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Lecture 6

Forecasting example

Figure 4.13 shows the time series plot of 197 observations.

From the plot it is seen that

e Data is positively correlated (high values is followed by high value and
low values by low value). Possibly non-stationary.

o ACF in Figure 4.15 does not die out even for large values.

o PACF is significant for first 2 lags, and close to the boundary for some

higher lags.
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Figure 4.15 - ACF of the chemical process concentration: series A from BJR.
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Differences series. Next, we analyze the differenced series 2 =Xy — Xe;.

e The plot in Figure 4.18 looks stationary.

e ACF shows large correlation at lag 1, and no correlation at higher lags.
So we could ﬁt'ﬁﬁ'{'ﬁ model.

M(A°

¢ PACF is significant for a few lags, but dies off fast

e Estimation results in Table 4.4 suggest that we can fit MA(1) model

— X+ \$4 =

2t =& + GEt_l.
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TABLE 4 4 Summary of lnformatlon from’ Flttmg an IMA(1 1) Model to the Concentratlon

Data s
Term Estimate  Standard "en’br of coefficient t . p
6 07050 7 ., 0.0507 13.90  0.000
Residual Sum of Squares (SS)  19.6707 - df =195 ‘

0.1009

Mean Squares (MS)

JRV-.‘




Diagnostic check

Figure 4.21 shows the ACF of residuals.
Figure 4.22 shows PACF.

Both ACF and PACF are not significant at any lag.
Hence, MA(1) models fits to the data 2 reasonably well.
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Forecast.

Figure 4.25 shows the 1-step-ahead forecasts using MA(1) model. Forecasts
follow closely the data set.
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Figure 4.25 Time ‘series plot of the concentration data (solid dots) with the fitted values
< (1, 1) model superimposed (open dots). - :
To be or not to be stationary: T o

The choice between stationary and non-stationary time series is not easily
made when sample is small.

In the present example one could argue that the stationary model also may
fit well, see Figure 4.13.

Fitting ARMA(1,1) model z, @zt_l + € — bhes1, we get the following
estimates of parameters:

N\

09154 oo o AN

TABLE 4.5 Estimated Parameters and Summary Statistics frbm‘Fitiih'g;i‘Statiionary ARIMA
(1,0, 1) Model to the Concentration Data, BJR Series A C oy i : A .

Model term Coefﬁciéﬁt S_t.andard én-or _-“5 t -p.
AR: ¢, 0.9151 C00433 T gy *0.000
MA: 6, 05828 N X7 R ¥ ¥ 0.000
Constant - 1.44897 7 0:0094 . 15438 0.000

“Residual SS = 19.188; MS"= 0.0989; df = 194,
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They show that ¢; =0.91 with a standard error 0.0433 is close to 1, which
may be indication of nonstationarity.

One should ask question: is it reasonable that the uncontrolled chemical pro-
cess generating this data is stationary?

When left alone, it is not realistic that such process will be stationary. So
we are inclined to assume, that the process is non-stationary and fit to its

differences z; = X; — X; 1 a stationary process MA(1) model, as we did
above.

5 Unit root nonstationarity

Until now we discussed stationary time series. A number of economical series
and financial series, for example, interest rates, foreign exchange rates, price
series of an asset tend to be nonstationary.

In time series literature, such series are called unit-root nonstationary time
series.

The best known example of nonstationary time series is random walk model.

5.1 Random walk -

Definition 7 A time series X; is called a(random wal@if
. . =
Xt:Xt—1+€ta t=0,1,2,---

where €; s a zero mean white noise.

We shall denote by X, the starting value of the random walk. For exam-

ple, if [X; is the log price of a stock at time £ then Xj is the initial offering.

Note: if £, has a symmetric distribution around zero, then p, has a 50-50
chance going up or down around X;_;. @’ — ‘e
L=

Analogy to AR(1) model: if we treat a random walk as a AR model : ,4{
(&) ka’bct St

Xi=¢Xe1te VoA ov\DJ\/x‘(I«J

then the coefﬁcient{éj;—— 1)at Y;_1 equals to 1. Such model does not satisfy N:\ Z AN
condition of covariance stationarity of an AR(1) model.
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Examples of plots of non-stationary time series

1. The S&P 500 Index ( Standard & Poor's 500 Index):

market-capitalization-weighted index of the 500 largest U.S. publicly traded companies
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A random-walk is covariance non-stationary model.
____————__*/_—\_—"

Variance XLs § = X-L -2 - i ]
Assume that Xo =0. Then \/\X{-—-L =¥y TP o
Xi=Xi1tee=Xi ote1+e=...=€1+e2+ ... +E.
Therefore
EX,=Ele1+ e+ ... +&] =0, Dl e Ei+c0
and

Var(Xy) = E(ei+ea+..+ gp)

OB+ B+ + Bl Aecon< =
|

= 02+a§+...+a§=taz. g e
U c

The variance
Var(X,) = to? wAlhlane > AN M’\ \

depends on time t and increases with ¢. That indicates that X; is a non-

. . K rv—"——_'_’~.
stationary time serjes.” Nola - ,va : - —

z Mcv\&/\,«/) X+) URJ\C‘H..\ =
Unit root model is often used as a statistical model for the movement of . V/L
log prices:

E <« O\va/eq - X;=log P, P, price at time ¢. ,'éZh. okl +~

Properties §f a unit-root model:

e Unit-root process X; is not predictable

¢ not mean-reverting.

Consequently, log prices not predictable and not mean-reverting.

- First we show that X, is not-predictable. Note that X;.1 = X; + €¢41.
Then 1-set ahead forecast of the process X; at the origin ¢ is:

Xi(1) = E[XiulF] = [X]
= [X¢+ &) = [Xi] + le441]

= X Zi( 1{() Lse )= E,EZ{_ £1 \ﬂj
67 =)
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In terms of log prices: if X; is the log price of the stock at time ¢, the the
l k forecast is the last observation.

To find the 2-step ahead forecast, notice that

—
Xiyz =\ Xiy1 +Epga

Xt(2) = E[Xt+2lFt] = [Xt+2] = [Xt+1 +€t+2] 3 s
[(Xea] + [eea2) = [Xeqa] S-_,E (b-b:l =
= Xy,

which is again the last observation X;. (,\k“ “V/\X o x‘{‘

In general, for any k-step ahead forecast,

S0,

So, the forecast of a random-walk model ism

Therefore: forecast is not mean reverting,.

Forecast error. We showed that
Xt =€+ E¢—1+ ... +€1.
The k-step ahead forecasti : ?\(thx
e k-step ahead for Ing error: \<+'HL L — QAL
R e ey
Bt(kJ) = Xt+k—Xt(k) = {5t+k+5t—1+-..+51}*{5t+--~+€1} = €kt 7, Ett1-
The variance of forecast error increases with k:
Var(ei(k)) = E[(€trk + Eexk1 + - + E241)%] = koZ — 00.

—_—

This shows again, that model in not predictable in the long-run
So, X; (e.g. log prices) can take any real value for large t.

Property: a unit-root time series has sample autocorrelation function (ACF),
which approaches to 1 as the sample size n increases.

Market indexes need a different model. o
ACEF 8

s R e e
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5.2 Random walk with a drift

Empirical examples we discussed, show that the log return series
P,
1y = log(=) = log P, — log P,_;
Py
of the market index tend to have a small positive mean.

Y
“g

\

2

Model: for the log price Y; = log P; can be written as a random walk with

a drift:
Xi=p+Xia+e Le s e
where /
o= E[Xt = Xt-—l] 2 O ,
¢ csvrelo Az

and &; is a white noise.

The constant parameter p in financial time series represents the time
trend or the drift of (the log price) Xj.
Assume that the initial value is X,. Then

@: :U’+X0+EI’
Xo = p+Xi+e=2u+Xo+e2+e,

Xt = /L+Xt_1+€t:(£/l}+Xo+€t+...+€2+€1.

This equation shows that the log price Y; contains: /‘{-{'-

e a time trend @
B
e a pure random wal@ —— +_

It shows that
E[X)] = ut + E| X0 F&Jg/) 21‘\" =l

Observation: since Var(e; + ... + &2 + 1) = to?, the SD Vo, of X, is grows % DMM
slower than the mean E[X;] = ut:

Consequence: the linear trend ut dominates! Graphing X; we obtain a
time trend with slope p.
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e a positive p > 0 implies that the log price X increases.

e a negative u < 0 implies that the log price X; decreases

Therefore not surprising that the log returns of the equal-weighted index
have a small, but statistically significant mean p > 0.

Example. This example illustrates effect of the drift on the price series
of monthly log stock returns of the 3M Company for the period February

1946-December 1997.
The series of log returns 7; has no significant correlation and follows the

model 1, = H+te
r e, 62 =0.000639 =

where 0.00115 is the sample mean of 7+, [ =0.00445" > 2(9.0 0026)
and 0.00026 = o, is the standard error. /]\ ‘o
Note: sample mean is significant. MNEG % )4«&‘ cou/\
By definition Mt_l. Therefore we can write U T E) - C

logp; = 0.00115 + log p;—1 +&¢

where p; is price at the moment ¢.

Figure 2.10 shows time plots of log p;, and the straight line g; = 0.0115¢.
The impact if the constant 0.00115 is evident: the slope of the upward
trend of log p; is about 0.00115
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Figure 2.10. Time plois of log prices for 3M stock from Fcbruarj 1946 to l?ecembcr 1997, assuming
that the log price of January 1946 was zéro. The dashed line is for log ‘price without time trend. The
straight line is y, = 0.0115 x . :
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5.2.1 Nonstationary ARIMA unit root models

A random walk model is a separate case of a nonstationary ARIMA model
or unit root.

. P M2owa)
It can be transformed to a stationary model by differencing. \
Definition. A time series, X; is said to be an ARIMA(p,1,q) model if VL\.%‘WN\ U\*‘i{r
= e Ao oA ©

(L

Xt*Xt—IZY't) t2071)21"'

where Y, is a stationary ARMA(p,q) process.

—

—

Example. Prices P, is commonly believed to be non-stationary
Log return series r; = log P, — log P;_; is stationary.
Log prices log P; follow an ARIMA(p,1,q) model, often with p = ¢ = 0.
ALIMA (O 4,0)" 1ou 0OV~
5.3 Testing for Unit Root Ll ) N

In practice often we need to test:

Poll T ARIMA(A46)

@If time series X; follows a random walk

Co) unit root model
p.

(:)a random walk (unit root) with a drift.

For testing we use the models

X = 01 X1 +ey, i 4
Xy = ¢+ Xi1+e (2)
where ¢; denotes an error term.

Here: ¢; is white noise in case of a random walk;
€; stationary ARMA process in case of unit root

Dickey and Fuller test. Here ¢; is white noise
We test the null hypothesis

—

\

H, (random walk/unit root): ¢; =1 |
against alternative

Hy:l|#] < 1(Yt is a stationary series.)
71



This is Dickey and Fuller (1979) test.

It uses least squares estimates ¢; and 62

<131 = Z_t]il&/t_‘l 52 = Zfil(Yt = ¢A51Yt—1)2
Eﬁ——l Y2, ’ ‘ N-1

where Y =0 and N is the sample size.

Testing statistic: the ¢-ratio statistic is

; _ é—l _ Zf;Yt—let \
ratio — ~ = .
std(ér)  54/2N, ¥2,
_/_J

Applying it, in E—v1ews you need to select to include drift, i.e. ¢y # 0, or no
drift, i.e. ¢y =

Augmented Dickey-Fuller test
Note:

e In D-F test we assume that €, is white noise

¢ in ADF test we assume that &; is AR(p) stationary time series. Here
we need to select p

Applying ADF unit root test, we fit to the data the AR(p ) model: "@L
( — Jd«t A b
E atabe o oo
Xe = a+pt+ X 1‘|JZ¢1,AthL"Et e &

1—1

where AX; = X; — X, is the differenced series Xj.

To verify the presence of a unit root in X; we test hull hypothesis
Ho) f=1 VTP S

against alternative

Hyy < 1. MQV\Q}\;\E

In practice,

72 '
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c =P A

=0 to be zero or constant i

; : t B - = Jaun
e include a linear trend « + pt. l

e we can set o + ut

Augmented Dickey-Fuller test:

We reject unit root if test statistic ¢ <”critical value”, or if p-value < 0.05

Alternative form of ADF test: We rewrite the model as
p-1

AXi=c+ e Xp1+ Z GiAX; i + &,
i=1

where . = f — 1. Then, testing for unit root is equwalent of testing the
following hypotheses .

Hy: B.=0 WJF ~oe &
against alternative

= Loy GBP
Hy: B <0. Mt o v\c_\/\/‘\bi\ Fe S =

‘r

L

: S B .y &
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Figure 2.11 (a) presents the log series of the US quarterly gross domestic
product (GDP), from 1947 to 1923.

e The upward trend shows the growth of US economy.

Picture (b) shows that log series has high serial correlation.

picture (c) shows the differenced log series is the growth rate r,. It

is varying around fixed mean, and variability seems to be smaller in
recent years.

Picture (d) shows the PACF of the growth rate r;.

To confirm unit root in log X;, we apply ADF test to the log series log X;.

Based on the sample PACF, we choose AR(p) model with the ”number of
lags” p = 10.

S

With p = 10, the ADF test statistic value is —1.31, and the p- value is
0.7038. We do not reject unit root.
"~ The output below shows that

f=1+4f =1-00006=09994 ~ A

S-Plus Demonstration
Output edited.

> adft=unitroot(gdp,trend='é"meth°a='adf"lagsf}O)
> summary (adft)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test
. Test Statistic: -1.131
P-value: 0.7038
g

Coefficients: '
Value $td.. Error t value Pr(>|t]|) = F'_QrQuLAJ~Q_

\’s";' ~—_lagl -0.0006 "0.0006 -1.1306 0.2595
lag2 0.3797 0.0679 5.5946 0.0000

lagl0 0.1798 0.0656 2.7405 0.0067
constant '0.0123 0.0048 ) 2.5654 0.0110

Regression Diagnostics:

R-Squared 0.2831
Adjusted R-Squared 0.2485

Residual standard error: 0.009498 on 214 degrees of freedgm-



Example 2. Figure 2.12 shows the daily log series X; of the S&P index from
Jan 1990 to Dec 2003 with 3532 observations.
Testing for a unit root in log series X is equivalent to verification of hypoth-
esis that the X; follows a random walk with a drift.

o We use ADF test with 13 lags: fitting AR(13) obtained by AIC criterion
applied to for the first differences of the log index.

e We include trend o+ ut and apply the augmented Dickey-Fuller test

e The value of statistic is —0.9648 and p-value 0.9469. Hence the unit > ©.© S
root hypothesis cannot be rejected. ~ “—

S

e Estimation shows that trend parameters o and y are not significant. L

Conclusion: the log series of the index contains unit root, but no time
trend.
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Figure 2.12. Time plot of the logarithm of daily S&P 500 index from January 2, 1990 to ;
. 31 2«)3 -



S-Plus Demonstration
Output edited.

> adft=unitroot (sp,method=‘'adf’,trend=‘ct’,lags=14)
> summary (adft)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t test
Test Statistic: -0.9648
P-value: 0.9469

Coefficients: o
Value Std. Error t value Pr(s>|t])

Pc " lagl -0.0008 0.0008  -0.9648 (0.3347% QP‘VW'/JL\, ~
R lagle 0.0319 0.0169  1.8894 | 0.0589 M s >.{,\

(. — constant 0.0056 0.0054 1.0316 |0.3023 3, cond
p = time 0.0000 0.0000 0.4871 |0.6262 |

Regression Diagnostics:

R-Squared 0.0107 ' '
Adjusted R-Squared.0.0065 :

Residual standard error: 0.01049 on 3514 degrees of freedom



