Lecture 5

Model fitting and diagnostic checking

We consider another example of fitting the model to the data and checking
its fit. The same approach applies in practical work.

We fit ARMA model to stationary time series. Main characteristics of sta- X L
tionary time series are: : ,
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Example. We discuss temperature data X;. Its plot in Figure 4.1 and its g
ACF indicate that the times series in non-stationary.

@observations are in equilibrium, around the mean

@autocorrelation function will die out quickly. ﬁ
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Figure 4.1 Time series plot of the temperature from a pilot plant observed every n}inute M' o
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Figure 4.2 ACF for the temperature data.
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We can try the first differenceslz: Xy — Xi_q. )We check for stationarity of
z¢ using the plot and the shape of ACF, see Figures 4.4 and 4.3.

The time series z; looks as a stationary one.
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Figure 4.3 ACF of the first difference of series C.
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Model building. How we proceed? In practice we never now the order D
and ¢ of AR or MA model we can fit, or of more general ARMA (p,q) model.
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For that we use ACF, PACF and information criterions (AIC, BIC).

We suggest the following iterative approach, and recall the patterns of AR,
MA and ARMA models.

TABLE4.1 Summary of Properties of Autoregressive (AR), Moving Average (MA), and
Mixed Autoregressive Moving Average (ARMA) Processes ’

AR(p) MA(q) ARMA(@p,q)
Model W= Qwo 4. W=y — Oy — ... W= Wi e
+ ¢pwt—p +a - ant-q ¢pwt—p - 613
= — ) +...—9qa,:q,, ¢
_)g- Autocorrelation Infinite; damped (Finite; cuts off after ) /I finite; damped
function (ACF) exponentials and/or | g lags / exponentials and/or
damped sine waves; - damped sine waves;
Tails off Tails off
% Partial autocorrelation’ Finite; cuts off aftc?'f Infinite; damped Infinite; damped
function (PACF) \  p lags / exponentials and/or exponentials and/or
\‘// damped sine waves; |  damped side waves; |
Tails off "\ Tails off /
: N\
Consider a general \,
ARIMA Model
Identify the appropriate
—>» degree of differencing if
needed

l

Using ACF and PACF,
find a tentative model

No |

Estimate the parameters |
of the model using
appropriate software

!

Perform the residual
i analysis.
Is the model adequate?

l Yes

Start forecasting

Figure 4.7 Stages of the time series model building process using ARIMA (Adapted
from BJR, p. 18).
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We now demonstrate how the iterative model building works.

FACF of z cuts off after lag 1. This suggest that z; could be modelled by
AR(1) model: -
Zt = ¢z1 + €. A‘Q\/\B mwie 0&/(\-

Substituting z into initial model, we obtain

Xe— Xe 1 =p(Xeo1 — Xig) + & /?{._ = X.{_ =% t—4
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Figure 4.8 PACEF for the differenced chemical process data.

Parameter estimation. Now when we identified the model, we estimate
the parameters of the model. Depending on software package and method of
estimation we may get slightly different results.

Table 4.2 shows estimation results of AR(1) model. Parameter ¢ is signifi-

cant, estimate variance of the noise is 62 = 0.018.

TABLE 4.2 Estimation Summary from Fitting an AR(1) Model to thé First Difference of the
Chemical Process Data — Series C .

»

Type Coefficient SE of coefficient t P
AR(1): ¢y 0.8239 00382, ) 21.55 <0000
50
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Model checking.Once the model is fitted we need to do diagnostic checks.
mo , the residuals should behave as a white noise, i.e. be

uncorrelated.

Standard checks are to compute the ACF and PACF of residuals o
1 \

™= - é oy P < il 3
€t =2 — Pz1. LTS $ + —A +

Although there are a few autocorrelations and PACF’s are larger than the
5% significance limits, there are no particularly alarming indications that the
model does not fit well.

To do further checks we use Ljung -Box test to test for correlation in residuals,
see Table 4.3. Since p values are larger than 0.05, we have no evidence that
residuals are not a white noise.

Conclusion: AR(1) fits well.
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Figpfe 4.9 (a) ACF and: (b)'PACF of the residﬁals with 5% significance limits.

TABLE4.3 Modified Ljung-Box~-Pierce Chi-Square Statistic for the Residuals

LagK - - -(2» 24 36 48

Chi square: O 13.0 27.0 492 53.9
Degrees of freedom 11 23 35 47

g-values 0.292 \) 0.254 0.056 0.229
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4 Forecasting

Forecasting is an important area of application of time series.

Once we fitted a model to a time series, the we can use it for forecasting

about the future. - W e

Assume that we have an AR(p) model

e = naee o oo VWOM )
\ Xt:¢O+¢1Xt—1+---+¢pXt—p+5t- Un kb\ow

Suppose we are at time ¢, and we have observations D CTD. R Y{_ FR

Our goal is to make forecast about Xitk, k steps into the future. X + favp{» (éﬁ,e}\.\lq -

——

At this point, we assume that we know parameters ¢, @1, ... qﬁp In apphca— TAO L
tions these parameters will be replaced by estimated values d)o, ¢>1, ¢p

Definition. The t1me©1s called the forecast origin. The positive 1nteger k

is called the forecast step.
s ok AneeasT- Q"? tp
The error of such forecast 1@) Xeor — @ FU& L‘

Forecast criterion. In order to judge how ood is forecast we use the
mean square error (MSE) Ee?(k) = E(X;yy, — Xi(k))2.

o The best forecast is the one which minimizes the forecast €ITor.

We denote such k-step ahead forecast by Xt(

o It turns out the the forecast that minimizes MSE, is the conditional
expectation of X; ., at time ¢, that is

—E[X”’“[FD FORWMAL i+

where F; = {X;, X;_1,--+, X 1} denotes al information available at time

s F=adl 010\1?\ W fowmatxoin
WJtC/Q e

Question: How we actually compute that expectation or forecast?

Notation: We shall use notation [(Xerk] = E[Xerx|Fi).

X,\_\ — *_L_,_
52 F{_‘;
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RuLe < Eﬁl =¥ = X
W) 2B Sh o, R = Xy
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The calculation of the forecast is based on the following rules:

e The conditional expectation of the present and past values are actually
those observations:

[Xi] = Xy, [Xio1] = Xia, [Xi—2] = X;_5, and so on.

e The conditional expectation of the present and past shocks €; are ac-
tually those shocks:

[ed] = €4, [et-1] = €41, [€t—2) = €:_3, and so on.
e The conditional expectations of the future shocks are 0:

[€t+1] = E[5t+1|Ft] =0, [5t+2] = E[Et+2|Ft] =0.

Why? Because future shocks are independent of the past, so

[e141] = Eey = 0. ['i.(__,r,\‘] = ‘E‘_LZ+.H )R} laé_l__

e In computations, we replace the conditional expectations of the future = )
observations by the forecasts:

[(Xi41] = Xt(l), [Xi42] = Xt(z),
&K(*-\-AB = ?(_}_(A\ e 2({__\_,\
4.1 Forecasting using AR(p) model ;601 QLA '\7({‘ \;e

‘ 1-Step Ahead Forecast X;(1).)By definition of AR(p) model,

Pay - - Y_\, Xen=dot diXit ot bpXinptemn. En Mode

/ Forecast X’t(l) of X1 is the conditional expectation
Xt(]-) = EEXt+1|Xm Kty ---,XI-D é‘ %W
&./\7{_ = Ebo + ¢1Xt + ...+ ¢pXt+1_p + Et+‘.;]. »
) -~ oL y
%M QVl}sing above rules, we find that ELbst 2 [\{—T\N*%X{-‘F ] —P+i4—£ j“i:)

Xi(1) = E[X11|F] =£¢0 + o1 X+ + G X1+ Et+g
= [¢o] + ¢1£th T e ¢p£Xt+l—p] + [5t+1]

EZ ++4] -0 = ¢ot+ o1 Xe+ .+ pXpp1p — 4o 7(~O‘LQ,CQA7(\
L?C.(/‘B :?({’ 53
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The forecast error:

et(l) = K11 —A}t+1 = Et41-

The variance of the 1-step ahead forecast error:

Var(e(1)) = Var(esy) = o2.

Forecast interval. If €, is normally distributed, then the 95%- confidence
interval for 1-step ahead forecast of X4 is

X
[%.0) - 1.960. Xt(1)+1-960_ej- mt: 557,

L
2-Step Ahead Forecast X;(2). Consider AR(2) model: WMXA
X = o+ 01 X1+ o + 0p X2+ &

From above, we know that 1-step ahead forecast is
e W
(1) = ¢o + P1 Xe + 92 Xi 1.
To compute /f){(t(Z), first we write equation for X; o: »/(/(M\«é A P—(z \! s
rd . =
rd Xiy2 = o+ 1 X1 + G2 Xt + €1 /\,\)’14 t \‘\g +27 - - -

.

/" Using our rules, we find that

X(2) = E[Xt+2|€t] = &0 +[¢1th+[1_+ G Xt + 5t+2}
= o + du[Xewa)+ Bl Xi] + [ees) i =K, (4

= g0+ BX(L) + B X, X“L..‘ S=0)

= ¢o+ ¢1{do + h1Xs + daXi1}) + P Xi -@{-—{-2_1 ~ O

= ¢o+ ¢1¢o + (dﬁ + ) Xi + P2 Xy 1.

The forecast error is

Et_(?) = Xio— Xt+2
T = got+ niXen + X+ e — {go + 41 Xe(1) + 92 Xi}
= $1(Xpr1 — Xi(1)) + €142 = 16641 + Erra
ALl
(L
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The variance of the forecast error is l

Var(ey(2)) = Var(¢resss + r42) = ¢o> + 02 = (14 ¢2)a?.

The 95% confidence interval for X;,o: setting o3 = Var(e(2)),
[Xt(z) — 19605, Xi(2)+ 1.960%

Note: Observe that !
Var(e(2)) > Var(e(1)).

Comparing the 2-step ahead forecasting with 1-step ahead forecasting we see
that

e when forecasting step k increases

the uncertainty in forecasting increases.

Example. The researcher analyzed the sample X7, ---,X; and found that
it is not from a stationary time series. He checked the differenced series
z = X;— X;_1 and found that fitting to it the AR(1) model gives uncorrelated
residuals.

The fitted model was 2z, = 1 + 0.52;_1 + &t ARA)

I

He/she is interested in forecasting X1 and X;,,. How to compute these
forecasts? — ~

Solution. First we compﬁte the forecast of z,41 and 242 as we did above.

el

To compute (1), write z;41 = 14 0.52; + €¢41. Then Cf /\1 =)
o 5(1) = [14+0.52+ e :
=
14 0.5[z] + [ess] =3 (L
= 14 0.52.
To compute 2(2), write z19 = 1 + 0.52¢41 + €142. Then
4(2) = _[L+0bau t+ena] LR = Z, )
= 140.5[z41] + [ers2]
= 1+0.5%(1) L&y s D

14 0.5(1 + 0.52,) = 1.5+ 0.252.
SR

%)
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To compute Xt(l), we use equality zi11 = X1 — X X-l-~\-/l — \&_‘_ —+ 2—L+A
Then .
A /Y\{!:FLNM} =¥ t2 4]
(1) = [zen] = [Xen — X
= [Xe] — [Xe] = Xt(l) — Xg. s c—\&-‘—] —\-lz'l"'f/(]
“=X
X(1) = X+ 2(1) P
A1 05

[ Xo+ 1+ 0.5(X; — Xo1)
1+ 15X, — 0.5X;_;.

=Hod

O>
A = X++4+2~H9

To compute X’t(2), we use equality zp10 = X;p9 — Xiy1.

Then | A -
2(2) : = [2p42] = [Xpy2 — Xt+1ﬁ<k(2) :\_X +_\2'-S :Y‘M"'A—\-ig
= [{(HZ] - LXtH] ==l 1\6*__‘_4_3 A\—-Y_—Z_sz
= Xt(2) - Xt(l)- . 2\ é\
So. ) — ?(_\_(4) ey -{-—(2>

| ~\ N\
. IA ZJC(L‘) (rece F.5’7)
(1) 4 2(2) (
{Xe+ 14052} + {1.5+0.25%}
2.5+ X; +0.752, = 2.5 + X; + 0.75(X; — X¢—1)
2.5+ 1.75X; — 0.75X,_1.

| I |
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Mean reversion. Xn AR(p) model,as the step k increases, the forecast X (k)
——has property:

p————reeeee

P A
l X,(k) — E[Xy], as k—>oo> X;(K):&UHA;Q

-

That means: forecasts of the far future X,(k) are close to unconditional
mean. This property is called mean reversion of the forecast.

In addition, the variance of the forecast error

{ oi—
iVar(et(k))HVar(Xt), as k;? PO’& ;‘

—

In finance, this property is called mean reversion.

Example. Table 2.2 below shows forecast of the value weighted monthly
simple returns at the forecast origin 858. Forecasting is done using AR(3)
model which parameters were estimated using the first 858 observations:

r; = 0.0103 4 0.104r;_; — 0.0107;_5 — 0.12r,_3 +¢&;, Je = 0.054.

—

The actual returns are also given. The sample mean is 0.0098.

—

Note: because of the weak serial correlation, the forecast and standard

deviations of forecast errors converges to the sample mean and standard
deviation of the data quickly.

Figure 2.7 shows the first 6-steps of forecast for these return data.
Finding. For this particular series, we observe that

e the forecasts are close to the actual values

e actual values are within 95-percent confidence interval.

o7



Table 2.2. Mulllstep Ahead Forecasts of an AR(3) Model for the Monthly Simple

Returns of CRSP Value-Weiglited Index with Forecast Origin of 858

Step \ 2 3 4 5 6

Forecast 0.0088 0.0020 0.0050 0.0097 0.0109 0.0106
Standard error 0.0542 0.0546 0.0546 0.0550 0.0550 0.0550
Actual 0.0762  —0.0365 0.0580  —0.0341 0.0311 0.0183

| I T
852 854 856 858 860 862
nth

Figure 2.7. Plot of I-step to 6-step ahead out-of-sampje
CRSP value-weighted index. The forecast origin is ¢
actual observations by black dots. The two dashed lin

|
864

forecasts for the monthly log returns of the
858. The forecasts are denoted by o and the
denote two standard-error limits of the forecasts.
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4.1.1 Forecasting using MA Model

Forecast of an MA model is rather easy. Let ¢ be the forecast origin

e The forecast MA model goes fast to the mean of the model.

[

n—

1-step ahead forecast of an MA

— .
X177+, X, write

—

(1) model. To forecast X;,; using

Xtr1 = cp + Egq1 + 018

Mo olte L

We obtain the actual forecast taking the conditional expectation

BlXenlFl = K] LEtta)

[Co + €t41 T+ 91&]

Xi(1)

. —

—

The forecast error is

The variance of the 1-step ahead forecast is

co + [et41] + O1[ed]

co + 01615.
—_—

= 'B_E‘E++\ F}:J:Q

i = 'EYE{_FEQ =&

\Let(l) = Xt41 — Xt(l) @

Var(e;(1)) = Var(egy1) = o=

—_—

Question: How to compute €;, which we need for forecasting?

We can compute it setting e = 0.

2-step ahead forecast of an M A (1) model. The model says that

| Xipo =co+Etq +B
e

Then

A~

X(2)

[co + €42 + O16441]
co + [Et42] + O1[ers1] = co.

§
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The forecast error is

) = Xows ~ Rl2) = {of+evsa+Orena} —4b

—

The variance of the 2-step ahead forecast is

Var(ey(2)) = Var(esa + b1e1) = (1 + 62)02.

Note:

= Eg42 + O1€441.
e

\

Var(e(2)) = (1 + 62)0? > Var(e,(1)) = o> i

€

Theory shows that 2-step ahead forecast for MA(1) model is its mean EX, =
co- More generally, the multi k—step forecast, k& > 2, is

Xu(k) = co = E[Xy).

Conclusion: for MA(1) model forecast mean reverting starts at time 1

period.

Forecast using an MA(2) model. For AR(2) model we have, that

Xirk = o+ Epqk + 01614k-1 + o ik _o.

Taking conditional expectation we obtain the forecast

Xt 1) = [Xt+l] = CL+ 0151& + 926«‘,-1_-
.Xt 2) = [Xt+2] =Cp + 9262.
Xi(k) = [Xigk) =co, for k>3.

|

a—

Conclusion: Forescasts of MA(2) model have property:

A\
e reverse to the mean E[X;] = ¢ after two steps. 1<+{ E) = G | \c

Property of MA(q) model: the forecast X;(k) reverts to the mean EX;
when the step k > g.
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Example. Table 2.3 contains forecasts of the A»E{ig’) model for the monthly
simple returns of the equal weighter index at forecast origin ¢t = 926.

The_sample mean and the standard error of the first 926 observations are

0.0126)and(0.0751)

We conclude that

e The 10-step ahead forecast is the sample mean;

e forecast error converges (increases) to the standard deviation when fore-

cast step increases.

Iy

g

Table 2.3. Forecast Performance of a MA(9) Model for the Monthly Simple Returns
of the CRSP Equal-Weighted Index®

Step 1 2 3 4 5
Forecast 0.0140 —0.0050 0.0158 —0.0008 00171

*~ Standard error £ 0.0726 0.0737 0.0737 0.0743 0.0743
Actual. 0.0097 0.0983 0.1330 0.0496 0.0617
Step 6 g 8 9 10
Forecast " 0.0257 0.0009 0.0149 - 0.0099 (00126
Standard error 00743 0.0743 0.0743 0.0743 0.0748 )
Actual 0.0475 0.0252 0.0810° 0.0381 0.0391

¢ The forecast origin is February 2003 with 4 = 926. The model is estimated by the conditional maxi-

mum likelihood method.

60



4.2 Forecasting of ARMA(1,1) model

Forecast of ARMA(1,1) model has characteristics similar to those of an AR(1)
model.

Denote the forecast origin by ¢. Using the available information X, ---, X,
we compute the forecast X;(1).

— &kﬂ’d?\'ﬁ‘f\ ! {J’Lzot\'. cA- ZQ.{._.(_1

The 1-step ahead forecast. By definition of ARMA(1,1) model,

)

o —

‘ Xis1= o+ 01X + €041 + b16e. )

The 1-step ahead forecast is obtained as follows:
2
Xt(l) = E[XinlF]# [ L1X: e + biey]

= o+ ¢i[Xe] + [ee] + O1fee]
= ¢o+ $1.X; + Oi€s.

2

Forecast error is:

el) = Xy — X (1)
{#0 + 01 Xe + €1 + 18} — {0 + 01 X + 014}

—
Etgr-

i

Variance of the error:

Var(e/(1)) = Var(ety1) = o2.

To apply forecast X;(1), How ‘LQ COM«?:MA)& \JVC\Q- Mﬁ\-\

o\ ol %
@We estimate the unknown parameters ¢g, ¢, 0; from the data. X +(A }
G*Xt we know.

(o:jt can be estimated from data X, -, X;.
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