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wα = arg min
w { 1

2s
∥Xw − y∥2 +

α
2

∥w∥2}Recall ridge regression:

The regularisation parameter  is also referred to as hyperparameter α

Hyperparameters are parameters of prior distributions

The degree  in polynomial regression is also a hyperparameterd

How do we choose hyperparameters?

Selection of hyperparameters is known as the model selection problem
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Probabilistic setup

4

Assume underlying distribution 𝒟

and that we sample from this distribution:

S := {(xi, yi) iid  ∼ 𝒟}s
i=1

Based on these samples the polynomial regression model computes the 
‘best’ (linear) weight function for fixed degree d

fS (x) := ⟨x, wd⟩ wd = arg min
w

1
2s

s

∑
i=1

d

∑
n=0

xn
i wn − yi

2

for
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Given a prediction function   , how can we assess if it is any good?fS
Assume we knew the distribution , then we could compute𝒟

E( f ) = 𝔼x,y [ℓ(y, f(x))]
for a given loss function 

ℓ(y, f(x)) =
1
2

|y − f(x) |2

and 𝔼x,y [ℓ(y, f(x))] = ∫(x,y)∈𝒟
ℓ(y, f(x)) ρ(x, y) dxdy



6

is known asE( f ) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error



6

is known as • Population risk
• Expected risk
• Expected error

E( f ) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error



6

is known as • Population risk
• Expected risk
• Expected error

This is the quantity that we are fundamentally interested in

E( f ) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error



6

is known as • Population risk
• Expected risk
• Expected error

This is the quantity that we are fundamentally interested in

but it is unknown as we do not know 𝒟

(nor the probability density function )ρ

E( f ) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error



6

is known as • Population risk
• Expected risk
• Expected error

This is the quantity that we are fundamentally interested in

but it is unknown as we do not know 𝒟

(nor the probability density function )ρ

E( f ) = 𝔼x,y [ℓ(y, f(x))]

Hence, we cannot compute !E( fS)

Training error vs. expected error
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7

What can we do instead?
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LS( f ) =
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ℓ(yi, f(xi))

We are given the set of samples S
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What can we do instead?

It is therefore natural to compute the empirical risk

LS( f ) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi, f(xi))

The problem with this quantity is that    is usually a function of  itself:f S

LS( fS ) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi , fS (xi))

This quantity is also known as the training error

We are given the set of samples S

Training error vs. expected error
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Training error is usually not representative for generalisation error, remember

d = 9

LS( fS ) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi , fS (xi))

From Bishop. Pattern Recognition 
& Machine Learning

Training error vs. expected error
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Properties: , and usually also S = St ∪ Sv St ∩ Sv = ∅

Splitting the data

9

In order to avoid that we validate our model on the same data that we train 
it on, we can split the data:

Training data Validation data

St Sv

Example: take original data and split into 80% training and 20 % validation data
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Validation error: Lv ( ft ) =
1

|Sv | ∑
(xi , yi ) ∈ Sv

ℓ( yi , ft (xi))

Training error: Lt ( ft ) =
1

|St | ∑
(xi , yi ) ∈ St

ℓ( yi , ft (xi))

where    is short-hand-notation for ft

ft := fSt
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Cross-validation

11

run 1

run 2

run 3

run 4

-fold cross-validationK

• Randomly partition data into 
groups

K

• Train  times, each time leaving 

1 group for testing and  for 
training

K
K − 1

• Average the  resultsK
From Bishop. Pattern Recognition & Machine Learning
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Lv ( ft ) =
1

|Sv | ∑
(xi , yi ) ∈ Sv

ℓ( yi , ft (xi))

Central question that we need to address:

How do we choose hyper parameters in

such that we minimise

?
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Lv ( ft ) =
1

|Sv | ∑
(xi , yi ) ∈ Sv

ℓ( yi , ft (xi))

This is a bi-level optimisation problem:

subject to

 for ft(x) = ⟨ϕ(x), wα⟩ wα = arg min
w

1
2s ∑

(xi,yi)∈St

⟨ϕ(xi), w⟩ − yi
2

+
α
2

∥w∥2

Upper-level 
problem

Lower-level problem

Important: given  and  we are guaranteed to find the 
best possible solution of the lower-level problem

α d
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How can we solve such a problem?
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Grid search

17

The easiest of all optimisation algorithms is grid search:

Advantages:

Disadvantage: computationally infeasible for large no. of parameters

Sample  at  points  in each dimensionL n p ∈ ℝm ⟹  evaluations of mn L

Evaluate a function  at points on 
a grid and record smallest value

L

• works for any kind of function!
• very easy to implement
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Other disadvantage: no guarantee that we end up close to a minimum! 

From Bertsekas, Nonlinear programming

L(x)
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Other disadvantage: no guarantee that we end up close to a minimum! 

From
 Bertsekas, N

onlinear program
m

ing

An element is called a local minimum 
point if there exists    such that

L(p̂) ≤ L(p) ∀p with ∥p − p̂∥ ≤ ε

̂p

An element is called a global minimum point if there 
exists    such thatp̂

L(p̂) ≤ L(p) ∀p ∈ ℝm
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Random search: grid search with random selection of parameter combinations

Gradient-based opt.: we will see in more details next

Bayesian opt.: builds a probabilistic model of function mapping hyperparameters 
 to validation error

Evolutionary opt.: use evolutionary algorithms to search space of  
hyperparameters 



Other noticeable approaches

20

In this module, grid search will usually be sufficient as 
we deal with relatively few hyperparameters

Random search: grid search with random selection of parameter combinations

Gradient-based opt.: we will see in more details next

Bayesian opt.: builds a probabilistic model of function mapping hyperparameters 
 to validation error

Evolutionary opt.: use evolutionary algorithms to search space of  
hyperparameters 
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• some arbitrary and unknown function f
• additive iid noise  with  and ε 𝔼ε[ε] = 0 Varε[ε] = σ2

Bias-variance decomposition

21

Assume the following data generation model:

y = f(x) + ε

for

We further assume that each pair         is a sample of the distribution 𝒟(x, y)

Training data: St := {(xi, yi) iid  ∼ 𝒟}s
i=1

ftPrediction function:
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Bias-variance decomposition
For fixed input , look at error between model and prediction function:x̃

(f(x̃) + ε − ft(x̃))2

Imagine we do this for many different instances of  and St ε

then we can look at the expected value of the error:

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
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Bias-variance decomposition

noise variance bias variance
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Bias-variance decomposition

noise variance bias variance

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ ft (x̃)])2 + 𝔼t [(𝔼t[ ft (x̃)] − ft(x̃))2]

Always there 
in the data!

Systematic error/bias Variance in the prediction 
function. How much one  
instance deviates from the 
average
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Bias-variance decomposition
Example: polynomial regression

f(x) = sin(2πx) , x ∈ [0,1]

Different noisy instances for training & 
testing

ft (x) =
d

∑
k=0

xkwkModel: ŵ = arg min
w

1
2

s

∑
i=1

d

∑
k=0

xk
ijwk − yi

2

St := {(xi, yi) iid  ∼ 𝒟}s
i=1for and

Training 
error

Validation 
Error
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Example: ridge regression ŵ = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
2

∥w∥2}

From Bishop. Pattern Recognition & Machine Learning

Low variance High bias
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Bias-variance decomposition

From Bishop. Pattern Recognition & Machine Learning

Example: ridge regression w = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
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∥w∥2}

Higher variance Smaller bias
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Bias-variance decomposition

From Bishop. Pattern Recognition & Machine Learning

Example: ridge regression

Higher variance Smaller bias

ŵ = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
2

∥w∥2}
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Bias-variance decomposition

From Bishop. Pattern Recognition & Machine Learning

Example: ridge regression ŵ = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
2

∥w∥2}
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Bias-variance decomposition

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Model Complexity (df)

Pr
ed

ic
tio

n 
Er

ro
r

High Bias Low Bias
High VarianceLow Variance

FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].
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From Hastie, Tibshirani & 
Friedman, The Elements of 

Statistical Learning
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From Hastie, Tibshirani & 
Friedman, The Elements of 

Statistical Learning
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From Hastie, Tibshirani & 
Friedman, The Elements of 

Statistical Learning
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From Hastie, Tibshirani & 
Friedman, The Elements 

of Statistical Learning


