Cox PH Seminar Question – Solution

(i) the baseline hazard
$$h_0$$
 is where all $z_i = 0$
so in this case that is a female patient where the existing treatment is
applied immediately on diagnosis

- (ii) here $z_1 = 6/12 = 0.5$, $z_2 = 1$, $z_3 = 1$
 - (a) therefore $h(t) = h_0 \exp[0.5x0.5 + 0.01x1 0.05x1] = h0 \exp[0.21]$
 - (b) the survival function is

$$S(t) = \exp[-\int_{0}^{t} h(s)ds]$$

from (a) above S(t) = $\exp[-\int_{0}^{t} h_{0} \exp[0.21]ds]$
= $\exp[-\exp[0.21]\int_{0}^{t} h_{0} ds]$
so S(t) = $\exp[-\int_{0}^{t} h_{0} ds]^{\exp[0.21]}$

(iii) for this female patient, $z_1 = 0$, $z_2 = 1$, $z_3 = 0$ so h(t) = h0 exp[0.5x0 + 0.01x1 - 0.05x0] = h_0 exp[0.01] we are given S(5) = 0.75 from (ii)(b) we know S(5) = exp[$-\int_0^5 h_0 ds$] ^{exp[0.01]} which means that exp[$-\int_0^5 h_0 ds$] = 0.75 ^{exp[-0.01]} and then for the male patient S(5) = exp[$-\int_0^5 h_0 ds$] ^{exp[0.21]} = (0.75 ^{exp[-0.01]}) ^{exp[0.21]} S(5) = 0.7037