LECTURE 2

3 Time Series and their characteristics

Time series analysis deals with analysis of data recorded over time.

In time series, observations X1, Xo, - - -, X, are generally( dependeni. Depen-
dent data series (X,) are modelled as random sequences or random (stochas-
tic) processes. :

>//
Definition 1 A sequence of random variables {X;} indezed by discr@:\time J . Y
t=...,-101,2,.., is called a time series. . L‘/‘/\«\S&%‘OL‘?& oee A

(If time t is continuous, {X;} is called a random process.)

3.1 Financial time series. Asset returns

Financial time series are concerned with the theory and practice of asset o E
valuation over time (prices/returs). P
-f_

(" Uncertainty.) Empirical financial time series contain an element of uncer-

ainty. Pg«(’/(_, /i_

— Therefore statistical theory and methods play an important role in time
series analysis.

Comment. Most financial studies deal with returns, instead of prices, of s
assets. Returns for an investor is a complete scale free summary_of the in- \/8/‘/1 ‘ f)

vestment opportunity. Returns are easier to handle than prices; they have
more attractive statistical properties.

There are, however, several definitions of an asset return.

Let P; be the price of an asset at time t. We present two definitions of
an asset return.

One-period Simple return. Holding the asset for one period from time
t — 1 to t yields a simple gross return [ s %
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1+(R; = — P,=PF,_1(1+ Ry).
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Tesla stock daily price

Market Summary > Tesla Inc _—
NASDAQ: TSLA

868.26 UsD+1603 (1.88%) +

4 Feb, 12:41 GMT-5 - Disclaimer

1 day 5 days 1 month 6 months ¥TD 1 year 5 years Max

380.02 USD Fri, 8 Jan

750- I I T I T T
13 Jan 19 Jan 22 Jan 27 Jan 1Feb 4 Feb

Cpen 869.67 Div yield -

High BTT.TT FPrev close 852 23

Low 8a1.70 52-wilk high a900.40

Mt cap 823.56B 52-Wl low 7010

P/E ratio 1,374.37

Poll 1: X_t, (daily closing price of stock), t=MTWTF
Is X_t: a time series?

Poll 2: P_t price of Tesla stock.
Will it rise/drop/stay the same at time t+1?
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Multiperiod Simple return. Holding the asset for & periods from time
t — k to t gives a k-period simple gross return:

»
LR = Doo PP B
P, L1 P By

== (1 + Rt)(l + Rt_l) R (1 + Rt—k—{—l)

k-1
= JIa+Rey.
j=0

Hence, k-period simple gross return is just the product of & one-period simple
gross returns. It is also called a compound return.

Definition: the k-period net return, which is commonly called simple return
i o ey

N P, \/ —_.P:i .‘I
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Continuous compounding
The effect of compounding: assume that the interest rate of a bank is 10%
per annum and the initial deposit is $1. [Use £, = P,_x(1 + Ry[k])]

e If the bank pays interest rate once a year then the net value of deposit

becomes 1(1+0.1) = 1.1. ™M = [4a VB

o If the bank pays interest rate twice a year then the 6-month interest
rate is 5%, and the net value of deposit after the first year is 1(1 +

+ .03 (1 + O.Dﬁ}: 1.10250.
ettt

o If the bank pays interest rate m. times a year then the interest for each
payment is 10%/m and the net value of d i : first year
is 1(1 + 0.1/m)™. As m increases, this number approaches 1.1502 =

exp(0.1), where 0.1 =7 = 110%?% is the interest rate per annum, which is n >
the result of continuous compounding,. T A\
D g (1< = ) — 24y (L)
Table 1 gives results for commonly used time intervals on a deposit $1 o< ¢/
with interest rate 10% per annum. '
TABLE 1.1 Tllustration of Effects of Compounding: Time Interval Is 1 Year and P 8/( (/ L‘
Interest Rate Is 10% per Annum - .
Type Number of Payments Interest Rate per Period Net Value
Annual 1 0.1 $1.10000
Semiannual 2 0.05 $1.10250
Quarterly 4 0.025 $1.10381
Monthly 12 0.0083 $1.10471
Weekly 52 0.1/52 $1.10506
Daily 365 0.1/365 $1.10516
Continuously o0 $1.10517




Summarizing: if'z _is the interest rate per annum), C is the initial cap@

and @ is the number)if years then net value assat of continuou ing

isn - -
AéCexp(rxn). , Nﬁuu’ ‘ Q’f\P@L “)Zd_

Hence, after one period, the investment P;_; will become i

Pt = R_ler.

\
Notice that %3 (fk © j:_ &9’56&
In P, = In(Pi—1€”) = In(Pi—1) + In(e") = In(Pp—y) + 7.
Then (r=WR-m(P ). ) = o~ [ P \[’
' O L n)

Log return. The natural logarithm of the simple gross return is called
continuously compounded or log-return:

R

re=In(1+R;) =1n FPt—— = In(PR,) — In(Pi—1).
-1 — —) (O% (,( + ¥ ) AU K
Note that for small Ry, it holds In(1 + R;) ~ R;. M/ \;,L . :
R amoll

Log-return enjoys some advantages over the simple return.

e First, the multiperiod return is the sum of one period returns:

rk] = In(14 Ri[k]) = In{(1 + R)(1 + Re1) - (1 + Ri—py1)}
In(1+4 Ry) +In(1 + Re—1) + -+ + In(1 + Ri—p1)
= T+ T+ Tkl

1l

e Secondly, statistical properties of log returns are more tractable.

Portfolio return. Suppose portfolio consists of 3 assets Pi¢, Pat, Fat. These
assets yield simple returns Ry, Ro, Ra:. =S
Let w;100%, w2100%, w3100% be percentage of the portfolio value of

each asset. Then w; + ws + w3 = 1.
Then simple return of portfolio at time ¢ is

Rportfolio = w1 Riz + wy Ryy + w3 Ra;.
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Excess return of an asset at time t is the difference between the assets
return R, and the return of some reference asset Ro:.

Reference asset is often take to be riskless such as a short term ES Trea-
sury bill returns. The simple excess return and log excess return are defined

then as
Zy = Ry — Ro, QO4_ 'e’c(_] /&)MO’

2t =Tr —ToOt-

In finance, this would be a payoff of portfolio which goes for }9_{1_5‘ in an
asset and short in the reference asset. , = | J
Remark (Long and Short). AOA

e A long position means owning the asset.

e A short position means selling an asset which one does not own. An -
asset (shares) is borrowed from an investor who purchased it. At some
time, the short seller must return shares to the lender. Cash dividends

on the borrowed asset must be payed also to the lender. y.
Y4 a/vw,L/uz_ I
Summary of relationships L GW\/H Pl«

e The relationships between simple return R; and log return (or contin-
uously compound) 7; are - - P

el + K, Re=e-l.
e If returns are in percentages then

R
re = 100 ln(l + T(—)%)’ R; = 10061':/100 ~1

o Aggregation in time produces k-period returns
1 + Rt[k] = (1 + Rt)(l + Rt—l) e (1 + Rt-k-{-l)

rlk] = T+ Te-1+ Tkl

e If continuously compounded interest rate is 7 per annum, the the rela-
tion between present value c and future value A after time n is

A = Cexp(r xn).



Example

o If the monthly log return is R = 4.46% then the monthly simple return
is

r = 100(exp(4.46/100) — 1] = 4.56% 6 61

o If monthly log returns of an asset within a quarter are 4,46%, 7, 34%
and 10.77%, then the quarterly log return is (4,46 — 7,34 + 10.77)% =
7.89%. ’&3 &1 +&L+6c?>*3~?‘74

Transformations. Times series often have to be transformed to series which

have nicer statistical properties. - N MW

For example, the prices P, behaves as a non-stationary (increasing) stochastic P ﬂa
trend. It is more realistic to expect that changes in prices ftgm a stationary +

process. Indeed, log-returns r; which are differences In(P;) — In(P,_;) of log

prices In(7;) tend to behave as a stationary process: \l/'

P, (non-stationary) — log P, (non-stationary) — ry = logPt log P (sta— /l ?

__tionary) "% d
See Figure 1.6 (a) where P, is exchange rate between US dollar and

‘Japanese yen (non-stationary), and (b), which shows log returns of the ex- \[ ,

change rate, which behave as a stationary time series. {,.
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Figure 1.6. Time plot of daily exchange rate between U.S. dollar and Japanese yen from January 3,
2000 to March 26, 2004: (a) exchange rate and (b) changes in exchange rate.

c



Transforming non-stationary time series to stationary

To make anon stationary time series we use transforms

P_t > log (P_t) 2 log (P_t)- log (P_{t-1})
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1 Time series plots of hourly stock index and return.

Pictures show how a non-stationary times series (Stock index) is
transformed to a stationary time series of returns by taking log()
function and then the 1-st difference
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3.2 Time series characteristics: statistical distribution
and moments

Time series X1, - -, Xn is a collection of random variables.

Each X; is a random variable. It is described by its distribution. It also can
be partly characterized by moments.

Let X denotes the price of that asset at some fixed time ¢. This pnce is
a random variable. So we have all information about X, if we know all '

probabilities - — .
t’?(y) =P(X <y) / forallys.

Function F is called distribution function of X.

P

Example:

P(X %K, K islarge) = P(event: “price X is very high”) ~ 0,
P(X < E[X lue of X) ~ 0.5;

(X < E[X] a'verage value of X) 5 - i ; "
P(X < K, K issmall) = P(event: "price X is very small”) ~ 0. e S

Rourclovn evenA ) =5 PrA-)

What is probability? It is a measure of random events.
To a random event A it assigns a number P(A) € [0,1]. Higher P(A) indi-

cates that event A is more likely to happen.
For two not-overlapping events A and B we have @
P(AUB) P(A) + P(B);

In general, P(AU B) ; P(A) -+ P(B). @

Probability density function f of a random variable X: it is a nonnegative
functions, that completely describes distributio:

PO <y) = I ot

B el

L&)>
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AN 1 & ' =
| \ meon EY
@= Lf(x)dx and f(x) > 0 for all x /

. ¥
Deﬁnition@si} or normal random variable X ~ N(u, 0?) with mean
1 and variance o has the the distribution density N~

W*@ %amz@jﬁexp(—(“’%z), cen Vewonee bnlK)
O n

Definition. Standard normal random variable Z ~ N(0,1) has the distri-
bution density

1 2
/(=) =‘Eexp(—%), z € R. EZ=D
It has mean p = 0 and variance 0® = 1. \fqh (Z) e i

Standard deviation: o is called deviation

8

o \ Van (X ) ‘ — | =
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If X has normal distribution N (1, aﬂ, then ¢ can be used as measuring
unit, to describe the intervals of values taken by X.

A
Probab (X takes values from interval [u —o, p+ a]) = 0.6827 e ég /o
Probab (X takes values from interval [p — 20, pu+ 20]) =0.9545; o~ %?m
Probab (

X takes values from interval [ — 30, pu+ 30]) = 0.9973. A 99 ?b

Upper quantile of standard normal Z ~ N (0 1) distribution. [It will

appear in hypothesis testing] -
Let 0 < @ < 1. Then z, is such that the area to the right equals to a.

) DKL/
i ¥
In applications, usually we use P ( ey ot 'Zo(/) = ol
Foe a = 5%, z59 = 1.64, o ey
For, a = 2.5%, zp5% = 1.96 ~ 2. + = =
o 0, 22.5% ( lgl = D{/&‘) OC

Independence. We say that two random variables X X and Y are indepen-
d_egﬁ_if_ Y does not carry any information about X. Then

¢ E[XY]= E[X]E[Y],
. E[X|Y] = E[X],

where E[X|Y] is conditional expectation of X when we know Y.
et e ™

9
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3.3 | Summary characteristics
\\\»

e Instead of distribution function, random variable X can be character-

ized in part by its moment characteristics: mean, variance, kurtosis
and skewness.

e in applications mean, variance, kurtosis and skewness can be estimated
from the data. The estimates are called summary statistics

TN

._The mean.\The first moment px = E[X] is called the mean or expectation

o o‘Low—?fLL\%/‘a/

J ,

Theoretically, it can be computed as

EX] = /oo yf(y)dy.

Note: we do not know probability density f.

Estimation: Let Xi, .., Xy be as sample of X with NN observations. We can
estimate the mean by sample mean:

7 1 ¢ i §<A+ e \éf\)
Hx = N;X‘) —  —— LN

o %

N
(v
\ Variance./i The variance of X is defined as
e 0% = Var(X) = E(X - E[X])%.
yry €
It measures the variability of X. Note that FU& 5

Var(X) = E(X - E[X])? = BE(X?-2XE[X]+ E[X]}
= E[X? - (B[X])%

Standard deviation. The positive square root, oy, is called the standard deviation
of X.

Estimation: We estimate 0% from that data X;,---, Xy by sample variance

08}

P 1X]

00 fd

1&7'




Note: the first two moments px and o% define a normal distribution.
Gaussian (normal) random variable with mean p and variance o? has the
probability density

@) = = el E2L0)

For other distributions, higher order moments are also of interest.

( Skewness/ It measures asymmetry)of X around the mean E[X]. Skewness
is defined as the normalize moment
| oo o nrt, )
| S(X) = E[——zﬁﬂ{—].
\ X /
In X has normal distribution, the S(X) = 0. Normally distributed variables
are not skewed.

Estimation: We estimate skewness S(X) from data Xj,---, Xy by sample

skewness: — = ‘
. 1 X, | /R e A
S(X) = Wz(kj - ix)°. )
X j=1 l_’/ V\‘LA—‘A&\
Kurtosis. It measures the tail behaviour of X. The 4-th normalized central

“moment™ p———
\ K(x) = (K= Ax), )
crer S

is called the kurtosis of X. It measures the tail thickness of X distribution.
Estimation: We estimate kurtosis K (X) from that data Xi,---, Xy by sam-
ple kurtosis: A - i
| N » |
A 1 N \ "I ; Q_/J;A.\o/
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Fact,

PM-J&;Q

Excess kurtosis: The quantity K(X) — 3 is called excess kurtosis.

e For a normal variable X, K(X) -3=0.

e A distribution with a positive excess kurtosis is called leptokurtic or

a distribution with fat tails. In practice such a distribution tends to
contain more extreme values than a normal distribution.

Skewness and kurtosis are measures of shape distribution.

Tests for non NI

\Tests f:0r normality.
Tf X has normal distribum&ﬂen F(X) — 0 and K(X) =3) Let Xy, X§)

be a random sample of X.

Under normality assumption on X, $(X) and K (X)) — 3 have asymptotically

normal distribution: N — QW
S(X) K(X)-3 ¥

——= ~ N(0, ——— ~ N(0,1). Az
\/6/N ©.1), \/24/N ©,1)
These asymptotic properties can be used to test the normality of a time
series, e.g. returns, i.e. to test that S(X) =0 and K(X) -3 =0.

Test for symmetry. To test for skewness of distribution we test

null-hypothesis Hy : S(X) =0, versus alternative Hy : S(X) # 0.

—_—

The t- ratio statistics of samples skewness is

—
——

Before testing

o select the significance level a (probability to reject true Hy). Usually
a = 5%, a = 10%;

o find the upper -a/2 quantile z,/; of the standard normal distribution
N(0,1).

For example, zg.o25 = 1.96 ~ 2, 201 = 1.64.

12
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Heavy tailed distributions

Weekly returns of Singapore Straights market index:
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., *Q\ Rule: reject Hy at significance level a, if |t| > zq)2- @ SEK) :/:. O
EK » If |t| < zq/2, do not reject Hj, and normality. 6- Sb() — O
oL = ‘ﬁo ) Alternatively, one can compute the p value of the test statistic ¢t and reject
Hy if p-value is less than a.

~ o
20(/?_ 2—- Test for heavy tails - mmﬁ\;—{

—————————————

Similarly, one can test the excess kurtosis, ow@ies, using the hypothesis

Hy: K(X)—3=0, versus H,: K(X)-3#0.

- — —

= The test statistics is

L tsz%BNNmM.
. /24/N
MFM /

If Hy is true, then t ~ N(0,1) and testing can be done as above in case of \Ll
G

skewness: L K—f—\ e T ’7}5\\« = 6?0 /PCW

We reject Hy (and normality) if the p-value is less than significance level . C& M

L&V4“ /‘1\"1 “\»‘ Jargue and Bera test combines the two prior tests and is based on statistics:
s
Notvre | £x)  (K(X) -3
oo e | JB=—n * 2N

vt o l;\/ / /
[— which under normality, has asymptotic non-normal distribution ( chi-squared
distribution with 2 degrees of freedom).

QM/Q«Q g [ ( We reject hypothesis Wif the p-value of JB statistic is less
' than significance level a.
0400 9

Tables of summary statistics.

The summary statistics of mean, variance, skewness and kurtosis can be
obtained easily using various statistical packages (see Table 1.2).

Example. Table 1.2 shows that excess kurtosis for daily simple returns for
IBM stock is high, which implies that simple returns have heavy tails.
To test the symmetry of returns distribution, we use the test statistic

0.0614 _ 0.0614 _

tzﬁggfs‘o,ow‘z‘lg
2 =l > 22 Regrct ,: Sr)=0




mole e
El =

(D-Q{}:_Q) L/_ 0.0 54 S

It gives a p-value of about 0.013, indicating that daily simple returns of IBI\/I1
stock are significantly skewed to the right at 5% level and do not have norma

distribution.
Comment: we would reject H, hypothesis of symmetry because p-values

p = 0.013 < 0.05.

Definition 2 p-value for t-
is defined as probability p = P{\(\I (0,1) P 2.49}.

TABLE 1.2 Descriptive Statistics for Daily an%nthly Simple and Log Returns of
>

a
Selected Indexes and Stocks ?\) QC\H __.3
Standard Excess
Security Start  Size Mean Deviation Skewness Kurtosis Minimum Maximum

Daily Simple Returns (%)

SP" 70/01/02 9845 0.029 1.056 -0.73 22.81 2047 11.58

vw 70/01/02 9845 0.040 1.004 —0.62 18.02 -17.13 11.52
EW 70/01/02 9845 0.076 0.814 —-0.77 17.08 —10.39 10.74
= IBM 70/01/02 9845 0.040 1.693 0.06(11 9.92 2296 13.16
Llntel 72/12/15 9096 0.108 2.891 —-0.15 6.13 —29.57 26.38
3M 670/01/02 9845 0.045 1.482 —0.36 13.34  —25.98 11.54
Q\/Iicrosoﬂ 86/03/14 5752 0.123 2.359 —-0.13 9.92 -30.12 19.57
Citi-Grp  86/10/30 5592 0.067 2.602 1.80 5525 —26.41 57.82
Daily Log Returns (%)
SP 70/01/02 9845 0.023 ' 1.062 -1.17 3020 -22.90 10.96
\'A%Y% 70/01/02 9845 0.035 1.008 —0.94 2156 —18.80 10.90
EW 70/01/02 9845 0.072 0.816 —1.00 1776 —10.97 10.20
IBM ©70/01/02 9845 0.026 1.694 —0.27 12.17  —26.09 12.37
Intel 72/12/15 9096 0.066 2.905 —0.54 7.81 -35.06 23.41
3M 70/01/02 9845 0.034 - 1.488 —0.78 20.57 —30.08 10.92
Microsoft 86/03/14 5752 0.095 2.369 —0.63 1423 -35.83 17.87
Citi-Grp ~ 86/10/30 5592 0.033 2.575 0.22 33.19 -30.66 45.63
Monthly Simple Returns (%)
Sp ) 26/01 996 0.58 5.53 0.32 9.47 -29.94 42.22
A% 26/01 996 0.89 5.43 0.15 7.69 —29.01 38.37
EW 26/01 996 1.22 7.40 1.52 1494 -31.28 66.59
IBM 26/01 996 1.35 7:15 0.44 343  -26.19 47.06
Intel 73/01 432 221 12.85 T 032 270 —44.87 62.50
3M 46/02 755 124 ° 6.45 0.22 098 —-27.83 25.80
Microsoft ~ 86/04 273 2.62 11.08 0.66 1.96 —34.35 5155
Citi-Grp 86/11 266 1.17 9.75 —0.47 1.77 -39.27 26.08
Monthly Log Returns (%)
SP 26/01 996 0.43 5.54 —0.52 793 -35.58 35.22
VW 26/01 996 0.74 5.43 —0.58 6.85 -34.22 32.47
EW 26/01 996 0.96 7.14 0.25 8.55 =37.51 51.04
IBM 26/01 996 1.09 7.03 —0.07 2,62 -30.37 38.57
Intel 73/01 432 1.39 12.80 —0.55 3.06 -59.54 48.55
3M 46/02 755 1.03 6.37 —0.08 125 -32.61 22.95
Microsoft ~ 86/04 273 2.01 10.66 0.10 1.59 -42.09 41.58
Citi-Grp 86/11 266 0.68 10.09 —1.09 376  —-49.87 23.18

“Returns are in percentages and the sample period ends on December 31, 2008. The statistics are defined
in egs. (1.10)—-(1.13), and VW, EW and SP denote value-weighted, equal-weighted, and S&P composite
index.

ratio test statistic t ~ N(0, 1) taking value 2.49

Pogot Ho!



Table 1.2 provides descriptive statistics of simple and log returns for selected
US market indexes and individual stocks. It shows the following:

Daily returns tend to have higher excess kurtosis the monthly returns. -

—

The mean of daily returns is close to zero while for monthly returns
slightly higher. =

Monthly returns have higher standard deviation than daily returns

skewness is not significant for daily and monthly refurns.

daily returns of individuals stocks have higher standard deviation than
market indexes.

difference between log and simple returns is not substantial

The minimum and maximum of return series can be substantial. The

ive extrem re important in risk management. Positive
extreme returns are critical in holding a short position.

Figure 1.4 shows the empirical distribution density of monthly simple and
log return of IBM stock. Dashes density is normal density with the sample
mean and standard deviation from table 1.2. It shows the following:

The plots indicate that normality assumption is questionable.

Explanation: empirical density has higher peak and fatter tail than
normal density.
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Figure 1.4 Comparison of empirical and normal densities for monthly simple and log returns of IBM
stock. Sample period is from January 1926 to December 2008. Left plot is for simple returns and right

plot for log returns. Normal density, shown by the dashed line, uses sample mean and standard deviation
given in Table 1.2.
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3.3.1 Empirical properties of returns

le return,

Sim
-02 0.Q 0.2 0.4

e Figure 1.2 shows time plots of monthly simple returns and log returns

for IBM stock from Jan 1926 to Dec 2008.

ol
e Figure 1.3 shows the same plots for monthly returns and log returns of
value weighted market index.

Log return
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Figure 1.2 Time plots of monthly returns of IBM stock from January 1926 to December 2008. Upper
panel is for simple returns, and lower panel is for log returns.
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Figure 1.3 Time plots of monthly retumns of value-weighted index from January 1926 to December
2008. Upper panel is for simple returns, and lower panel is for log returns.



rates. They are 10 and 1
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Figure 1.5 Time plots of monthly U.S. interest rates from April 1953 to February 2009: (a) 10-year
Treasury constant maturity rate and (b) 1-year maturity rate.

Example. Table 1.3 provides some descriptive statistics for selected US

financial time series. Qbservations:

o For interest rate series, the sample mean is proportional to the rate of
madturity, but the standard deviation is inversely proportional.

o For' bond rates, the SD is positively related to the time of maturity,
while the sample mean remains stable for all maturities.

most of series have positive excess kurtosis.

TABLE 1.3 Descriptive Statistics of Selected U.S. Financial Time Series’

Standard Excess
Maturity Mean Deviation  Skewness Kurtosis Minimum  Maximum

Monthly Bond Returns: Jan. 1952 to Dec. 2008, T = 684

1-12 months 0.45 0.35 247 - 13.14 —0.40 3.52
12—24 months 0.49 0.67 1.88 15.44 -2.94- 6.85
24-36 months 0.52 0.98 1.37 12.92 —4.90 9.33
48—60 months 0.53 1.40 0.60 4.83 —5.78 10.06
61-120 months ~ 0.55 1.69 0.65 4.79 -17.35 10.92
Monthly Treasury Rates: April 1953 to February 2009, T = 671

1 year 5.59 2.98 1.02 1.32 0.44 16.72
3 years 598 2.85 095 0.95 i+ 107 16.22
5 years 6.19 2.7 - 097 0.82 1.52 15.93
10 years 6.40 2.69 0.95 0.61 2.29 15.32

Weekly Treasury Bill Rates: End on March 27, 2009. :
3 months 5.07 2.82 1.08 1.80 0.02 16.76
6 months 5.52 2.73 0.99 1.53 0.20 15.76

aThe data are in percentages. The weekly 3-month Treasury bill rate started from January 8, 1954, and
the 6-month rate started from December 12, 1958, The sample sizes for Treasury bill rates are 2882

and 2625, respectively. Data sources are given in the text.
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3.4 Stationarity

In many-applications in engineering and natural sciences processes are often
described using deterministic models. Such models predict the output of the
process exactly.

However deterministic model is not realistic when such process is affected by
a number of random disturbances. For example, when pendulum movement
is affected by random shocks, these unknown shocks have to be incorpo-
rated into model. Then it is impossible to come up with a comprehensive.
deterministic model and a stochastic model is more appropriate.

Such stochastic model will reflect reaction of the process to disturbances
during observed period.

Prediction: it will be not possible to predict exactly the output of the
process in the future. Iristead, we may provide predicti interval and the
probability that the future observation will lie in that interval.

Brockwell and Davis write: "If we wish to make predictions, we must assume “
that something does not vary with time”. This brings us to the notion of
stationarity.

Stationarity. The basis of time series analysis is stationary time series. For
them we can develop models and forecasts.

However, in many applications in finance and economics, we have to deal
with non-stationary time series. The explanation is the following: many
processes behave as a stationary time series only taking control actions to
keep the system in a stationary regime. Without deliberate action, left alone
they start behaving as non-stationary processes z;. Good news is, that for
non-stationary processes z:, often their changes ¢ — z;—; may instead be
stationary.

“ In that case we model changes, forecast their future values, and then
create. forecast of the original time series.

Therefore stationary time series play key role as the foundation for time series
analysis. We now focuss on how to model stationary time series.
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In most applications we deal with series of real data

( — ——

ey
Xo,Xl,Xz,X3, J

| —

starting at time ¢ = 0 and observed/recorded at discrete time periods ¢ =
0,1,2.....

MM‘\X@ " *In the strict sense, a time series is called stationary, if the joint probability

Mm"&\ oy

distribution of any n observations

(XH—l) Xt+21 ) Xt+n)
S o

remains the same, if n observations are shifted by & units, that is & ‘b‘/\ (Iv:h
0(4 H QL

.
(XH-I-H\:) Xt+2+k) SRS )\t+n+k)'

For practical purposes we define a stationary time series as series which mean
and variance are constant in time and correlation between observation form
different points in time depends only on lag.

Definition 3 We say that the time series (X;) is weakly or covariance sta-
tionary, if

(1) E[X;] = ,u x, 18 independent of t _ \{/L“-‘L /@k% 4<—
(@) Va = 0%, 1s independent of ¢ -~
(241) D)) C’ov(Xt,At+k) = 'yk (for allt and k) depends on k only. PG“Q/C /[ C

—s

_——

Below we refer to stationarity as a weak or covariance stationarity. m——

Although we can conduct rigorous statistical test, often visual inspection of
the time series plot will provide information whether it is stationary or not.

Stationary time series plot exhibits similar behavior: average value remains

and spread around the mean remains stable.

If we observe this then we can proceed with fitting a stationary model.
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Example. Figure 3.2 shows stationary and non-stationary time series. Here
visual inspection is sufficient to confirm or deny stationarity.
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Figure 3.2 Temperature measurements for two different chemical processes. The process
in (a) is tightly controlled to be around a certain target value (stationary behavior). The

process in (b) is not controlled so that the temperature measurements do not vary around a
target value (nonstatiohary behavior).

Caution: visual inspection can be also misleading. For short period non-
stationary time series may give impression as being stationary. Therefore,
beside visual inspection, use knowledge about the process.

Fore example, it makes sense that tightly controlled chemical process has
constant mean and variance.

But should we expect the stock market "to remain in equilibrium about a
constant mean level”? If yes, who would invest into it?

Hence, ask ... question: ”Does it make sense...?” when selecting between
stationarity and non-stationarity.



Example of a stationary/non-stationary time series

Example of a Stationary White Noise Series
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Autocorrelation function.

To further studies of time series we introduce the autocovariance and autocorrelation.

In general, we define the covariance between two two random variables X

and Y as v e
ov(X Y) = E[ (X - EX))(Y - E[Y])] J/

Their correlation is their covariance scaled by standard deviations:

P E—

——

A g N\
Corr(X,Y) = Sl Y) |

v Var(X LVA VD

We can visnally investigate how correlated X and Y having a scatter plot of
X versus V. e

—

How we define covariance in case of times series, when we have only obser-
vations Xy, -+, X,,?

We consider correlation between observations k lags apart, and call it auto-
covariance because we are dealing with the same data set.

Definition 4 Autocovariance function of time series (X;): fork =0,1,2,---

Cov(Xe, Xiyx) = E[(X: — E[Xe])(Xewr — E[Xer])]-

Autocorrelation function
Junclion

e

COT)(Xt, Xt+ic)
V/ Var(X;) \/Var(Xt+k)
In case of a stationary time series we have

T
CO’U(Xt, Xt+k:) CO’U(X(), Xk >/ ,-L % /\/W \-V\»"j

Therefore for a stationary time series we define the autocovariance function

(ACF) as

COTT(Xt, Xt+k) =

T = E[(‘Xt— E[Xt])(Xt—HC —E[Xt+k])7 k= Oa1’27"'

which depends only on k& which is called the lag (distance in time between

observations). —




e Note the the variance of time series is Var(X:) = -

e

e Moreover, Tk = Y-k, £ =1,2,3,- "~

P—

Following definition of correlation, we define autocorrelation of a stationary
time series as == '
————— "/k ’Yk

\/’—YB\/% Yo

Note: The ACF play extremely important role in identifying time series
models.

Properties of ACF:
(i) po=0
(i) |px] €1 forall &,
(iii) p_x = px  for all k.

Note: CU\J\I(X+,X5): %H-—Sl‘
o Autocorrelation corr(X:, X,) depend only on the distance |t—s| in time
(the lag).
\ It is invariant with respect to scale of measurements.

o Autocorrelation Wy, because the distribu-

tion of X; remains unchanging through time.

In real life, we cannot know the true value of ACF, but we can estimate it
from the data using

. ETN
UAaNA O L t=

=

7 TL—-k n
Seyapics A= L -, K=l =0k 2 -
t=1 4

pr = i} Hreo Ao
Fo o
Note: As k increases we have fewer and fewer observations to estimate the
autocovariance and autocorrelation.
A tule of thumb: the total number of observations N should be at least 50,
and in the estimation of vy and pi we should have k < T'/4.
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Scatter plot of (X_t, Y_t) t=1,...,n
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Poll11 What is Y_t is this scatterplot (X_t,Y_t)?
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Poll 12. What is correlation between X_t, Y_t? Positive, negative, no cprrelation
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