LECTURE 9

5 Conditional Heteroscedastic Models

The models referred to as conditional heteroscedastic models are used for
modeling the volatility of asset returns. The volatility means the conditional
standard deviation of the underlying asset return. It plays important role in

e calculating value at risk

e asset allocation

e helps to improve the efficiency in parameter estimation and the accu-

racy in interval forecast.

The volatility index VIX is a financial instrument traded in financial markets.
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— ViX represents markets expectations for volatility over the coming 30
days; VIX is used to measure the level of risk or stress in the market when
making investment decisions.
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We shall discuss:
— the autoregressive conditional heteroscedastic model (ARCH) of Engle

(1982) i it
— the generalized ARCH model (GARCH) by Bollerslev (1982) and show
some applications.

5.1 Characteristics of Volatility
The feature of volatility is that volatility is not directly observable. It has

some characteristics that are commonly seen in asset returns:

e There exist volatility clusters (volatility might be high for certain time
periods and low for other periods)

”large changes tend to be followed by large changes, of either sign, and
small changes tend to be followed by small changes” Mandelbrot

e Volatility evolves in continuous manner, volatility jumps are rare.

e Volatility does not diverge to infinity, ir remains within some fixed
range. Statistically speaking, volatility is often stationary.

e It reacts differently to a big price increase or a big price drop. This
effect is called leverage effect.
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These properties play an important role in developing volatility models,
which are trying to capture mentioned characteristics.

5.1.1 Structure of the models

Let 7, be the log return of an asset F, at time ¢:

\H =log P, — log‘v

Basic idea behind volatility study:

— series of log returns r; is uncorrelated or with minor lower order cor-
relation,

— but series of log returns r; is dependent series.




Example. Figure 3.4 shows the ACF of the monthly stock returns of Intel
corporation for 1973 to 2003:

e Figure 3.4 a) shows the sample ACF of the returnsg 7, which suggests
no significant correlation -/

=
/

o IMigure 3.4 c¢) shows the sample ACE of the absolute log return [ry|

which is correlated ~

e Iigure 3.4 b) shows the sample ACFE of the squared returns@ \)‘Nhich
suggest correlation Yo

Conclusion: Figures show that monthly returns r; are serially uncorrelated,
but dependent. Volatility models try to capture such dependence.

Notice: if e; are independent variables then
e¢?, |e;| are also independent variables.
Independent variables are uncorrelated. Therefore all three series
e, €2, |e;| are uncorrelated.
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Figure 3.4. Model checking statistics of the Gaussian ARCH(1) model in Eq. (3.11) for the monthly
log returns of Intel stock from January 1973 to December 2003: parts (a), (b), and (c) show the sample
ACF of the standardized residuals, their squared series, and absolute series, respectively; part (d) is the
time plot of standardized residuals.



Example. Plot of daily log returns r; of S§P index

Sample ACF of r; does not show correlation in r;.
Sample ACF of |ry| shows strong correlation in |ry|.
Sample ACF of r? would also show strong correlation in 77.

Daily log retums of S&P 500 index: 1980-2001
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Definition of volatility.

We introduce
— conditional mean
— conditional variance o?
given the information F;_; available at time ¢ — 1:

2
Fia) 7= El(re = )| Feea)-
-
We observed in previous example that serial correlation in returns r, is weak.

[ pe = E(rFio1), | |0 = Var(r
4

First step: Modeling ;. The equation for the mean s, should be simple.
Often we set j1; = p1 constant!

If r, are correlated, p; can be modeled by and ARMA (p,q) model with
some explanatory variables &;;:

i P q p
9 ) ES [ *
Ty =| e ‘+ Ty ﬂ My = ¢o + Zﬁﬂ"t-i - Z P Z ¢i§i,z—i,
‘ i=1 i=1 i=1 [

where — — <ol
— &y are some explanatory variables,
— p and q is the order of an ARMA model and
— 17 are uncorrelated variables (white noise) with 0 mean.
The order p, g might depend on frequency of the data:
— daily returns might show some minor correlation,
— monthly returns r; tend to be uncorrelated. Then we set p; = p.

A dummy variable &;; might be for Mondays to study weekend effect.

Combining equations we have

at2 = Var(ry|Fi—1) = Var(r{|Fi_1) = E[(r; — ;Lt)Q[F}_l].

Definition: o7 is called volatility.

We will model evolution of the volatility o7 in time. Such evolution will be
governed by
— ARCH -GARCH models.

Besides these models volatility can be modeled by stochastic volatility models
where o7 is defined by a stochastic equation.
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Example Volatility plot. Note: volatility o7 in non-negative, it is not ob-
served directly! We need to estimate/ extract it from data.
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5.1.2 Model building

Constructing volatility model for a return series consists of three steps:

e Specify a model for a mean ;. If no correlation in returns 7, one can
set

e = H
constant. If returns r; correlated, you can fit a model to ;. It can be
an ARMA model, if needed, to remove dependence.
e Use residuals r; = r, — 14, to test for ARCH effects in ;.

ARCH effect means:

— r; are uncorrelated,

— the squares 77 correlated

e If ARCH effect is significant, specify volatility model for o and perform
joint estimation of i, and o?.

For most asset return series 7,, the correlation is weak. So mean equation
ty 1
ry = o+ 7} results in removing the sample mean 7 from the data 7, if the
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sample mean is significantly different from zero:

i
re=r;—7F, *=1" E 7.
=

L
For daily retul‘ng: a simple AR(p) model might be needed to be fitted to r,
to remove correlation in s,
The mean equation may also employ some explanatory variables, such as
dummy variables for weekend or January effects.

5.2 Testing for ARCH effect

ARCH effect. Testing for ARCH effect (or conditional heteroscedasticity)
in the series r, = p; + 7}, means testing for

(or:no correlation in residuals 7} = r, — 1

e correlation in squares 7}

—

Two tests can be used.

Ljung-Box test. We can apply Ljung-Box statistics Q(m) to the squares
7*2. Then the null hypothesis is that the first m ACF’s are zero:

Pl == 0, p2 - O, < wingy an = O

The Lagrange multiplier test (by Engle (1982)). It is the usual test I’
test testing for the null hypothesis

He: om=es=0,=10

in the linear regression
F2 x2 %2 £ o= 1 N
=gt ogr s+ tapr e, t=m+1,..,

where ¢, denotes the error term, m > 1 is the lag and N is the sample size.

Note: Under Hy, Q/J\\ = T e = (D

*2
r;T =+ ey
. . . 72 :
is white noise. Thcn,@“ are uncorrelated variables.
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Denote

N N
SSRy = Z (r;2 — @)%, — where = (1/N) Zr

t=m+1 =1
N
~9 ~ K2~ ~ %2 ~ %2
SSR; = E nf et =T, — 0= QiTrs-q — ... — OmTir,
t=m-+1

where ¢, is the least squares residual of the previous linear regression.

Then, under Hy, the statistic

(SSVﬁ)—»SSlh)/nz 9
SSRi/(N—2m—1) '™

F=

has asymptotical chi-squared distribution with with m degrees of freedom.

Example. Consider the monthly log stock returns of Intel Corporation from
1873 to 2003. The series has no significant correlation so it can be used
directly to test for an ARCH effect.
- — Q(12) = 18.57 with p-value 0.10 confirms no serial correlation in 7}
So, no ARCH effect. - -
— On the other hand, the Lagrange multiplier test shows strong ARCH
effect with test statistic F' ~ 43.5 and p- value close to zero. .

—

S-Plus Demonstration - :
Denote the return series by 1ntc Note that the command archTest apphes
directly to the g, series, not to at

&
> autocorTest (intc, lag=12)

Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation

Test Statistics:
Test Stat 18.5664 p.value 0.09%1

Dist. under Null: chi-square with 12 degrees of freedom
Total Observy.: 372

> archTest (intc, lag=12)
Test for ARCH Effects: LM Test
Null Hypothesis: no ARCH effects

N —
Test Statistics:
Test "Stat 43.5041 p.value 0.0000

— i —

Dist. under Null: chi-square with 12 degrees of freedom '



PoII5 Test for ARCH effect in returnsr_t. Sample size N=400

Correlogram of .y

Date: 29/11/20 Time: 10:53
Sample: 1 400
Included observations: 400

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

I I 1 -0.023 -0.023 0.2196 0.639

1! 1! 2 -0.032 -0.033 0.6458 0.724 .

1! 1! 3 -0.036 -0.037 1.1600 0.763
I |
| l
| |

I I 4 -0.057 -0.060 2.4792 0.648
H L 5 0.050 0.045 3.4877 0625
6 -0.076 -0.080 5.8704 0.438
il i 7 0.067 0.083 7.7087 0.359
1 1 8 -0.009 -0.012 7.7392 0.459
I I 9 0.012 0.016 7.7940 0.555
I 1 If 1 10 -0.041 -0.049 8.4897 0.581

Correlogram _of 11

Date: 29/11/20 Time: 10:54
Sample: 1 400
Included observations: 400

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 1 1 -0.007 -0.007 0.0189 0.891
I | I ! 2 -0.050 -0.050 1.0282 0.598 .
1! 1! 3 -0.026 -0.027 1.3033 0.728
]! ]! 4 0025 0.023 1.5643 0.815
I 1! 5-0.023 -0.025 1.7743 0.879
Wil il 6 0.060 0.062 3.2521 0.777
I 1 7 0.015 0.015 3.3485 0.851
I ] 8 0.021 0.026 3.5356 0.896
! L g 0.026 0.032 3.8035 0.924

If | If | 10 -0.053 -0.054 4.9636 0.894
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5.3 The ARCH model

ARCH model was suggested by Engle (1982). It provides a framework for
volatility modeling. The idea of such modeling is based on two facts:

a) the shock 7} of asset return is serially uncorrelated, but dependent, “ \ M

b) the dependence of r; can be described by a simple quadratic function \ W

*2
o) ARLH equSIOw

for Iy
ARCH(m) model: it assumes that
* ‘7
Ty = O0t&y, \ '—Of()_"al"t 1+ +am7t —m? / ’ \
B S i 0 W S H )
where £, is a sequence Qf iid variables with Fe; = 0, Eet =1, ¥ 2
=

ag >0, a3 >0,...,a, >0.

For existence of a stationary solution, the parameter must satisfy additional
conditions. Here,

pe = Elry

C—— '~~-\»~*\,
var(r?|Fi) = of. |

] =0,

In practice, ; are often assumed to follow the standard normal N (0, 1) or Stu-
dent ¢-distribution. In case of this model, the past large shocks 772, .., 772,
implies large conditional variance o7 for the innovation r;. In ARCH models,
large shocks tend to be followed by another large shock. ”Tend” means that
the probability to obtain large variate is greater than that of smaller variate.

So ARCH model has the feature of clustering observed in asset returns.

— ey

Example. The ARCH effect is rather common in financial time series. Fig-
ure 3.2 shows the time plot of

e the percentage change in Deutche mark/US dollar exchange rate mea-
sured in 10 min intervals from June 5, 1989 to June 9, 1989, 2488
observations.

e the squared series of the percentage changes.

We observe, that big changes occur rarely, and there are certain stable pe-
riods. Figure 3.3 a) shows that there is no serial correlation in series of
percentage (hange Cigure 3.3 b) of PACF shows that correlation is present
in the squared series 0f changes. PACF has big spikes, suggesting that series

of percentage changes is not independent.
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Figure 3.2. (a) Time plot of 10-minute returns of the exchange rate betwe‘en‘ Deutsche mark and U.S.
dollar and (b) the squared returmns.

(a) Sample ACF
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- . Figure 3.3. (a) Sample autocorrelation function of the return series of mark/dollar exchange rate and
(b) sample partial autocorrelation function of the squared returns.




5.4 Properties of ARCH(1) model

ARCH(1) model.
To understand ARCH models, first we study ARCH (1) model

2 *2
T, = Ot E: Qg + alrt—l?]

- with parameters-ag > 0,07 > 0.

Unconditional mean:

\/‘ka/(:c}(/,,L O ! Var(r?) = ag + i Var(ry)

and

1—@1

Since the variance must be pomtlve, we require

0<a; < 1.
of rf is
K(&\-\ __Baf(lto) (L-a)?_
Var(r}))? (1 —a)(1 - 3a?) aj a o

It is positive and greater than 3

@y must satisfy condition

1—3af>0,

that is 0 < a3 < 1/3,

Weaknesses of ARCH models:

1. ARCH models assumes that positive and negative shocks have the
same-effeet on volatility, what is not observed in practise,

2. The ARCH models impose restrictive assumptions on parameters.

3. ARCH models do not explain source of variation.

4. ARCH models are over-predicting the volatility




5.4.1 Building ARCH model
Specifying the order of ARCH model is rather easy.

Order determination. One can use PACF of 772, The model we have is

2 k2 X2
0; = Qo+ a1r 2y + apr .

For a given sample,

% is an unbiased estimator for o?.

Therefore we might expect r;? to be linearly related to 3%, ....,rt*fp in a

manner similar to a linear regression. In general, 772 is not an efficient
estimator for o2, but an approximation, when we identifying order p.

x2 2
=T =0,

Alternatively, define

It can be shown that 7, is uncorrelated series (white noise) and has zero
mean. The ARCH model we can write as an AR(p) model

k2 2

ryto= 0p T

= aotary + P2+
o= agtanr D+ apr D+,

where 7, is a white noise but not an iid. f7 :
The PACF function might be useful determining thy orderréf the model. ARCHU))

Parameter estimation. Parameters of ARCH model can be estimated
using (conditional) Maximum Likelihood method both in case when the noise
£; has normal of Student-t distribution.

Forecasting. Forecast of an ARCH model can be obtained recursively as in
case of AR models.

Let be given ARCH(p) model. Then the 1-step ahead forecast of volatility is

oi(1) = Elo},|F] = Blag +ayri® + .. + oapr;‘jil_pm]

*2 2
= ap+tairy + ..+ i,
The 2-step ahead forecast is

77 (2) = ag + a0} (1) + oy + . + sy



5.5 Examples of ARCH modeling

Example 3.1. We shall build an ARCH model for the monthly log returns
of Intel stock. The sample ACF and PACEF in Figure 3.2 show the presence
of conditional heteroscedasticity. It is confirmed by test for ARCH effects.

We proceed to identify the order m of ARCH model. The PACF in
Figure 3. (d) indicates that an ARCH(3) model might be appropriate. No
~correlation in 7. So we specify the model: ' '

- , 2 2 2 %2
Te= QAT T; =016, 0p =00+ ouTiy + 0o, + 037524

for monthly returns of Intel stock. Assuming that &; are iid standard normal,
we obtain the fitted model:

ry = 0.0171 + 7}, of = 0.0120 + 0.1787;2, + 0.0772r;2, + 0.0572r}%;,

where standard errors for parameters are 0.0066,0.0011,0.0803,0.0506 and
0.0769, see output below. The estimates for o, and ag are statistically non-
significant at 5-percent level. Therefore the model can be simplified to

1 =0.0174 477,  of =0.0126 + 0.352r}2,,

where the standard errors are 0.0062,0.0012 and 0.0885, respectively.
All estimates are highly significant.
To check goodness of fit we have to investigate residuals
T
Ey = '*t—
Oy
Figure 3.4 shows the residuals and sample ACF of some functions of &.
To check that & is an iid sequence Ljung-Box statistics Q(10) gives p-
values 0.18, and for &2, statistics (10) = 11.38 has p-value 0.33, see output.

Consequently, ARCH(1) model is an adequate model for describing the data

at b-percent significance level.

Equation above shows that the Intel stock has 1.74 -percent monthly
return which is very high. Secondly, &7 = 0.353% < 1/3, so that the ARCH(1)
model is stationary. and finite forth moment exists. The unconditional
standard deviation is

T \/0.0126(1 — 0.352) = 0.1394.

1—(3?1
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Figure 3.1 Time plot of monthly log returns of Intel stock from January 1973 to December 2008.
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Figure 3.2 Sample ACF and PACF of various functions of monthly log stock returns of Intel Corpo-
ration from January 1973 to December 2008: (a) ACF of the log returns, (b) ACF of the squared log
returns, (¢) ACF of the absolute log returns, and (d) PACF of the squared log returns.



S-Plus Demonstration
Output edited and % marks explanation.

> arch3.fit:garch(intc~1,~garch(3,0))

. > summary(arch3.fit)

Call:

garch(formula.mean = intc ~ 1, formula.var = - garch(3, 0))

Mean Equation: intc -~ 1
Conditional Variance Equation: - garch(3, 0)
Conditional Distribution: gaussian

Value Std.Error t value Pr(>|t])

(©0.01713 0.006626 2.5860 0.005047 % one-sided

o\ o\

(3 0.01199 0.001107 10.8325 0.000000 p-value
ARCH(1) 0.17874 0.080294 2.2260 0.013309
ARCH(2) 0.07720 0.050552 1.5271 0.063800 1 & aes—
ARCH(3) 0.05722 0.076928 0.7438 0.228747

> archl=garch(intc-~1, ~garch (1, 0)) % A simplified model

> summary (archi)

Call: e
garch(formula.mean = intc - 1, formula.var = - garch(1,0))

Mean Equation: intc - 1
Conditional Variance Equation: ~ garch(i, 0)
Conditional Dlstrlbutlon gaussian

Value Std.Error t value Pr(>]|t])
C 0.01741 0.006231 2.794 2.737e-03
A 0.01258 0.001246 10.091 o. 000e+00
ARCH (1) 0-35258 0.088515 3.983 4. 094e 05
> stdresi= arch1$res1dua1s/arch1$51gma t % Standardized
> autocorTest (stdresi . lag=10) % residuals

Null Hypothesis: no autocorrelation.
Test Statistics:
Test Stat 13.7820 p.value 0.1832

Dist. under Null: ch1 -square with 10 degrees of freedom
> archTest (stdresi,lag=10) % ARCH test for residuals

Null Hypothesis: no ARCH effects
Test Statistics:
Test Stat 11.3793 p.value 0.3287

Dist. under Null: chi-square with 10 degrees of freedom
> archl$asymp.sd % Obtain unconditional variance
[1] 0.1393796

> plot(archl) = % Obtain various plots, including the
% fitted volatility series.



( PoII/SWe would like to fit ARCH model r_t=m_t+r*_t

We model m_t by AR(p) model. Select p:

r_t= firea+ fareo+..+ forep +r*_t

o B ~ Correlogram _",f,,’._'Za# D S touI Tl T RS o
Date: 04/10/20 Time: 09:07
Sample: 1 400
Included observations: 400
Autocorrelation  Partial Correlation AC PAC Q-Stat Prob
| | [ 1 0522 0522 110.01 0.000
| (| | [ 2 0603 0.455 257.14 0.000.
| [ L1 3 0.416 0.012 327.37 0.000
| [ 1 4 0.373 -0.037 383.99 0.000
| [ g 5 0.348 0.095 433.31 0.000
| [ It 6 0249 -0.044 458.70 0.000
| (. il 7 0.286 0.066 492.08 0.000
T 1 8§ 0.193 -0.016 507.43 0.000
I ! 9 0.200 -0.011 523.95 0.000
1 1! 10 0.128 -0.046 530.70 0.000




kPoIIG JWe would like to fit ARCH to r*_t which are uncorrelated variables

Select p of ARCH(p) model you would fit to data. Use correlogram

Correlogram of Y(:iz"
Date: 04/10/20 Time: 09:07
Sample: 1 400
Included observations: 400
Autocorrelation  Partial Correlation AC PAC Q-Stat Prob
| (] | 1 0522 0522 110.01 0.000
| | 2 0.603 0.455 257.14 0.000.
| [ 1 3 0.416 0.012 327.37 0.000
| [ iy 4 0.373 -0.037 383.99 0.000
| [ 'p 5 0.348 0.095 433.31 0.000
| Higl 6 0.249 -0.044 458.70 0.000
| (. ] 7 0286 0.066 492.08 0.000
[0 1 8 0.193 -0.016 507.43 0.000
| [ 1 9 (0.200 -0.011 523.95 0.000
0 I 10 0.128 -0.046 530.70 0.000




ARCH(1) model can be used for prediction of volatility o? of Intel stock.

Example 3.2 Figure 3.2a shows the percentage exchange rate between mark

and dollar in 10-minute intervals, we discussed before. Series does not have
serial correlation. Sample PACE indicates big spikes at lag 1 and 3. Similarly
as in Example 3.1 we specify model ARCH(3) for this data. Unconditional

Gaussian maximum likelihood estimation gives the following model:
e — 0.0018 + r;
and
ri =06, o2 =0.00224+0.322r% 4 0.074r} %, 4 0.093r7 2,
All estimates.are significant at 5% level. Model check for residuals &, indicates

that the estimated ARCH(3) model is adequate.

g (a) Percentage change in exchange rate

T 1 1
0 500° 1000 1500 2000 2500

Figure 3.2. (a) Time plot of 10-minute returns of the exchange rate between Deutsche mark and U.S.

dollar and (b) the squared returns.
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5.6 The GARCH model o ki,

s

The drawback of ARCH(p) model is that often in applications, to describe
adequately model, it requires many parameters. We shall have later an exam-
ple, where the model ARCH(9) is needed for modeling stochastic volatility.

Let r; be a log returns series, and
—_— ‘n*
Ty =y + Ty,

where
Ht = E[T’t|Ft—1],; 'f* =Tt — [t

ié -the Cbnditionai meén.
GARCH(p,q) model

We say that the innovations a, follow GARCH(p,q) model if
p q
s o = ag + Z a;ri?, + Z /j’j(ff‘j (20)
i=1 j=1

where g; are i.i.d. random variables with mean 0 and variance 1,

ag > 0,00 20,...,0, >0, 1 2>0,...,3, >0 are parameters.

Stationary solution. To assure existence of a stationary solution with a
finite variance we impose condition

Oy + o+l + By i By < 1, (21)

In applications often it is assumed that errors &, have standard normal or
PP t
standardized Student-¢ distribution.

When ¢ = 0, the GARCH(p,0) model reduces to ARCH(p) model.

GALCR(p0) = BRCH (p)



ARMA type representation of GARCH model.

We set P s iy = m&
o a=reat S ae e

Then 7, are uncorrelated but dependent variables. Then, using o7 = r;? —1n,,
we obtain,

: p q
*2 2 = \ o *2 2. )
Ty = Uy M= 0g-T E 5Ty~ § ngt~j + 7
i=1 j=1

P q
= ao—f—Zam 1+Z/3, 7 77 T —Zb’jn,,]-. AR M A W‘W\
i=1 j=1

Equation is an ARMA form for squares r;* where 17, plays role of a white
noise. Using formula for unconditional mean of an ARMA model, we have

Blri?) = =

1-&1—...—(1’1)—[))1‘...—[3(]

where condition (21) implies that the denominator is positive and therefore
variance Var(r;?) is finite.

GARCH(1,1) model

The simple GARCH model is GARCH (1,1) model where condition variance
is modeled by

—

T 02 = ag + ayr?, +ﬂlo—f Ll 0<aL,Bi <1, ar+pb <1

St
Properties: —7\
o A large rj?, or o2 | leads to a large o7. This means that large r7?, is
followed by another large 772, so we have clustering property, common
in financial time series.

e The excess kurtosis is greater then 3:

~ under condition 1 — 2a3 — (a; + 3;)* > 0, we have
E[rf] _ 3[1 — (a1 + 51)?]

(B2 1= (o + )% =207

This shows that the tail of GARCH(1,1) distribution is heavier than
that of a normal distribution.

> 3.
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e GARCH(1,1) model is a simple parametrical model which can be used
to describe volatility evolution.

Forecasting of GARCH(1,1) model. Forecasting of GARCH models is
similar to that of ARMA models. To obtain 1-step ahead forecast of volatility

9
o2, note that A L R R A : v
‘ 2 ( \ J—t_x/{szjfk) A ’1—";/

2 _ k2
| 01 = o +oar” + Broy,

where 72, o2 are know at time ¢ and parameters oy, oy, £ are estimated from
the data. s

1-step ahead forecast at horizon { is

o7 (1) = Elo} 1| F) = ap + auri? + Bioy.

—

2-step ahead forecast. We rewrite the volatility equation as
Jt2+2 = g + (a1 = ,81)7’;2_1 —+ CYIO‘;‘ZJH(E?%‘I = 1)
Since E(e?,; — 1|F}) = 0 then

03(2) = E[aﬁr2

Ft] = Qg + (O"1 -+ /))])0'[2(1)

k-step ahead prediction: for £ > 2, is
| ai(k) = Bloj ] = ao + (a1 + Bi)o (k= 1).
By repeated substitutions in the above equation we obtain the formula

Ct’o[lv— (Oél + ,31)k_1]
l— o —

We see that ~
& 258 & OJ() MW\ WWOL’\

UtQ(k) — 1—‘”’—_ ay — ﬂ_l — E[Uiz] = E[,’;Z] WAX_/;)

if ap + ) < 1, and therefore GARCH(1,1) process is mean reverting.

g (b)) = + (ar + B)M o (1),

The literature on GARCH models is very rich.
The weakness of GARCH model is the same as in case of ARCH model:

e The model responses equally to positive and negative shocks

e The tails of distribution of GARCH models are not sufficiently heavy
comparing to some financial data.

—
NY
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5.7 Illustrative example

The modeling procedure used in ARCH case can be used also for GARCH
models. However, specifying the order of GARCH models is not an easy task.

In pr actise, only the lower order models are used:

—— —ee ~

GARCH(l 1), GARCH(l 2) GARCH(2 1).

Parameters can be estimated using condltlonal maximum likelihood method
assuming that that initial value o? of volatility is fixed (known). Then, in
‘GARCH(1,1) case, the volatility o7 can be computed recursively.

"o Tn some apphcatlom a good starting value of o7 nnght be the sample

variance of rj= To CDMNVV\,J{;(, Q’.{.

e The fitted model, its goodness can be checked by using standardized
residuals g

< -, T
E = —
0'1/
and its squared model N
B r
( £ = J—L,
Oy
If case of good fit, there should\B‘e_KARCH effect in residuals &, i.e.

— & should be uncorrelated,

— €2 should be unCOIrelated

Example We shall discuss the monthly excess returns of and S&P index
from 1926 for 792 observations. Denote excess return r;

Definition: Excess return of an asset at time ¢ is the difference between the
assets return and some reference asset:

Tt = Tt,asset — Ttref.asset-

The reference asset is often taken to be a riskless such as a short-term US
treasury bill returns.

——
L S
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Figure 3.5. Time series plot of the moﬁthly excess returns of the S&P 500 index.
. (@)
0.05 T—__W—_-—T ________ 1 ——————— ST
w
Q@ oo ] I ] L u I I L ] I T
—0.10
1 1 1 I 1 K| T
0 5 10 15 20 25 30
Lag :
(b)
0.3 -
S 0.2+ T
< B .
2 o B 11
i [ GEREEE iRk 1k ERARERRi i Rk Mk Rl Heht et A AR
= T A T T s - w T T
0 5 10 15 20 25 30
Lag

F‘g“m 3.6. (a) Sample ACF of the monthly excess returns of the S&P 580 index and (b) samplc PACF
of the squared monthly excess returns.




In Figure 3.6 we see the sample ACE of r,, and the sample PACF of r}:
e the ACF has serial correlation at lags 1 and 3;

o the PACF shows strong linear dependence (correlation) for a number
of lags. That means that for 2 ARCH models do not fit well, and we
shall fit GARCH(1,1) model.

Model The ACF suggests to fit for r, MA(3) model. The estimated model: -
ry = 0.0062 + rf +0.0944r_, — 0.1407r"_, g &% = 0.0576.

where all coefficients are significant at 5 % level, and 2; in case of ’good’ fit
should be a white noise.

To simplify dependence on 77, instead of MA(3) model we shall fit to the
data an AR(3) model

Ty = @17Ti—1 + GaTy o + G313 + Po + 1]

where @1, ¢a, P3, pg are unknown parameters and ar; is a white noise. The
fitted model, assuming normality of r; is

7y = 0,0887_1 — 0.023r,_5 — 0.123r,_3 + 0.0066 + 7, &2 = 0.00333.

PO

Although the residuals r; might be a white noise (uncorrelated), they still
might be dependent. To model this type of data (so called GARCH effect),
we use GARCH(1,1) model for oy:

A 2 2 %2
T = 044, o; = oo+ fro,_y + oarZ.

A joint estimation of the AR(3)-GARCH(1,1) model gives
ry = 0.0078 + 0.032r_; — 0.0297_5 — 0.008r 5+ 77, TR /;3)

o; = 0.000084 +0.1217{?, +0.852307 ;. ~ ©ORFRCA (4 1)
Having estimates of parameters we can estimate the unconditional variance
of r}:
g B 0.000084
1—(ay+5) 1-0.8523 —0.1213

Var(r)) ~ = 0.00317
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which is close to that derived fitting AR(3) model to ry. -

t-ratios suggest that all three parameter in the mean (AR(3) part) are not
significant. We refine the model, dropping those parameters. The estimated
model then is

\
re=0.0076 + 17, o =0.000086 4+ 0.1216r;, + 0851102 ,.  GARLM (A4

The standard error of the constant in the mean equation is 0.0015, so pa-
rameter 0.0076 is significant at 5% level.

The standard errors of the parameters in the volatility equation are
0.000024, 0.0197, and 0.0190, respectively. These parameter are significant. .
The unconditional variance of r; is

0.000086

= 0.00314.
1 —-0.8511 —0.1216 .

This is a simple GARCH(1,1) model.

Goodness-of fit To check the Uoodﬁs& of flt of the estimated model we
compute standardized shocks ( N\

7 \
ol t \
Et J— X |

(oF: 4
— Figure 3.7 shows the estimated volatility o? and the standardized shocks

,Et

— Figure 3.8 shows the sample ACF of the residuals &; and squares €
The ACFE does not show any coudatlon in & and &2, which 1ndlcate S a good
fit of the model.
The Ljung-Box statistics takes value
- Q(12)=11.99 with p-value 0.45 for &, and
~ Q(12) = 11.11 with p-value 0.36 for £2.
The model appears to be—adequate, describing the dependence structure in

the return and volatility series.

Note: The fitted model has property
&, + B, = 0.9772

is close to 1. This phenomenon is often obhserved in practice and leads to the
model GARCH(1,1) with constrain a; + 1 = 1. The GARCH(1,1) model
with this property is called IGARCH model.
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Figure 3.7. (a) Time serdes plot of estimated volatility (o) for the monthly excess returns of the S&P‘

500 index and (b) the standardized shocks of the monthly excess retums of the S&P 500 index. qufg;
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plots are based on the GARCH(1,1) model in Eq. (3.18).
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Figure 3.8. Model checking of the GARCH(1,1) model in Eq. (3.18) for monthly excess returns of
the S&P 500 index: (a) sample ACF of standardized residuals and (b) sample ACF of the squared
standardized residuals.
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Forecasting: To forecast the volatility of monthly excess returns of the S&P
index, we use the volatility equation

r1 = 0.0076 + 17, o? = 0.000086 + 0.12167;2, + 0.851107 ;.
Then the 1-set ahead forecast is

o7(1) = 0.00008 + 0.121r;* + 0.851107

~where 772 is is the residual, in our case r; = 7, — 0.0076, and o7 can be

Computcd using GARCH(1,1) equation for volatility. Computing it, we can
fix o2 at zero or at unconditional variance of rt For multi- step forecast, we
“use recursive  formula. B MRS £ i ST e nbils

Table 3.2 shows some mean and volatility forecasts for the returns of the
S&P index with forecast horizon ¢t = 792.

~

Table 3.1. Volatility Forecasts for the Monthly Excess Returns of the S&P 500 Index®

Horizon -1 2 . 3 4 5 oo
Return 00076  0.0076 0.0076 0.0076 0.0076 ' 0.0076
Volatility 0.0536 0.0537 0.0537 0.0538 0.0538 0.0560

“The forecast origin is & = 792, which corresponds to December 1991. Here volatility denotes condi-
tional standard deviation.

excess return of the S&P 500 index with forecast ongm 'k =792 based on the:
GARCH(1,1) model in Eq. (3.18).

Some S-Plus Commands Used in Example 3.3

> fit=garchi(sp~ar(3),~garch(1,1)) =
> summary (fit)

> fit=garch(sp~1,~garch(i,1))

> summary (fit)

> names (fit)

[1] "residuals" “sigma.t" "df.residual" "coef" "model™"
[6] "cond.dist" "likelihood" "opt.index" "cov"
[10] "prediction" "call®™ "asymp.sd" "series"

> % Next, compute the standardized residuals
> stdresi=fit$residuals/fit$sigma.t
autocorTest (stdresi, lag=24)

autocorTest (stdresi”™2,lag=24)

predict (fit,5) % Compute predictions

vV Vv Vv

Note that in the prior commands the volatility series oy is stored in fit$sigma.t
and the residual series of the returns in fit$residuals.

S-Plus Commands Used L
> fitl = garch(sp~1, ~garch(1l,1), cond.dist=

~ + cond.est=F)

o b Bl W A Y

,cond.par=5,

OHECh(1,1



