Forecasting example

Lecture 6

Figure 4.13 shows the time series plot of 197 observations.

From the plot it is seen that

e Data is positively correlated (high values is followed by high value and
low values by low value). Possibly non-stationary.

o ACF in Figure 4.15 does not die out even for large values.

o PACF is significant for first 2 lags, and close to the boundary for some

higher lags.
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Figure 4.13 Time series plot of chemical process concentration readings sampled every
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Figure 4.15 ~ ACF of the chemical process concentration: series A from BJR.
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Differences series. Next, we analyze the differenced series z

e The plot in Figure 4.18 looks stationary.

= X;

s Kt

o ACF shows large correlation at lag 1, and no correlation at higher lags.
So we could fit AR(1) model.

e PACF is significant for a few lags, but dies off fast

e Estimation results in Table 4.4 suggest that we can fit MA(1) model

2t = €&t + 9€t_.1.
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Figure 4.18  First difference of chemical process concentration: series A from BJR,
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ure 4.19 . ACF of the first difference of seriés A from BJR.
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TABLE 4. 4 Summary of lnforma(xon from’ Flt(mg an IMA(1 1) Model to the' Concentration

Data °
Term Estimate  Standard ‘error of coefficient t P
) 0.7050 " 0.0507 13.90  0.000
Residual Sum of Squares (SS)  19.6707 - df =195 )
0.1009

Mean Squares (MS)
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Diagnostic check

Figure 4.21 shows the ACF of residuals.
Figure 4.22 shows PACF.

Both ACF and PACF are not significant at any lag.

Hence, MA(1) models fits to the data z reasonably well.
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‘igure 4.21 ACF of the residuals éfter fitting an IMA(1,1) model to the cofxcentration
ata: series A from BJR.
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Forecast.

Figure 4.25 shows the 1-step-ahead forecasts using MA(1) model. Forecasts
follow closely the data set.
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Figure 4.25 Time series plot of the concentration data (solid dots) with the fitted values
~—fromrthe IMA(1, 1) model superimposed (open dots). - ;
To be or not to be stationary: ' . 2

The choice between stationary and non-stationary time series is not easily
made when sample is small.

In the present example one could argue that the stationary model also may
fit well, see Figure 4.13.

Fitting ARMA(1,1) model 2, = ¢y2,_; + &, — 016¢-1, we get the following
estimates of parameters:

TABLE4.5 Estimated Parameters and Summary Statistics from

i _ Fitfing'aStationary ARIMA
(1,0, 1) Model to the' Concentration Data; BJR SeriesA : . = T

Model term Coefﬁcief\t S.t.andard érror ,;”5 t p.
AR: ¢ 0.9151 00433 YT gy 10000
MA: g, - - 0.5828 U oo8dy T U gy 0.000
Constant " 1.44897 ‘ C 00094 15438 0000

“Residual SS = 19.188; MS' = 0.0989; df = 194,
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They show that ¢; = 0.91 with a standard error 0.0433 is close to 1, which
may be indication of nonstationarity.

One should ask question: is it reasonable that the uncontrolled chemical pro-
cess generating this data is stationary?

When left alone, it is not realistic that such process will be stationary. So
we are inclined to assume, that the process is non-stationary and fit to its

differences z; = X; — X;_; a stationary process MA(1) model, as we did
above.

5 Unit root nonstationarity

Until now we discussed stationary time series. A number of economical series
and financial series, for example, interest rates, foreign exchange rates, price
series of an asset tend to be nonstationary.

In time series literature, such series are called unit-root nonstationary time
series.

The best known example of nonstationary time series is random walk model.

5.1 Random walk

Definition 7 A time series X; is called a random walk if
X = X1 + &, t=0,1,2,

where €; is a zero mean white noise.

We shall denote by X the starting value of the random walk. For exam-
ple, if X; is the log price of a stock at time ¢, then X is the initial offering.

Note: if €; has a symmetric distribution around zero, then p; has a 50-50
chance going up or down around X;_;.

Analogy to AR(1) model: if we treat a random walk as a AR model

Xe =X 1+ &

then the coefficient ¢ = 1 at Y;_; equals to 1. Such model does not satisfy
condition of covariance stationarity of an AR(1) model.
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Examples of plots of non-stationary time series

1. The S&P 500 Index ( Standard & Poor's 500 Index):

market-capitalization-weighted index of the 500 largest U.S. publicly traded companies
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A random-walk is covariance non-stationary model.
Variance

Assume that Xy = 0. Then
X=Xy +e=Xig+ 6 +er=..=¢e1+ex+ ... + e
Therefore
EXi=Elei+er+...4+¢| =0,
and
Var(X;) = E(e;+e+ e AR
Elel] + E[e3] + ... + E[e}]
= oZ+0l+..+0’ =10,
The variance
Var(X;) = to?

depends on time ¢ and increases with ¢. That indicates that X is a non-
stationary time series.

Unit root model is often used as a statistical model for the movement of
log prices:
X; =log P, P, price at time t.

Properties df a unit-root model:

e Unit-root process X; is not predictable

e not mean-reverting.

Consequently, log prices not predictable and not mean-reverting.

- First we show that X; is not-predictable. Note that X1 = X¢ + €41

Then 1-set ahead forecast of the process X; at the origin ¢ is:

X(1) = E[X.u|F)= [Xi41]
[Xi + €] = [Xe] + [ee44]
X;.

I
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In terms of log prices: if X is the log price of the stock at time t, the the
forecast is the last observation.

To find the 2-step ahead forecast, notice that

Xeve = X1+ Erqo.

So,

~

Xi(2) = ElXyalF] = [Xiga] = [Xer1 + £042]
[Xer1] + [es2] = [Xia]
Xta

which is again the last observation X;.

In general, for any k-step ahead forecast,

So, the forecast of a random-walk model is last observation X;.

Therefore: forecast is not mean reverting,.
Forecast error. We showed that
Xi=€+e 1+ .. +6.
The k-step ahead forecasting error:
ei(k) = Xt+k—f{t(k) = {€t+k+€t_1+-.-+€1}~{€t+--.+€1} = €kt o, Epqt.
The variance of forecast error increases with %:
Var(e:(k)) = El(etrr + €1 + ... + €41)%] = ko? — .

This shows again, that model in not predictable in the long-run.
So, X; (e.g. log prices) can take any real value for large t.

)

Property: a unit-root time series has sample autocorrelation function (ACF)
which approaches to 1 as the sample size n increases.

Market indexes need a different model.
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5.2 Random walk with a drift
Empirical examples we discussed, show that the log return series

P,
Ty = log(P :

t—1

) = log P, — log P,_;

of the market index tend to have a small positive mean.

Model: for the log price Y; = log P, can be written as a random walk with
a drift:

Xe=p+ X +e
where

p=ElX — X,

and €; is a white noise.

The constant parameter y in financial time series represents the time
trend or the drift of (the log price) X.

Assume that the initial value is X,. Then

X1 = p+Xo+e,
Xo = p+Xi+e=2u+Xo+e+ey,

Xg = p+ X g + & = t,u+Xo+€t+...+€2+51.
This equation shows that the log price Y; contains:
e a time trend ut

e a pure random walk &; +.... + €9 + €.

It shows that
E[Xy] = pt + E[Xy).

Observation: since Var(e; + ... + €9+ €1) = to?, the SD V/io, of X, is grows
slower than the mean E[X;] = ut:

Vio. << ut.

Consequence: the linear trend put dominates! Graphing X; we obtain a
time trend with slope p.
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e a positive x> 0 implies that the log price X; increases.

e a negative y < 0 implies that the log price X, decreases

Therefore not surprising that the log returns of the equal-weighted index
have a small, but statistically significant mean p > 0.

Example. This example illustrates effect of the drift on the price series
of monthly log stock returns of the 3M Company for the period February
1946-December 1997.

The series of log returns r; has no significant correlation and follows the
model

r; = 0.00115 + ¢, 62 = 0.0000639

where 0.00115 is the sample mean of r;,
and 0.00026 = o, is the standard error.
Note: sample mean is significant.
By definition r; = log p; — log p;_1. Therefore we can write

log ps = 0.00115 + log p;_1 + &;

where p; is price at the moment t.

Figure 2.10 shows time plots of log p;, and the straight line y, = 0.0115¢.
The impact if the constant 0.00115 is evident: the slope of the upward
trend of log p; is about 0.00115
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5.2.1 Nonstationary ARIMA unit root models

A random walk model is a separate case of a nonstationary ARIMA model,
or unit root.

It can be transformed to a stationary model by differencing.

Definition. A time series, X; is said to be an ARIMA (p,1,q) model if
Xt—Xt—IZYEa t:071)2a"'

where Y} is a stationary ARMA(p,q) process.
Example. Prices P, is commonly believed to be non-stationary

Log return series r; = log P, — log P,_; is stationary.

Log prices log P; follow an ARIMA (p,1,q) model, often with p = ¢ = 0.
5.3  Testing for Unit Root
In practice often we need to test:

e If time series X; follows a random walk

e unit root model

e arandom walk (unit root) with a drift.

For testing we use the models

Xi = ¢1Xe1+e, (1)
Xy = o+ p1 X1+ (2)

where €; denotes an error term.
Here: €, is white noise in case of a random walk;
g stationary ARMA process in case of unit root

Dickey and Fuller test. Here ¢, is white noise
We test the null hypothesis

Hy (random walk/unit root): ¢; = 1

against alternative

Hy: |¢1] <1 (Y; is a stationary series.)
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This is Dickey and Fuller (1979) test.

It uses least squares estimates ¢; and t

J)l _ Zi\il YiViy 62 — 211:11(Yt - €£1Yt—1)2
- N ) e
Zt:l YE—l N —1

where Y5 = 0 and N is the sample size.

Testing statistic: the t-ratio statistic is

9%— 1 _ Ziv:1 Yie

tratio == = .
e il v,

Applying it, in E-views, you need to select to include drift, i.e. @9 # 0, or no
drift, i.e. ¢pg = 0.

Augmented Dickey-Fuller test
Note:

e In D-F test we assume that €, is white noise

e in ADF test we assume that e; is AR(p) stationary time series. Here
we need to select p

Applying ADF unit root test, we fit to the data the AR(p) model:

p—1
Xy = a+pt+ X+ Z GiAX; i+ &

i=1
where AX; = X; — X j—1 1s the differenced series X;.
To verify the presence of a unit root in X; we test hull hypothesis
Hy: =1
against alternative
H: <1

In practice,
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e we can set o + pt = 0 to be zero or constant

e include a linear trend a + put.

Augmented Dickey-Fuller test:

We reject unit root if test statistic ¢ <”critical value”, or if p-value < 0.05

Alternative form of ADF test: We rewrite the model as

p—1
AXi=ci+ B X1+ Z GiAXs ; + &,
i=1
where . = 8 — 1. Then, testing for unit root is equivalent of testing the
following hypotheses .
Hy: . =0
against alternative
Hll ﬂc < 0
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i" _ Figure 2.11. Log series of U.S. quatterly GDP from 1947.1 to 2003.IV: (2) time plot of the logged
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Figure 2.11 (a) presents the log series of the US quarterly gross domestic
product (GDP), from 1947 to 1923.

e The upward trend shows the growth of US economy.
e Picture (b) shows that log series has high serial correlation.

e picture (c) shows the differenced log series is the growth rate ry. It

1s varying around fixed mean, and variability seems to be smaller in
recent years.

e Picture (d) shows the PACF of the growth rate r,.

To confirm unit root in log X;, we apply ADF test to the log series log X;.

Based on the sample PACF, we choose AR(p) model with the ”number of
lags” p = 10.

With p = 10, the ADF test statistic value is —1.31, and the p- value is
0.7038. We do not reject unit root.

The output below shows that

B=1+8,=1-0.0006=0.9994.

S-Plus Demonstration
Output edited.

> adft=unitroot(gdp,trend:'é',methpd='adf‘,1ags=10)
> sumnmary (adft)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test ‘
. Test Statistic: -1.131
P-value: 0.7038

Coefficients:
Value Std..Error t value Pr(>|t])

lagl -0.0006 "0.0D06 -1.13086 '0.2595
lag2 0.3797 0.0679 5.5946 0.0000

lagl0 0.1798 0.0656 2.7405 0.0067
constant '0.0123 0.0048 ~ 2.5654 0.0110

Regression Diagnostics:

R-Squared 0.2831
Adjusted R-Squared 0.2485

Residual standard error: 0,009498 on 214 degrees of freedgm.



Example 2. Figure 2.12 shows the daily log series X of the S&P index from
Jan 1990 to Dec 2003 with 3532 observations.

Testing for a unit root in log series X; is equivalent to verification of hypoth-
esis that the X, follows a random walk with a drift.

e We use ADF test with 13 lags: fitting AR(13) obtained by AIC criterion
applied to for the first differences of the log index.

e We include trend o + ut and apply the augmented Dickey-Fuller test

e The value of statistic is —0.9648 and p-value 0.9469. Hence the unit
root hypothesis cannot be rejected.

e Estimation shows that trend parameters a and p are not significant.

Conclusion: the log series of the index contains unit root, but no time
trend.
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Figure 2.12. Time plot of the logarithm of daily S&P 500 index from January 2, S
. 31,2003. ) -



S-Plus Demonstration
Output edited.

> adftcunitroot(sp,method='adf',trend:‘ct',1ags=14)

> summary (adft)
Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test
Test Statistic: -0.9648
P-value: 0.9469

Coefficients: o
Value Std. Error t value Pr(>|t|)
lagl -0.0008 0.0008 -0.9648 0.3347
lagl4 0.0319 0.0169 '1.8894 0.0589
constant 0.0056 0.0054 1.0316 0.3023
time 0.0000 0.0000 0.4871 0.6262

Regression Diagnostics:

R-Squared 0.0107
Adjusted R-Squared.0.0065

Residual standard error: 0.01049 on 3514 degrees

of freedom



