Lecture 7

6 Regression models with time series errors

In many applications, relationship between two time series Y; and X; is of
interest. Both series are observed. For example,

e in finance we can try to relate the returns of an individual stock to
returns of a market index.

e we can investigate relationship between interest rates of different ma-
turities.

These example lead to a linear regression model of the form
Yi=a+ BX;+&

where X; and Y; are two time series and ¢; denotes an error term.

The parameters of interest o and 3 can be estimated using the least squares

(LS) method. If g, is a white noise, then LS estimators are consistent. In

practice however, it is common that the errors term &, is serially correlated.
In this case we have a regression model with time series errors, and LS

estimators of @ and 8 may be not consistent, if the errors are treated as a
white noise.

Regression models with time series errors are widely applicable in eco-
nomics and finance, and often the serial dependence of the errors ¢; is over-
looked. Applying this model, we have to study it carefully.

As an example we study the relationship between two US weekly interest
rates:

1) 714, the 1-year Treasury constant maturity rate
2) 73, the 3-year Treasury constant maturity rate

Both series have 1967 observations from 1962 to 1999, and are measure
in percentages.

Figure 2.17 shows the two interest rates:
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— solid line denotes 1-year rate
— dashed line denotes 3 -year rate.

Figure 2.18 plots 71; versus r3; indicating strong correlation (linear rela-
tionship), which we might expect.
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Figure 2.17. Time plots of U.S. weekly interest rates (in percentages) from January 4, 1962 to Septem-
. ber 10, 1999. The solid line is the Treasury l-year constant maturity rate and the dashed line the
Treasury 3-year constant maturity rate. §
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Figure 2.18. Scatterplots of U.S. weekly interest rates from January 5, 1962 to September 10, 1999:
(a) 3-year rate versus 1-year rate and (b) changes in 3-year rate versus changes in I-year rate.



First naive attempt would be to model the relationship between two rates
by the simple model '
T3 = @+ Pric + €.

The fitted model is
rap = 0.911 +0.924r, + &, & = 0.538.

The standard errors for two coefﬁciénts’are 0.032 and 0.004. Both coefficients

o and B are statistically highly significant. The model confirms the high
correlation between the two interest rates.

Fit: Next we have to ask the question: is the model adequate? In case of
adequate model the residuals behave a white noise.

Figure 2.19 present the time plot of residuals and the sample ACF of residu-
als. We see that the ACF of residuals is highly significant and decays slowly:
it shows a pattern of non-stationary unit root time series. This indicates that
there exists significant difference between these to time series.
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Figure 2.19. Residual series of linear regression (2.44) for two U.S. weekly interest rates: (a) time plot
and (b) sample ACF.
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Using econometric terminology, if one assumes that these rates are unit
root non-stationary, the the behaviour of the residuals indicates that the two
interest rates are not cointegrated. '

Cointegration would mean that there exist long term equilibrium between
two rates, and it would be confirmed if the residuals would behave as a white
noise. In our case, the data fail to support the hypothesis of co-integration
between two rates. That is not surprising because the interest rates are
inversely related to their time to maturities.

The unit root behaviour of interest rates (suggested by the economic
theory) and the properties of residuals suggest to consider the series of the
interest rates change:

c1y =Tt — T14-1, changes in 1 -year interest rate

C3; = T3; — T3t—1, changes in 3- year interest rate

Figure 2.20 shows time plots of the change series.

Figure 2.18 (b) provide a scatterplot between these series.
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Figure 2.21.. Rés_idual series of the linear regression (2.45) for two change series of U.S. weekly interest
rates: (a) time plot and (b) sample ACF. ’
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Figure 2.20. Time plots of the change series of U.S.-wcekly interest rates from January 12, 1962 to
September 10, 1999: (a) changes in the Treasury l-year constant maturity rate and (b) changes in the ~
Treasury 3-year constant maturity rate.



Diagnostic: We fit again a linear regression model:
cse = a + Peig + €t
The fitted model is
A cat = 0.0002 + 0.7811cyt + &4, g, = 0.0682.

It shows high correlation between change series. The standard errors of the
two coefficients are 0.0015 and 0.0075 which shows that the coefficient

B =0.77811> 265 = 2(0.0075) = 0.015

is significant at 5 percent significance level, whereas coefficient & = 0.0002 is
not significantly different from zero at this level:

& = 0.0002 < 26, = 2(0.0015) = 0.003.

Figure 2.21 shows time plot and sample ACF of the residuals. The ACF
shows some significant correlation in the residuals, but the correlation 1s
much smaller than before. It indicates that residuals is a weakly dependent
time series, which we can model by stationary time series models discussed
in previous sections.
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Model building. Objective of further discussion: how to build a linear
regression model with time series errors?

The approach is very straightforward. We shall estimate the linear re-
gression model and the model of residuals jointly.
* For example, consider the model

ca: = 0.002 + 0.7811cy: + &4, d. = 0.0682.

Because residuals are correlated we shall fit a simple ARMA model to resid-
wals. From ACF in Figure 2.21 we specify MA(1) model for residuals and
modify the linear regression model to

eyt = a + Bei + €, er = ey — Ohet-1,
where e; is assumed to be a white noise:

Here we use an MA(1) model to capture/model the serial dependence in
the error term.

The resulting model is the model of linear regression with time series

errors. In practice, more complicated model can be fitted to model the error
term. '

In practice, if a time series model fitted to the errors is stationary and
invertible, than one can estimate the model jointly using maximum likelihood
method, using computing packages, see example below. For the US weekly
interest rate data, the fitted version is '

cs = 0.0002 + 0.7824cy; + €4, € = e; + 0.2115e;1, &, = 0.0668.

The standard error of the parameters are 0.0018, 0.0077 and 0.0221. They
show that the constant term o is not significant. This model does not have

significant lag-1 ACF residual, but it has some minor correlations at lags 4
and 6.
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Conclusions:

e Comparing models we see, that estimated values of the linear regression
parameters might be misleading if the residuals have strong correlation.

e For the change series discussed above, estimated models are close, and
adding MA(1) structure to the errors provides only a marginal im-
provement. ‘There is no surprise in that, since the estimated AR(1)
parameter is small numerically: -0.2115, although it is statistically sig-
nificant (different from zero).

e Tt is important to check residuals for serial dependence in linear regres-
sion analysis.

Because the constant term o is not significant, the model shows that the
weekly interest rates are related as

T3t = T3¢-1 - 0-782(T1t - 7'1’,5_1) + e =t 0-2126t—1'

Summary

A general procedure for analyzing linear regression models with time series
is the following:

1. Fit the linear regression model and check for correlation in residuals

9. If residuals are unit-root variables, take the first difference of the
variance and check for serial correlation in residuals. If residuals appear to
be stationary, identify ARMA models for the residuals, and modify the linear
regression model accordingly.

3. Perform a joint maximum likelihood estimation of parameters and
check the fitted model for further improvements.
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Ljung-Box statistic. Checking for serial correlation of residuals, the Ljung-
Box statistic could be used. It tests for correlation at higher order lags.

Durbin-Watson statistic. The Durbin-Watson statistic can be used to
test only for the serial correlation at lag-1. For residuals e;, in case of N
observations, the Durbin-Watson statistic is

d t — €t—1 3
DW :’Z{-:Z(e]:/' 2 ) "
Z{_——.J &)

DW statistic has asymptotic distribution
DW ~2(1 - 1)
where py is the lag -1 ACF of the residuals series e;.

Conclusion. If there is no serial correlation at lag 1, i.e. p1 = 0, then DW
takes values close to
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6.1 Cointegration

Co-integration is generalization of unit roots to vector systems.
Assumme that we have two unit root processes y; and w;. They satisfies
equations
Yt — Yt—1 = Qo + 0116,5_1 e ap5t—p

wy — wy_1 = Po+ Gri€e—1+ - + BeEi—g

where (J;) and (&) are white noise sequences.

In general, a linear combination
Y¢ + awy

will be also a unit root process (non-stationary process)

Definition. Unit root processes 1; and w; are said to be co-integrated, if
there exists a number a such that a linear combination

Y — QW = Uy

is a stationary process.

Example 1. Log GDP and log consumption both contain unit roots.

The ratio
GDP

————————— ~ constant
consumption

So

. . GDP
log(GDP) — log(consumption) = log(—————) ~ log(constant)
consumption

and therefore log(GDP) and 1og(consumption) are cointegrated unit root
processes.
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Example 2. Log stock prices and log dividends both may contain unit roots.

The ratio .
price

divident

~- stationary process

5o
log(price) — log(divident) = log(stationary) ~ stationary

and therefore 1og(price) and log(dividend) are co-integrated unit-root time
series. :

Question. How to estimate cointegration parameter a?

Run regression
Yp = QWi + Ut

use least squares estimator

is consistent estimator of a. Tt converges fast to o ab the rate N.
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