MTH786, Semester A, 2023/24

## Coursework 4

## N. Perra

Problem 1. For this exercise we consider ridge regression problems of the form

$$
\begin{equation*}
\mathbf{w}_{\alpha}=\arg \min _{\mathbf{w} \in \mathbb{R}^{d+1}}\left\{\frac{1}{2 s}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}\right\}, \tag{1}
\end{equation*}
$$

for data $\mathbf{y} \in \mathbb{R}^{s}$, a data matrix $\mathbf{X} \in \mathbb{R}^{s \times(d+1)}$ and a regularisation parameter $\alpha>0$.

1. Compute the ridge regression solution for the original data samples given in the previous question on unstable regression problems. I.e., consider data points $\left(x^{(1)}, y^{(1)}\right)$ with $x^{(1)}=-c$ and $y^{(1)}=2,\left(x^{(2)}, y^{(2)}\right)$ with $x^{(2)}=0$ and $y^{(2)}=2$, and $\left(x^{(3)}, y^{(3)}\right)$ with $x^{(3)}=c$ and $y^{(3)}=2$, for some constant $c>0$.
2. Consider validation data of the form $\left(x^{(4)}, y^{(4)}\right)$, where $x^{(4)}=2, y^{(4)}=1$. Choose the regularisation parameter $\alpha$ such that it solves the minimisation problem for validation error, i.e.

$$
\hat{\alpha}=\arg \min _{\alpha \geq 0}\left\{\left|\hat{w}_{0}+\hat{w}_{0} x^{(4)}-y^{(4)}\right|^{2}\right\} .
$$

3. Repeat the same exercise for the perturbed data samples, i.e. $\mathbf{y}_{\boldsymbol{\delta}}$ that reads $y_{\delta}^{(1)}=$ $2+\varepsilon, y_{\delta}^{(2)}=2+\varepsilon$ and $y_{\delta}^{(3)}=2-\varepsilon$.

Problem 2. For this exercise we consider ridge regression problems of the form

$$
\begin{equation*}
w_{\alpha}=\arg \min _{w \in \mathbb{R}^{d+1}}\left\{\frac{1}{2}\|X w-y\|^{2}+\frac{\alpha}{2}\|w\|^{2}\right\}, \tag{2}
\end{equation*}
$$

for data $y \in \mathbb{R}^{s}$, a data matrix $X \in \mathbb{R}^{s \times(d+1)}$ and a regularisation parameter $\alpha>0$.

1. Calculate the gradient of the energy function $E(w)=\frac{1}{2}\|X w-y\|^{2}+\frac{\alpha}{2}\|w\|^{2}$.
2. Prove that $E(w)$ is a convex and bounded from below function.
3. Combine the above results to conclude that there is a unique solution $w_{\alpha}$ of the minimisation problem (2) which also solves the normal equation

$$
\left(X^{\top} X+\alpha I\right) w_{\alpha}=X^{\top} y .
$$

4. Continuously differentiable function $f: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ is called $L$-smooth if

$$
\|\nabla f(u)-\nabla f(v)\| \leq L\|u-v\|,
$$

for any vectors $u, v \in \mathbb{R}^{d+1}$. Prove that the energy function $E$ is $L$-smooth for some value of $L$. Try to identify the smallest possible such a value $L$.

Problem 3. Suppose we are given $s$ data vectors $\left\{\mathbf{y}^{(j)}\right\}_{j=1}^{s}$ where each $\mathbf{y}^{(j)} \in \mathbb{R}^{n}$ is of the form $\mathbf{y}^{(j)}=\mathbf{X} \mathbf{w}^{\dagger}+\varepsilon^{(j)}$, for weights $\mathbf{w}^{\dagger}$ and outcomes $\varepsilon^{(1)}, \ldots, \varepsilon^{(s)}$ of a random vectors $\varepsilon$ with its expectation being zero, i.e. $\mathbb{E}\left[\varepsilon^{(\mathbf{j})}\right]=0$.

1. Show that the expected value of a random variable is linear.
2. Show that the expected value of a constant value is that constant value itself.
3. Compute the expectation of $\hat{\mathbf{w}}^{(j)}$, where $\hat{\mathbf{w}}^{(j)}$ are the solutions of $\mathbf{X}^{\top} \mathbf{X} \hat{\mathbf{w}}^{(j)}=$ $\mathbf{X}^{\top} \mathbf{y}^{(j)}$.
4. Compute the expectation of $\hat{\mathbf{w}}_{\alpha}^{(j)}$, where $\hat{\mathbf{w}}_{\alpha}^{(j)}$ are the solutions of (2) for data $\mathbf{y}^{(j)}$.
5. Can the two previous expectations match for any value other than $\alpha=0$ ?

Problem 4. This week marks the first coding exercise you are supposed to work on. Working on this assignment is not mandatory, but highly advisable. This would allow you to practice the submission algorithm we will use during the final project submission.

