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No covredotH o

Definition 5 We say that a covariance stationary series (X, ) is not serially
correlated if and only if p; =0 for all j > 0.
e —

———
—

E: : o |E —Q-g - Important example of uncorrelated time series, is i.i.d. (independent inden-
tically distributed) series €, 14d(0, 02).
Definition A simplest example of stationary sequence is a sequence, €;, of
independent identically distributed variables with zero mean and variance a2,

Notice that by assumption of independence,

3.5 Testing for correlation

- Cov(ey, &) = E(e,—Fe;) (e~ Fe,) = Eles] = Eles) Eles] = 0, if t#s.

(White noise )

) m Another important second-order stationary process is so-called white noise
2.{._: ~ time series. .

V\B’L-OC_ — Definition 6 A process, €,, is called a white noise if
nendie, Blaej) =0 #j#0. = Cov(€ &) & T, )

White noise time series is zero mean, constant variance, and serially uncorrelated.

{ e "uncorrelated” implies "independent” only if €, has normal distribu- 2.

- tiom: 1=

e We shall use a white noise and an i.i.d. sequences, ¢, as the buildin
blocks to construct new models of dependent (correlated) time series.
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Fieure 1.4: Simulated data from a white noise sequence with mean 0 and variance 1.
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Why? If time series variables are uncorrelated, then there is no structure in
the data, and we do not fit a time series model. If variable are correlated,

Testing for correlation.

then we can fit a model, and use it for forecasting,.

Fact. If X; are i.i.d. (independent identically distributed) variables then the

statistic NO—Q‘ L ool \)vdvéw(rea.,j
anr wn Covreledd

\/'—qpl ~ N(0, 1)

t =
Lt = \/hpkNN(O 1) fofanyﬁxedel

have asymptotical standard normal distribution.

To test the null-hypothesis

Hy : py = 0 against alternative H, : p; # 0

we can use the rule similar as in testing for skewness:

Rule: reject Hy at significance level 5% if

P
—

[t]| > 2, or |4|>

The same rule applies for any lag k> T: ﬁ

Reject
Hy : pr = 0 against alternative Hy : pp # 0
T PR
i > 9 ()«C@ &
| Pk Jn

Note: plotting sample autocorrelation in e-views, it will be give the 95%
confidence band for py:

2
— ol -

U, ]
VA
Then /F‘W v o \ M x}___‘d\

e if for lag k, sample cgnlation Pr 1s outside the band, then correlation
at lag k is 51gn1ﬁcant. pr 7 0.

o If p; is inside the band, then correlation at lag % is not significant, that
is Pk = 0.
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Ljung—Box test for serial correlation. The Ljung-Box statistic can be
used to test for correlation not at one lag, but at few lags simultaneously.
We choose the number m of lags, and test the null hypothesis:

Hy: pr=py=---=pn=0

against alternative

Hi: gy #0(orsomgis<j<m

Test uses Ljung-Box statistic

m 22
Q(m) = N(V +2) ) -
k=1

where IV is the number of observations, and jy is the sample ACF at the lag
k. Under Hy it will have not-normal distribution.

E-views will give p-value.

We reject hypothesis Hy at significance level 5% if the p-value is less than
0.05.

Note: What m should we use? If we choose m to large, the test will have
low ability to detect that Hy is-not true.

e Use: m = v/N where N is the number of observations.

e E-views will call this test @ test and give p— values for allm = 1,2, - - -.
Take a look at m < /N to see if there is any p value less than 0.05. If
you find such you may reject hypothesis of no serial correlation, i.e. of
white noise.

Rl
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Date: 29/11/20 Time: 10:54 AW& Aize N O -
Sample: 1 400 (\// F - -
Included observations@ % % e/{- L(),V\MB —
Autocorrelation  Partial Correlation AC PAC Q-Stat @ 8 or UTd‘{T

1t i (-0.007 0.007 0.0189 0891 —Ffe) =]

If i 2 -0.050 -0.050 1.0282 0598 —— W, =2

I I 30026 -0.027 1.3033 0.728 —— |\ =
| |
| |

The EVIEWS output of the correlogram of time series X,

I 4 0.025 0.023 1.5643 0.815
5 -0.023 -0.025 1.7743 0.879
i il 6 0060 0.062 3.2521 0.777
7 0.015 0.015 3.3485 0.851
8 0.021 0.026 3.5356 0.896
9 0.026 0.032 3.8035 0.924
10 -0.053 -0.054 49636 0.894
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Example of application of ACF

Sample autocorrelations py, fo, ... play important role in linear time series
analysis. They can capture the linear dynamic of the data.

Figure 2.1 shows the sample ACF of monthly simple and log-returns of IBM
stock from January 1926 to 1997. We observe that:

@wo sample ACF are very close to each other,

@ they show that serial correlation of IBM stock returns are very small,
practically zero.

e the ACFE’s are within two standard-error limits, indicating that they
are not significantly different from 0 at 5% level.

Figure 2.2 shows ACF’s of monthly returns of the value-weighted index of US
markets. There are some significant correlations at 5% level for both return
series.

Comment: Testing for zero correlations has been used in practice as a tool
to check the efficient market assumption, which means that series of returns
should be uncorrelated. T
wever, the way how stock prices are determined and index returns are
calculated might introduce some autocorrelations in observed return series.
In practice, if all sample ACF’s are close to zero, then the series is a white
noise. Based on Figures 2.1 and 2.2, the monthly returns of IBM stock are
close to the white noise, but those of the value-weighted index are not.
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Figure 2.1. Sample autocorrélation functions of .monthly (a) simple returns and (b) log returns of
IBM stock from January 1926 to December 1997. In each plot, the two horizontal lines denote two
standard-error limits of the sample ACF.

(a) Simple returns

0.2
0.1 — 1 1
u dal D el 0 L e L
5{) 0.0 T T 'rr ” T‘llrll ”]lll '[‘”Ul T ”‘ “ I_r i ||l ] [ .
-0.1 '
. S
_0‘2’4 T 3 T T I I
0 20 40 60 80 100

lag

(b) Log returns

0.2 -

v Ll wl ruL] llJJL‘.u “ ]i
T l I 3[ ¥

Al J Lot
iy T T ”"ﬂ I

2 0.0 l 1,‘l’| I.'l I,l[” l riv IT
~0.1 .
—02 T T T - T T .
0 20 40 60 _ 80 100

lag

Figure 2.2. Sample autocorrelation functions of monthly (a) simple returns and (b) log returns of the _

yalue-weighted index of U.S_markets from January 1926 to December 1997. In each plot, the two

horizontal lines denote two standard-error limits of the sample ACF. .
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Autoregféséive AR(p) model

Now we consider what to do when the time series has significant correlations,
that is it is not white noise.

To autocorrelated time series data can be try to fit a lincar autoregressive
moving average model AR(p).

Q: Should such model fit to the date? Not necessarily. We will discuss how
16 check if the model is fitting well.

If it does not fit well, then we can try to fit MA (moving average) or ARMA
models, we will discuss below.

What is autoregressive model AR(p) of order p?

e In autoregressive mode@f order 1: 5
Eg, =0, bulg)= T

Xi=p+ X1 +e

In this model {e;} ~ WN(0,0?) is assumed to be a white noise. The
model has 3 parameters: x4, ¢ and o?2. -

e In autoregressive model AR(2) of order 2:

Eﬁ:@sl){t—l + P Xy o + €.

We regress X, on the past two values X;_; and X,_,. What remains is
the white noise {&,} ~ WN(0,0?). The model is defined by parameters:

p, $1, P2 and o2

e In autoregressive model AR(p) of order p:

m $1 X1+ o Xy g + - '¢pXt—1;}__‘i'/\
“Here we regress X, on the past p values X,_;, - -- ’:Xt.Nhat remains

"is the white noise {e:} ~WN(0,02). P _ ‘(’L\,(L (SLJM
L AR
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3.6 Stationarity of AR(1) model N % o/

The AR(1) model is 7 Ll /
) \‘P ‘LL s
Xi= u+ ¢ Xz + &, g~ WN(0,02).

It has a stationary solution if |¢| < 1.)

If Figure 3.10 we see four realizations of AR(1) model with p = 0:

— .
(e ¢ =0, then X; = ¢; is white noise.

=3 /qﬁ = (.75) series exhibits short sequences of up and down but always
returns back to equilibrium.

(@ is unit root model which is nonstationary

(;'é,> 1 ;@is explosive model which is non-stationary
s

0 50 100 150 200
1

Phi=0 Phi£0.75
. S

Phi£1.25 1)
o A -

8.0000E + 17

6.0000E + 17

4.0000E + 17 -

2.0000E + 17
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4 Time 4 \
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Figure 3.10 Four realizations of the AR(1) process with ¢ =0,0.75,1 and 1.25. \
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Figure 2.1: Simulated data of an AR(1) model with o =0, (41 = 0.5 and ¢2 = 1.

N o M/\ I\ A\M |
N\/:l/\/ 21 1 41 51 \‘Ll 71 8 9 V l“ 121 131 ]41 W 171 ]81 \f\
2 4 j . ; §

J\ V

Figure 2.2: Simulated data of an AR(1) model with(*o =2 !41 =0.9 and ¢ =1.
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Causal time series; we say that a stationary time series X, is causal, if it
does not depend on future shocks. That is easy to see for AR(1) model:

Xi = X1+
= ¢(¢Xio+ Ei-1) + &
$*Xio + Peg_1 + €.

We can show continuing as above and replacing X,_, by X,_3 and so on that

i Xi =€+ der1 + dero+ Plepg + -

is a linear combination of past shocks. Since |@| < 1, this series is converging,
and therefore is causal.

Later we compute EX;, Var(X;) and autocorrelation function pr of a sta-

tionary AR(1) model. » o +O
identiﬁcation of the order ¢ | AQK—P) wioolel : /)chQ_(}{\ ‘P)

The identification which ARMA model to use often can be determined by %/\J\Jey\
looking at the ACE and PACF (partial autocorrelation function). Xy ¥
| R N

Selection of order (p) when we ﬁﬂAR(p) model | Assume that we want
to fit to the data AR(p) model. Then first we need to select p. For that we

use k’KCF functi

Note: Partial autocorrelation function PACF is computed at lags k =
1,2,---,. It has nothing to do with correlation (ACF). The only its use
is to detemnne the order of AR(p) model.

Meaning of PACF: The PACF at lag k is the last regression coefficient brok

when we fit regression equations for k = 0,1, 2, - FACF 0‘74‘
/,/é——f"
Xy = p+ praXi +"@Xt—k:+5t- 'LO\% /IL/

Assume that data was generated by AR(p) model. When we fit too mainy
lags, then PACF ¢y will be approximately 0. The last non-zero PACF will
be at lag ”p” which is the order of AR(p) model”

Tn other words: PACFE cuts off after lag p.

PRrc B o RRAP) Wune =ela. Ky .

o PACE, 5
i ) AR(3) model
LAt R S S
e “w 9 g AC

3
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(For example) if we fit an AR(k) model to the data that truly follows AR(2)
model, the PACF coefficients at lags 3,4, 5, ... will be zero. *LOM—\ D

Since we can compute only sample PACF, we need to check at which lag it
cuts to zero, i.e. becomes not significantly different from zero.

ion at lag k: 5__?9 /ZZ,Q—Q/Q,

o PACF, is significant, if||PACF;| > 2/VN
observations.

The rule: the same as in testir

where N is the number of

QO“’"\APXQ o If |PACE| < 2/\/N, we assume the the PACF is not significant. (: 2220 ,>

/]\LZ_,Q, In this case

/

\
|
.//
.439.0 OO0 =
h ¢ 'I 11 1

Partigl autoc
[Ny
S
o T
I
I
.OI
- I
|
o I
I
I
|
I
|
|
}
| -
I
I
|
I
|
|
|
i | o
I
i
I
I
| -
!
I
|
I
!
I
I
I
I
|
| -
|
1
I
|
|
!
I

2 2
Example The PACF if Figure 3.6 shows that the first two partial autocor-

relations are significant, since they are outside the 2SD confidence band.
This suggest, that we could fit AR(2) model.

PACF, € [—

] lies in 95% confidence interval for 0.

Xe=p+¢1 X1 + o Xy o + &1

| k=2 —= BT Are) noote L
e L pea

orfelation

OO MO O

’ﬁj Time lag ' e J{‘ P

Figure 3.6 The partial autocorrelation function for the furnace data.

AR(2) model. For AR(2) model Z W o MWL\

TZ=#+¢'1Xt—1 + ¢ X o+ ) % sl 5 l
to be stationary it is required that coeflicients satisfy the them

)
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Example. In Figure 3.6 we see PACF of furnace temperature time series.
In Table 3.1 we have output of estimated coefficients:

1.0 —
S 08- k=2 _
T 06 )
° 0.4 -F: \
5| S —— T ARG )
o 0 . Ve . - . SIS S -

202 sl e e e
& 04 T VVL,OD(-L/Q ,
2 -06 - - : _
@ 0.8
& 1.0

5 10 15 20
Time lag

Figure 3.6 The partial autocorrelation function for the furnace data.

TABLE 3.1 Estimated Coefficignts for an AR(2) Process

. Coefficient Estimat{ Standard error t-value p-%alue. -\
; 4 A Psl 2 7$
b 0.9824 0.1062 925 0.000 g St
& —0.3722 0.1066 —3.49 0.001

Constant 615.836 0.042 - -
fi 1579.79 0.11 - -
62 0.1403 — — —
@‘1___0-0532(4 L pS=9-0<005 b, =0
18 1=0%R2L> 25D = 2(0.4062)
Using them we can write the model: — ‘PA ’4-:@
X, =61.5.836 + 0.9824X,_; — 0.3722X,_» + &, o2 =0.1403.

1. To verify the fit of the model we first check, that it is stationary: from

$o + ¢ = —0.3722 + 0.9824 = 0.61, )
¢2 — 1 = —0.3722 — 0.9824 = —1.35, ¢, = —0.3722.

So, we conclude that the model is indeed stationary.

5_90 /VC@V\«‘){;-\“,CE co. ,C_w_e,(’P—rWO VVL&'\/L\OJ/-).\
TA pooesa & v et sopudicondt—

2) ‘(&\é 28D =~ b er'/l/b%M,x)é-CCOW\J{\ - <P:O
1B P2 5D = b gnl A Conct
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The EVIEWS output of the correlogram of time series X,

Date: 12/11/20 Time: 18:15 Los
Sample: 1 100
Included observations: 100

Co_rrelogram of Y

M

Autocorrelation  Partial Correlation N AC @\9

Q-Stat

Prob

[
[
I
1
I
[

I
IO
g

(]
01
I

g

[
[
[
[

g
[

I
O

|
L

1, @331 0:331
2 0.117 0.008
3 -0.067 -0.121
4 -0.059 -0.003
5 -0.131 -0.106
6 -0.010 0.067
7 -0.028 -0.037
8 -0.155 -0.190
9 -0.094 0.022
10 -0.061 -0.028

11.305
12.719
13.192
13.568
15.411
15.423
15.506
18.187
19.169
19.593

0.001
0.002
0.004
0.009
0.009
0.017
0.030
0.020
0.024
0.033




The mean E[X;] of AR(2) model. It is easy to compute the mean as follows:

Assume that X, is stationary. Then EX; = py for all t. Taking expectation
of AR(2) equation we get

@‘—‘ EX, = Elu+ ¢ Xio1 + ¢aXig + &
= pu+ ¢ EXi1] + ¢ E[Xi_o] + Eey

= U +¢1@ %ﬁ@

So, px(1—¢1 — ¢2) = p, and
S L
1—¢1—¢o

4 615836
1—Go—ay 1-061

So, in our example

= 1537.

Hx
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Residuals. Next we have to check if this model fits to the data ie. if

& " . ] 3 . .
residuals £; are uncorrelated. We compute residuals Reslctual Z+
’ 5t>=Xt—/1—431Xt—1*032Xt—2 Mol 2(&:&2,02
(D2V.VaN

and then compute ACF and PACF functions, see Figure 3.7 and 3.8. They
show that ACF and PACF are not significant at any lag, which means that
residuals £, is a white noise process. Otherwise, significant correlation would
mean that we are fitting wrong model. Then we could try e.g. AR(3) model
and check if residuals become uncorrelated.

oo ACF
0.4 : h,g-\— A%MMCDW\K

/f%\?‘ “““““ .“‘_“ """"" e ok~ il < b%

\/

-—T.O«J
2 4 6 8 10 2 14 16 18 20
Time lag '

Figure 3.7 The ACF of the residuals after fitting an AR (2) model to the furnace data.

i | PAC =
o : . DR ‘ h,o{—/ygjm)ﬁfcow\?t

- A~
a/waz@z,%
\V

2 ‘;- é EI’: 11‘0 '|I2 7'4 1I5 1'18 20 ~_L_ *
Time lag /?1\__ /L\)/{M o V\’OV\'Q

Figure 3.8 The PACF of the residuals after fitting an AR (2) model to the furnace data.
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Alternative condition for stationarity. In the textbooks, for AR(2) model

’ <

Xe=p+ 1 Xoo1 + ¢ Xy o + ¢

you will find alternative condition for existence of a stationary solution, which
is equivalent to that we had above. It is as follows. =

After rearranging AR(2) equation, we get

Xe— 1 X1 — do Xy o =p+e,

Then we write the associ\aﬁ pol}kﬁmial \

1—¢133—¢2332 =0,

108t

which always has two solutions z; and z,.

W&tionar% if parameters ¢, and ¢, are such that
z1| > 1 and |zo| > 1.
4] 2] ) |wy) <A ) Wty 1€ A

Note: Similar condition for existence of a stationary solution exist also for
AR(p) model, with p > 3. However, verification of this condition is more
complicated than in case of the AR(1) and AR(2) models.

Moving average MA models.

Autoregressive models relate current observation X; to previous observations
X X
At—1,"" "y Nt—p-

Another large classes of model we can use to model stationary time series
are MA (moving average) and ARMA models. They are defined as follows.

33



Moving average MA (q) model of order @

This model is averaging” of the present and past noise terms &;:

'_,’-’—'— T ————— ——
l Xi=pu+e - bhery — Osgygg— - ‘——%i
—_ ) =

It is defined by parameters 6;, 6,, - - - ,0, and o2

—

Properties: Important properties of MA(q) models are:

e MA(q) process X, is always stationary.

o E[X]=p.

* The ACF of MA(q) model cuts off (equals to 0) after lag q.

That means that the sample ACF will be significant and plot outside
95% confidence band given by +2/+/N upto and including lag q.

After lag g the sample ACF is expected to be within the confidence
band, i.e. to be insignificant.

This property is used to select order ¢ when fitting MA(q) model.

Selection rule: select g as the largest lag where ACF is significant.

VAC ACE A

. gl ||
L2 3 b ~
—2f e — - S
2
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Notice:
o select the order of AR(p) model we use sample PACF function.

o select the order of MA(q) model we use sample ACF.

ARMA (p,q) process. Mﬂ{ﬁ) FW

X, is defined as solution of equations

Xt =+ d)lXt—l R ¢pXt_p +'€; — 6151_1 = 8 1 7 qut.—q-
Lﬂ. ]
2(s) e i
It is defined by paral(lsetem- s Pp; 01,04, -, 0, and o2 )

e ARMA(p,q) model puts together AR(p) and MA(q) models. We can
use it, when fitting AR(p) or MA(q) models requires large number of
parameters.

Usually, fitting ARMA model, ARMA(1,1), ARMA(1,2), ARMA(2,1)
fit well: we do not need many parameters.

e Notice: [fiRMA(p,O) = AR(p) model, and

ARMA(0,q) = MA(q) model.

LA
The summary of behaviors of ACF and PACF for AR, MA and ARMA f 4

models is given in Table 3.2. ﬂﬁ@ﬁl

In Figure 3.9 we see simulated examples of ARMA models and their ACF’s
and PACF’s.

o We can see from Figure 3.9, that ACF and PACF are excellent tools
for identifying the order of MA and AR models, respectively.

\ For ARMA model we do not have such simple rule using ACF and
PACF. Its ACF and PACF do not cut off to zero.

{/& e For ARMA model to select the order p and ¢ we can use information
criterions AIC and BIC.

\o Using software packages we can always try to find a model between

AR, MA and ARMA model, which gives uncorrelated residuals.

o We should seek for a model which has smallest number of parameters.

—_—eee e
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The EVIEWS output of the correlogram ¢f time series X,

Date: 12/11/20 Time: 18:15

Correlogram of

Loy

FLTTRG

Sample: 1 100
Included observations: 100 \
Autocorrelation  Partial Correlation \ AC PAC Q-Stat Prob
| [ (| “11 0.331 0.331 11.305 0.001
(jl Il 2 0.117 0.008 12.719 0.002
g g ! 3 -0.067 -0.121 13.192 0.004
g I 4 -0.059 -0.003 13.568 0.009
(| gt 5-0.131 -0.106 15411 0.009
bt o 6 -0.010 0.067 15.423 0.017
I i 7 -0.028 -0.037 15506 0.030
1 | [ 8 -0.155 -0.190 18.187 0.020
g [ 9 -0.094 0.022 19.169 0.024
g 1! 10 -0.061 -0.028 19.593 0.033
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TABLE3.2 Summary of Properlies of Autoregressive (AR), Moving average (MA), and
Mixed Autoregressive moving average (ARMA) processes

AR(p) MA(q) ARMA(p, q)
Model w,=Pwi_y + ...+ w=a —60a-— w, =@ w_+ -+
¢p“’!—p + a e gqal—q ¢pwl—p - 91a1—~l +
t .= 0qag t+a;
Autocorrelation Infinite damped Finite; cuts off after | Infinite damped
function (ACF) exponentials and/or q lags exponentials and/or
damped sine waves; \ damped sine waves;
Tails off Tails off
Partial autocorrelation |Finite; cuts off after Infinite; damped Infinite damped
function (PACF) p lags exponentials and/or exponentials and/or
damped sine waves; damped sine waves;
Tails off Tails off
Source: Adapted from BJR.
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