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, 1 o
Recall ridge regression: W, = arg min {_25 1Xw — y||* + EHWHQ}
W

The regularisation parameter « is also referred to as hyperparameter

Hyperparameters are parameters of prior distributions

The degree d in polynomial regression is also a hyperparameter

b

1 4 How do we choose hyperparameters?

Selection of hyperparameters is known as the problem
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Probabilistic setup

Assume underlying distribution &

and that we sample from this distribution:

S:={(xpy, iid ~ QZ};

Based on these samples the polynomial regression model computes the
‘best’ (linear) weight function for fixed degree d

. 1 \) d
! ' fs(X) :==(x,w,) for Wy = arg min § — Z X;W, —Y;
W 25 i=1 | n=0
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Given a prediction function fg, how can we assess if it is any good?

Assume we knew the distribution &, then we could compute

E(f) = Eyy |2(y.f(x)),

for a given loss function

1
lw £(y,f00) = =1y = ) |

! 4 and ey |20 f(X)] = J c(y, f(X)) p(X, y) dxdy
(X,y) €Y
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E(f) = Eyy |£(y.£(x))) is known as e Population risk
e Expected risk
e Expected error

This is the quantity that we are fundamentally interested in

but it is unknown as we do not know &<

b

4 (nor the probability density function p)
Hence, we cannot compute E£(f)!
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What can we do instead? We are given the set of samples

It is therefore natural to compute the

Ly(f) = 2 £(y, (%)

‘ (X Y,)ES

The problem with this quantity is that f is usually a function of § itself:

l': Ly( fs) = Z (Y0 fs (X))
4 ‘ (X Y)ES

This quantity is also known as the training error

/




Training error vs. expected error

1
Ls(fs) = T Dy fs (%)

‘ (x,y,)ES

Training error is usually not representative for generalisation error, remember

—1t i
A . - From Bishop. Pattern Recognition
0 . & Machine Learning
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Splitting the data

In order to avoid that we validate our model on the same data that we train
it on, we can split the data:

Training data Validation data
S, S,

l' Properties: S = S, U S, and usually also §,N S, = &

!ﬁ{ Example: take original data and split into 80% training and 20 % validation data
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Training error vs. validation error

.. 1
Training error: L(f)= < Dy f(x)
Y (x;,y,) €S,
e 1
Validation error: L (f)= 5 Z 20y, f.(x))
Y (X;,y¥,) €S,

where f. is short-hand-notation for

b

ls’ fi=s




Cross-validation
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Cross-validation

K-fold cross-validation

I::':':' Sl « Randomly partition data into K
[ N S I BV B

e Train K times, each time leaving

lq I:I:I:I:l run 4 1 group for testing and K — 1 for

training

! .{ | = | | « Average the K results
From Bishop. Pattern Recognition & Machine Learning




The validation error

Central question that we need to address:

How do we choose hyper parameters in

2

, 1 o
fi) = (), W,) for w, =argmin § — ) [(p(x), W) = y;| +lIwl
W (x,y,)€ES,

l’ such that we minimise

1
L,(f) = D Ly f(x) ?
1,1 S
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This is a bi-level optimisation problem:

(@,d) = arg min {Lv () = Slv‘ Y Ay, ,ft<xi>>}
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subject to
: 1 2 o
£(%) = ($(x), w,) for w, = arg min {Z—S Yo () wy —yi| + Euwuz}
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The validation error

This is a bi-level optimisation problem:

(@.d) = argmin § L, (f,) = PIRRASIHACH)

|5y ]

(X;,y;) €S,
subject to
: 1 2 o
(%) = (¢p(x), w,) for w, =argmin § — ) |[(px). W) —y;| +—lwl
W 28 2
F (x,y,)ES,
Lower-level problem

!Jlmportant: given  and d we are guaranteed to find the

best possible solution of the lower-level problem







How can we solve such a problem?
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Grid search

The easiest of all optimisation algorithms is grid search:

Advantages: » works for any kind of function!
e Very easy to implement
lﬂ Disadvantage: computationally infeasible for large no. of parameters

!ﬂ{: Sample L at n points p € R™ in each dimension = m" evaluations of L
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Other disadvantage: no guarantee that we end up close to a minimum!

‘L(x)

N

.\ | '\1/ f "

Strict Local Local Minima Strict Global
Minimum Minimum

From Bertsekas, Nonlinear programming
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Other disadvantage: no guarantee that we end up close to a minimum!

k An element is called a local minimum
' N 3 point if there exists p such that

-+ L<Lp) Vpwith|p-pl<e

Minimum Minimum

An element is called a global minimum point if there
exists p such that

Lp)<Lp) VpeR”




Other noticeable approaches

Random search: grid search with random selection of parameter combinations

Gradient-based opt.: we will see in more details next

Bayesian opt.: builds a probabilistic model of function mapping hyperparameters
to validation error

Evolutionary opt.: use evolutionary algorithms to search space of
l’ hyperparameters
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Bias-variance decomposition
Assume the following data generation model:
y=fx) +¢€

for e some arbitrary and unknown function f
. additive iid noise e with E_[¢] = 0 and Var,[¢] = ¢°

We further assume that each pair (x,y) is a sample of the distribution &

l’ Training data: 3, 1= {(xi» y)id ~ @};1

ls{ Prediction function:  J,
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For fixed input X, look at error between model and prediction function:

(F®) + &~ f(®)
Imagine we do this for many different instances of §, and ¢

then we can look at the expected value of the error:

b

ls{ . l(f(fé) + ¢ —ft(fé))zl
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noise variance
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Bias-variance decomposition

= (f® + e —£®)
| |

0>+ (O-EU®) + E|(ELE-40)

noise variance bizi variance
Systematic error/bias Variance in the prediction
Always there function. How much one
in the data! instance deviates from the

average
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f(x) = sin(2zx), x € [0,1] 06 |

Different noisy instances for training & 05 F

testing :
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Example: polynomial regression

o Bias-Variance Decomposition

f(x) = sin(2zx), x € [0,1] 06 |

{1 Validation
Error

Different noisy instances for training &
testing

error

Training
error

0.2

d 2
° m— k A . 1 - d k oo S
Model: f,(x) = ) x"w;,  for w=argmin > xwe—yi| pand  S:={(y)iid ~2}
k=0

i=1 | k=0




Bias-variance decomposition

| . . .1 > Ao
Example: ridge regression w = arg min 5\\(I>(X)w -yl + EHWH

nA=26

or &

Low variance | ~ High bias

0 l 0 l

g T

From Bishop. Pattern Recognition & Machine Learning
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Bias-variance decomposition

Example: ridge regression

W = arg min
w

Of

-1t Higher variance

In A= —0.31

Y
- e
— _— -~

NSO N, T
\'\t'*.\'.-" '-.- 7’ !,
- /

O

1 A
—|| X)W — y||* + —||w||?
{2” R)w —ylI"+ 7| H}

Or

-1t Smaller bias N~

O

From Bishop. Pattern Recognition & Machine Learning
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Example: ridge regression w = arg min 5\\(I>(X)w -yl + EHWH

Or

-1rSmaller bias

0 l 0 l

J T

From Bishop. Pattern Recognition & Machine Learning
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Bias-variance decomposition

. . 1 A
Example: ridge regression W = arg min {EH(I)(X)W —y|I* + —kuz}

w 2
() l 5 [ ¥ Y Y ~ -
(hias):
O0.12+¢ variance
(hias): 4+ variance
0.09r test error
006
0.03 /
()
-3 -2 -1 () l 2

n A From Bishop. Pattern Recognition & Machine Learning
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Bias-variance decomposition

N High Bias Low Bias
Low Variance High Variance
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o
N
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o
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o
I I I I I I I I
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Model Complexity (df)




Bias-variance decomposition
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FIGURE 2.9. Left: Data stmulated from f, shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is

much closer to linear. In this setting, linear regression provides a very good fit to
the data.
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(e)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9-2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest

test MSE.
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