusted time series (with no seasonal effect), that can be
used for inference.

e The procedure of removal of seasonality is called seasonal adjustment .

e Most published economic data are seasonally adjusted, for example
growth rate of gross domestic product (GD), unemployment rate.

However, in some applications such as forecasting, seasonality is important
and the data must be handled taking into account seasonality. Forecasting
is a major objective of financial time series analysis. Below we discuss some -
econometric models, useful in modeling seasonal time series. ’
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In the models we discussed before dependence and ACF between current
observation X; and the past observation Xt was decaying fast as k was
increasing.

For some time series, dependence and the decay of ACF shows a repeating
cyclical behavior.

Examples:

e inventory level on a Monday will be similar to that on previous Mondays

e Sales of ice cream in June of one year will be strongly correlated with
sales in June in previous years.

Cyclic patterns or seasonal patterns can be very effectively used to improve
the forecast performance.

ARIMA model we discussed allow for modeling seasonal and non-seasonal
dependence.

7.1 Example: Airline Passenger Data

Figure 5.1 shows the plot of the monthly number X; of international airline
passengers from January 1949 to December 1960.
Table 5.1 shows data in a two-way tables:

— for different years (columns)
— within months (horizontal lines) in the same year

Figure 5.2 shows seasonality and trend in more close-up format

— monthly seasonal pattern for each year
— change during entire 12 -ear period.

Such change seems to have increasing slope over time.
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TABLE 5.1 Monthly Passenger Totals (Measured in Thousands) in International Air Travel — BJR Series G
Yez;r January February March April May June July August September October November December
- ¢»‘,’_’—‘”
< -
1949 @2 \ 118 132 129 121 135 148 148 136 119 104 118
1950 115 |\ 126 141 135 125 149 170 170 158 133 114 140
1951 145 | 150 178 - 163 172 178 199 199 184 162 146 f_66
1952 171 180 193 181 183 218 230 . 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237, 211 180 201
1954 204 188 235 221 234 264 302 - 293 259 229 203 229
1955 242 233 267 269 270 315 364 . 347 312 274 237 1278
1956 284 271 317 313 318 374 - 413 - 405 355 306 271 306
1957 315 H 301 356 348 355 422 465 . - 467 404 347 305, 336
1958 340 | 318 362 348 363 435 491 505 404. 359 310 337
1959 360 ' 342 406 396 420 472 . 548 559 . 463 407 362 405
1960 417 / 391 419 461 472 535 622 606- © 508 ,461 . 390 4432.
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Figure 5.1 Time series plot of the monthly international airline passenger data—BJR
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Observations:

e The number of passengers is seasonal with a peak in July and lowest
number in January and November.

e consistent patterns of trend and seasonality allow to make good fore-
casts.
Data transformation

Notice:

e Differences between peaks and valleys and variability seem to increase
over time when the number of passengers gets larger.

An important step in data analysis is to use a data transformation to make
variability more stable.

At this point we ignore seasonality and use log transformation: we replace
X by the log data z = log(X;)
v/.,— == 7

Figures 5.3 and 5.4 show the log transformed data. We see:
e trend is more linear
e variability more or less constant

e the lines connecting months are almost parallel (that means that year
effect is almost additive)
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Figure 5.4 Interaction plot of the natural logarithm of the number of airline passengers.

7.2 Seasonal ARIMA models

Important feature of seasonal time series:

e if the season is s period_l_(_)ng, then observations that are s time intervals
apart are alike.
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In our case s = 12. )So holiday month December is similar to previous
December and correlated with the data from December of the following year.

We have two relationships going simultaneously:

@(1) between monthly observations within a year.

@ (ii) between observations in the same month for subsequent years.

Therefore we need to build two time series models:

e one for relationship between successive observations within a year.

e one that links the months in successive years.
Having this in mind, model building is similar to that we used for non-
seasonal models.

e Iirst, if data is nonstationary we use differencing to make data station-
ary so that correlation dies out quickly.

e For seasonal data, we may need to use not only

[Tegular differencing Vz, = z, — &,

t—§+
For log transformed airline data with s = 12 months seasonality, we can
proceed as follows:

e we try first difference Vz; = 2, — z,_;,

e we try seasonal difference V92, = 2, — 2,_1

e we try the two combined:

. I
Cvmzt =V(zn—2z13) =2 —2_, — Z’t—@ W =
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Figure 5.6 shows the plots of the log transformed airline data z, the first
difference Vz; and the combined difference VVyz;.

Figure 5.7 shows the corresponding ACF’s.

e Figure 5.7b shows the seasonal autocorrelation spikes at_12, 24, 36
which is indication of seasonality with s = 12.

e Figures 5.6c and 5.7c show that after seasonal differencing data V52
remains non-stationary, however after differencing twice, VV52; looks
as stationary time series. ACF spikes at 12, 24, 36 disappear.

e We conclude that we need one regular and one seasonal differencing.

e For further modeling we need to use the time series w; = VVi92.
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Model identification

The methodology is similar to ARMA models where ACF and PACF provide
the guidance.

Differences:

o differently from regular time series, we need to look at the order of two

models: one seasonal of each 12th month, and one regular: month-to-
month — =

¢ In non-seasonal models it is sufficient to consider ACF and PACF up
to 20-25 lags.

‘/’—————\
* In seasonal models we should consider ACF and PACF up to 3 or 4
multiples of seasonality, i.e. 36 or 48 in our example. T —

Modeling seasonal pattern: we look at similarities that are 12 lags apart.

e In Figure 5.7d of ACF of wy we see negative spike at the lag 12, but
later seasonal correlation cuts off (no correlation at lag 24 and 36)

¢ This suggests we should use the seasonal MA(1) model to model the
12th month seasonal pattern:

—

N

S

“‘L'U)t = bt o @bt—l L‘J‘ W —_ v v Z—

+= 7 e

where b, is not necessary a white noise process.

Modeling regular pattern: Next, we turn to the regular time series model,
looking for patterns between successive months.

In Figure 5.7d we see significant correlation at lag 1, which cuts off at lag
2,3,4, ... This indicates that for modeling the month-to month data we need
an additional MA (1) model:

)

T by = €4 — ety
where ¢, is a white noise sequence.
We get

Wy = by — Ob_py
€t — Oer1 — O(g4—12 — Oe4_13)
= &g —0Og_; — Oci_19 + Ofe;_13.

92 ‘Pc’(/(L(
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Final model: Recall that by w; we denote

W =VVizi =2 — 21— 215+ 215

Putting all ‘together, we get the model for the airline passenger number:

I - %\"

( 2= Zt—1 — Z-12t 213 = €4 — Oy — Ogy_19 + @w

Alternative form: we can write the above model in a simpler form using
"backshift operator”.

Backshift operator L:

LX; = X;_, shifts time back by 1;
L*X, = X,_, shifts time back by 2:
L2?X, = X, |5 shifts time back by 12.

Then the regular differencing:

CVzgz(l—L)ztzzt—th =@

The seasonal differencing:

g —————

The above model can be written as

W =VVipa=01-L)(1-L%2 =2 —2z_1—2_19+ 213,
(1 —= (9L)(1 o @L12)€t =g —Ogiq — Oci_19 + @9615_13;

The above model can be written as

ro P A

TN\

L (1-LY(1 - L% =(1-6L)1 - @LLQ)EQ

This model is called multiplicative airline seasonal model.
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Model fitting and check

We have a data set of 144 observations.

—_— —

To demonstrated the use of the model to make short term forecasts, we set
aside the last year 12 observations, to be able to compare the forecast with
actual data. We use 132 observation for the model fitting.

Check of fit:

e Table 5.2 shows that the MA(1) coeflicients of the seasonal part and
regular part are significant

e Ljung Box test shows no significant correlation in residuals

e Figure 5.10 shows no significant ACF and PACF which confirms ab-
sence of correlation in residuals.

We conclude that the model we obtained for the log of the number of inter-
national passengers fits well to the data

St =21t 219 — 213+ & — 0.34e;_1 — 0.63e;_19 + 0.214e;_43.
o

7

/

Vi
TABLES5.2 ARIMA (0, 1,1) x (0,1, 1)1 M}k’fSumWe Airline Passenger Data
Model term Coefficient W error t p

MA 1 0'34{/‘\/ 0.0868 393 0.000 )
SMA 12 ( 0.6299" 0.0766 8.23 0.000
Differencing: 1 regula?l‘seasqna/[ of order 12.

Number of observations: Original series 132, after differencing 119.

Residuals: SS = 0.151421; MS = 0.001294; df = 117.

Modified Box—Pierce (Ljung—Box) chi-square statistic:

Lag 12 24 36 48
Chi square 75 19.6 30.5 38.7
df 10 22 34

) a6
p-value @ (6_60/7 (638 ‘ (_()..770
0-699 > .05
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Figure 5.10 Plots of (a) ACF and (b) PACF of the residuals after fitting a seasonal
ARIMA (0, 1, 1) x (0,1, T)12 model to the log airline data from January 1949 to December

1959.
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Figure 5.11 Residual checks after fitting a seasonal ARIMA (0, 1,1) x (0, 1, 1);2 model
to the log airline data from January 1949 to December 1959.

Forecasting of a seasonal model

To develop a forecast equation we follow the same procedure as for regular
time series.

k-step ahead forecast Z;(k) of z;,,. We assume 1 < k < 12.

We start with the model for the fitted time series:

zZt =2t-1+ 2t-12 — 2t-13 + € — O4_; — Ogy_12 + 0Oe;_y3. MOCAJ-’O\
We rewrite the model as A taves 1 ad @ N

24k = Zttk—1 + Zt4k-12 — Zt4k—13 + Et4k — O44k—1 — O€tqk-12 + 001 p_13.



{/Z(_‘, () = Eiz-f-\—k, l?‘l-—\l

The forecast we obtain using our previous rules:

2(k) = [2t4h—1 + Zirk—12 = Zipk-13 + €tk — OEtk—1 — OEryk_12 + 0014 —13]
[Zt4k—1] + [2Zerk-12] = [Zten—13) + [Etan] — Oletk—1] — Oletsr—12] + 8O9[eryx_13]

Z4(k — 1) + ze4k-12 — Zerk-13 — OlEtsh—1] — O€trk_12 + 09115 _13. (
=2

I

For example, 1-months ahead forecast is

- 2

! (1) = z+ 211 — z-12 — Oe; — Oy + 0Oe;_ 1. D,

Using estimates 6 = 0.34 and © = 0.63 we can compute our forecast using
EViews.

To demonstrate how it works, suppose using the data up to the end of the
year 1959 we wish to forecast passengers numbers for the year 1960. The
forecasts include 95% confidence intervals.

e Table 5.3 shows 1-step ahead forecasting results for z,. They are plotted
in Figure 5.14

e Figure 5.15 shows forecasts for the actual passengers numbers v, =
exp(z).

TABLE5.3 Forecasts with 95% Prediction Intervals for 1960 for the Airline Passenger Data

on Log Scale After Fitting a Seasonal ARIMA (0, 1,1) x (0,1,1)12 Model to the Log Airline
Data from January 1949 to December 1959

Time Number IForecast : Lower Upper / Actual & Difference
1960-1 133 6.03771 5.96718 6.10823 6.03309 | —0.00462
1960-2 134 5.99099 5.90652 6.07546 5.96871 —0.02228
1960-3 135 6.14666 6.05023 6.24308 6.03787 —0.10879
1960-4 136 6.12046 6.01341 6.22751 6.13340 0.01293
1960-5 137 6.15698 6.04026 6.27369 6.15698 —0.00000
1960-6 138 6.30256 6.17692 6.42819 6.28227 —0.02029
1960-7 139 6.42828 6.29432 6.56224 6.43294 0.00466
1960-8 140 6.43857 6.29677 6.58037 6.40688 —0.03169
1960-9 141 6.26527 6.11604 6.41450 6.23048 —0.03479
1960-10 142 6.13438 5.97807 6.29069 6.13340 —0.00098
1960-11 143 6.00539 5.84231 6.16846 5.96615 —0.03924
1960-12 144 6.11358 5.94401 6.28316 .06843 —0.04515
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Example. We fit to the quarterly earnings per share of Johnson and John-
son the airline model. Parameters were estimated using the exact maximum
likelihood. The fitted model is:

(1-L)(1 - LYz, = (1 —0.678L)(1 — 0.314L*)e;, 6. = 0.089.
\\
The standard errors for parameters ¢ and © are 0.080 and 0.101.

To check if the model adequate, i.e. if residuals &; of the estimated model
are uncorrelated, we can use the Lung-Box statistic. The Ljung-Box statistic
of residuals show Q(12) = 10.0 with p- value 0.44. The model appear to be
adequate. ~—~ S >6.05
Forecasting. To illustrate forecasting performance we fix 76 observations and
reserve the last eight data point for forecasting evaluation.

We compute 1-step to 8-step forecast using fitted model at the forecast
origin ¢ = 76. Since the model is for the log earnings, we take the antilog
transformation, to obtain forecast per share.

Figure 2.15 shows the forecast performance of the model:

a) the observed data is shown by solid line
forecast is shown by dots
c) ) the dashed Tines show the 95 percent confidence band.
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Figure 2.15. Out-of-sample point and interval forecasts for the quarterly eaming of Johnson and John- :
son. The forecast origin is the fourth quarter of 1978. In the plot, the solid line shows the actual
observations, dots represent point forecasts, and dashed lines show 95% interval forecasts.



Example (Deterministic seasonal behaviour).

This example demonstrates deterministic seasonal behaviour. We consider

monthly sim ; the CRSP Decile 1 index from January 1960 to
December 2003, 528 observations.

Figure 2.16 shows the time plot of simple returns r; which does not contain
any clear pattern of seasonality. The sample ACF of the return series contains
significant lags at 12, 24, 36 and lag 1.

This indicates that the seasonal behaviour might be deterministic.

To check if the seasonal component is deterministic and eliminate it we

can use dummy variables. We define the dummy variable Jan, for January,
setting

.
Jang=1if ¢ is January, Jan, = 0 if ¢ is not January,

and employ the simple regression model CSULe J{:\:ka )(“01

P = /30 + /31J&ﬂt ~+-€5; “‘/‘\Q, V\’\_Q_D\A/-\

The right panel of Figure 2.16 shows the time plot and sample ACF of the
residuals series of simple regression model. We see that

e there is not significant correlation at any multiple of 12.

o ACF suggests that the seasonal pattern was successfully removed by
the January dummy variable.

e we conclude that the seasonal behaviour in the monthly simple returns
is due to January effect.

(a) Simble returns - - (c) January-adjusted returns
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8 Multivariate time series

Markets under economic globalization are interacting. Knowing how the
markets are interrelated is of great importance in finance. In this section we
discuss jointly multiple time series.

Multivariate time series observations at time ¢ consists of k components:

— -~

— g

We use boldface to indicate vectors and matrices.

observed in time t.

\

Example: Investor holds stocks of IBM, Microsoft, Exon Mobil, General
Motors and Wal-Mart. They form 5-dimensional daily return series:

e 714 denotes daily log return of IBM stock;

e 75 denotes daily log return of Microsoft, and so on.

Another example: investor interested in global investment, may consider

e return series of S&P index of the US,

e FTSE 100 index of UK,

e Nikkei 225 index of Japan.

The series is 3-dimensional.

We shall study now econometric model for analyzing the multivariate time
series ry.
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8.1 Stationarity

We say that k— dimensional time series

T = (Tlt, Tkt)l CQJMAC..Q /U\lt\/ﬁgwg

weakly statlona.ry if its first and second momenlts are time-invariant.

The mean vector consists of expectations of components:

=, oo tik) = (Elr1g]y ooy Erag])'.

The covariance matrix T'o = [[';;(0)] is & x k matrix, which (i, Jj) element is
the covariance between components r; and g

Ao gt GQWD( Ll
[(0) = C’ov(rit,rjt)./

It can be written as ay
{ ‘\ —_—— Gu,_ ‘
Lo = Bl(re — p)(re — p)']. A =1 D (0\4 ) /
—
= [ %1% iy, © B Q'(q(\
8.1.1 Cross-Correlation Matrix ")

The cross-correlation matrix is an analog of correlation matrix. Denote by
D a k x k diagonal matrix consisting of standard deviations of 7;:

i, AN
D = diag(\/I‘u(O), e \/Fkk(o))- %k CKS 3 ( \ ) y{/“’\
The Cross—corrélation matrix of r; is defined as M‘ -

= [pj(0)] = D7'To D™

et A - "qtu(_/

The (i, j)-th element of p, is

-

0) — T';(0) _i Cov(rig, Tj1) : | - — —
pii(0) = T2 (0T,(0) sd(rit)scl(rjw : sl 20~ & sy

Such correlation coefficient is called contemporaneous, because it is the cor-
relation of the two series at time t.
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It is easy to see that
@Pu‘(ﬂ) =1, =1<p;(0) <1,  pi;(0) = ps(0),
£\ . . :
(y Matrix p, is symmetric.

o Cross-correlation measures the strength of linear dependence between

time series. V\)tf‘L O&M—A o %\

The lag-k cross-covariance is defined as \\/

Ty = [Ty(k)] = El(r; — p)(re—s — p)]

where
Fij(k) = CO’U(T‘it,’I‘j’t_k).

The lag-k cross correlation is defined as

P = [pij(k)] = DTy D™" '

where 'l I (k) 5 ( —— )r— —
i\~ ov ,ri)’r',.—-k‘
pi (k) = : = GREL

Ty(0)0;;(0)  srd(ri)srd(rs) |

For k& > 0, correlation coefficient py;(k) measures the linear depen-
dence between r;; and Tt~k Which occurred prior time ¢.

Note:

e Matrices 'y, and p,, are symmetric

e Under weak stationarity I', and Py do not depend on time ¢, only on
the lag k.
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8.2 Sample Cross-Correlation Matrices

Question: How to estimate cross-covariance matrix I}, and cross-correlation
matrix p, from the data '
. Tt, t=1,,N?

I'y can be estimated by

'ﬁ:iZ(Tt_r)(rt—k_r) —, | ccn N> o2
t=k+1 IC
where
] . -
f:NZTt- ) El_‘* - N
t=1

is the vector of sample mean, which is a consistent estimator for .

Py can be estimated by
2=D D" k>0,

where D is the k x k diagonal matrix of the sample standard deviations of
the components.
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Example. Consider the monthly log returns of IBM stock and the S&P 500
index from Jan 1926 to Dec 1999 with 888 observations. Returns include
dividend payments and are in percentages. We denote these two series by 7y,
and 7o;. It has the form of a bivariate series

i -

r:= (Tlt7 Tgt)/. ' /‘fl

~
-

Figure 8.1 shows time plots of components of ;. Figure 8.2 shows some
scatterplots of the-two series. They show that series are correlated. Indeed:
a) the correlation coefficient at lag 0 between series is 0.64, which are
statistically significant at 5% level. Q b . (0\ =0.6 L,
b) however, the cross correlations at lag 1 are weak.

Table 8.1 contains summary statistics and cross correlation matrices. For
bivariate series, cross correlation matrices are 2 x 2 with four correlations.
Table 8.1 (c) simplifies CCM results using Tiao-Box notations:

° ”)‘=” means that correlation coefficient is greater or equal to 2/ \/N\

(significant at 5% level) . ? e\ 2 2_\')_:)
e 7-” means that correlation coefficient is less or equal to —2/v/N

(significant at 5% level) /‘% ey & — \"
e 7.” means that correlation coefficient is between —2/v/N and 2/v/N

(not significant at 5% level) \ c; l <

Table 8.1 (c¢) shows that significant correlations appear mostly at lag 1 and
3.

Conclusions: Analysis of CCM (cross-correlation matrices) shows that

a) S&P 500 index returns has some marginal autocorrelation at lag 1 and
3

b) IMB stock returns depend weakly on the previous returns of the S&P
500 index, since cross-correlations at lag 1 and 3 are significant.

Figure 8.3 contains the sample autocorrelations and the cross-correlation of
the two series. Dynamic relationship between two series is weak, but their
contemporaneous correlation at lag 0 is statistically significant.
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(a) 1BM monthly log returns: 1/1926 to 12/1999

I

[ !
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year

(b) Monthly log returns of SP 500 index: 1/1926 to 12/1999
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'Fig\lre 8.1. Time plots of (a) monthly log returns in percentages for IBM stock and (b) the S&P 500 i

index from January 1926 to December 1999.
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(a) concurrent plot of IBM versus S&P 500 (b
S&P 500, and (d) S&P 500 versus lag-1 S&P 500.



isti - lation Matrices of Monthly Log
.1. Summary Statistics and Cross-Corre
'Il{ilt)tlxi:s of IBM Stock and the S&P 500 Index: January 1926 to December 1999

-

(a) Summary Statistics

Ticker Mean Standard Error Skewness Excess Kurtosis Minimum Maximum
i
IBM 1.240 6.729 —0.237 1.917 —222; ’;‘g;g
5.645 —-0.521 8.117 —35. :
S&P 500 0:537 L '
— (b) Cross-Correlation Matrices
Lagl Lag 2 //‘Lag 3 Lag 4 Lag 5
'0.08 0..10 /y 0.02 —0.06. 0.02 —0.07 | —0.02 —=0.03 0.0g gg;g/
; 8/ 0.02 —0.02 0.07 —0.11 0.04 0.02 0.0 i
0.04 0.0 7 A y

(c) Simpli

otation

[

+ +
. +

I

Table 8.2. Sample Cross-Correlation Mat
Indexes of U.S. Government Bonds:

Lag 1

A Lag 2
Cross-Correlations
0.10 0.08 0.11 0.12 0.16 —0.01 0.00 0.00 —0.03
0.10 0.08 0.12 0.14 0.17 —0.01 0.00 = 0.00 —0.04
. 0.09 0.08 0.09 0.13 0.18 0.01 0.01 0.01 —0.02
0.14 012  0.15 0.14 0.22 -0.02 —0.01 0.00 -0.04
0.17 015 021 0.22 0.40 —0.02 0.00 0.02 0.02
Simplified Cross-Correlation Matrices
’7+ + + 4+ + ] F A
+ 4+ + + !
++ + + +
++ + + +
[+ 4+ + + -+ |

rices of Monthly Simple Returns of Five
January 1942 to December 1999 ’

0.03
0.02

- 0.07
- 0.07

0.22




(a) Sample ACF of IBM stock return \
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Figﬁre 8.3. Sample auto- and cross-correlation functions of two ﬁonthly log returns: (a) sample ACF
of IBM stock returns, (b) sample ACF of S&P 500 index returns, and (c) cross-correlations between
IBM stock return and lagged S&P 500 index returns.




Example. Consider the simple returns of monthly indexes of US government
bonds bonds with maturities in 30, 20, 10, 5 and 1 year, from Jan 1942 to
Dec 1999, 696 observations. Let ry = (ry,...,75) be the returns series with
decreasing time to maturity. <

Figure 8.4 shows time plots of these time Serles We see that the variability
of 1-year bond is much smaller than that of returns with longer maturity.

The sample mean is
— ——

"
jo=10" (043045045046044) )

The sample standar dev1at10ns are
/, T \

107%(2.53,2.43,1.97,1.39, 053'.

0=
The correlation matrix p, at lag 0 below shows that

a) the series have hight correlations, ,.A =0
b) correlations between long-term bonds are higher than those between
short term bonds.

Table 8.2 gives the lag-1 and lag-2 cross-correlation matrices of 7, and their
simplified version. We see that

1) most significant correlations are at lag-1
2) at lag 1 the five returns series appear to be uncorrelated
3) at lag 1 and lag-2, sample ACF of one-year bond returns are substan-
tially higher than those of other series with longer maturities.

/ 1.00 0.98 0.92 0.85 0.63

0.98. 1.00 0.91 0.86 0.64
0.92 0.91 1.00 0.90 0.68
ﬂ‘ ¢ 0.85 0.86 0.90 1.00 0.82
\ 0.63 0.64 0.68 0.82 1.00

~e
3
I
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Figure.8.4. Time plots of monthly simple retums of five indexes of U.S. government bonds with
maturities in (a) 30 years, (b) 20 years, (c) 10 ycars (d) 5 years, and (e) 1 year. The sample period is

from January 1942 to December 1999.




Table 8.2 gives the lag-1 and lag-2 cross-correlation matrlces of r;, and their

snnphﬁed version. \/Ve see that

e most signiﬁcant correlations are at lag-1

° at.la.g 1 the five returns series appear to-be uncorrelated.

e ) at lag 1 and lag-2, sample ACF of one-year bond returns are substan-

~ tially higher than those of other series with longer maturities.

Table 8.2. Sample Cross-Correlation Matrices of Monthly Slmple Returns of F I‘we
Indexes of U.S. Government Bonds: January 1942 to December 1999

Lag 1 Lag 2
Cross-Correlations
0.10 008 0.11 012 016 | —0.01 000 000 —003 003
010 008 012 014 017 | =001 000 000  —004 - 002
009 008 009 0.3 018 | 001 001 001 —002 . 007
014 012 015 014 022 | —002 —001 000 —004 - 6.07
017 015 021 022 040 | —002 000 002 002 02
~ -Simplified Cross-Correlation Matrices = ) .
| [+ + o+ + o+ ERAE—
: + 4+ + + ]
+ 4+ + + +
+ 4+ + + +
Y o e S P i -+
i

O ‘Q‘,L;C*l Oa_

A&



8.3 Multivariate Portmanteau test

This test generalizes univariate Ljung-Box statistics Q)(m) to multivariate
case. The test is used to test that there are no auto-and-cross- correlations
in the vector series r;.

Thgm—uﬂ’il‘fyﬁb'thesis T8~ ~ M \\/L, - ) £ ) - -

Q@i_g&f_w;p )

The alternative is
H,: p, #0 for some i =1, ....,m.

Decision is based on the test statistic Qx(m). We reject Hy at 5% significance
level if the p-value is less than 0.05.

o —— e

Example. Applying the Qx(m) statistics to the bivariate monthly log re-
turns of IBM stock and S&P 500 index of the previous example, we have

Q2(1) = 9.81, Qu(5) =47.06, Q(10) = 71.64.

The p-values are 0.044, 0.0001, and 2, respectively. The test confirms the
existence of serial correlation in the bivariate series at 5% significance level.

For 5-dimensional monthly simple returns of bond index in the second ex-
ample above, we have Q5(5) = 1065.63 which is highly significant.
Y

The Qx(m) statistic is a joint test for checking the first m cross-correlation
matrices of 7. If it rejects the null hypothesis, then we build a multivariate
model for the time series to study the relationships between the component
series.
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8.4 Vector autoregressive mod
A simple vector model is the vector autgregressive model ).

Var(1) model.
A multivariate time series 7 follows a AR model of order 1, if
Ty = ¢y + i1 + ay

where ¢ is a k-dimensional vector, ® is a k x k matrix, and a; is a sequence
of serially uncorrelated random vectors with zero mean and covariance matrix
Y. In applications it is often assumed that a; is multivariate normal.

Consider the bivariate case: ry = (T1,72), ar = (aiy, azt)’. The

VAR(1) model consists of two equations:

T1t = P10 + Puirie—1 HPraroi-1 1 a1t
Toy = Po +(Po71 -1+ Pogrop 1 + a2,

where ®;; is the (,j)th element of ®, and ¢y is the ith element of ¢,

Comments:

e In first equation, ®;5 denotes the linear relationship between 7 and
T94—1 in the presence of 7y 4-1.

e If ®;, = 0 then r; does not depend on 75, ;, and depends only on its
own past.

e If ®y; = 0 then 7y does not depend on ry;_;, when ry; is given
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