
n.perra@qmul.ac.uk

Machine Learning with Python
MTH786U/P 2022/23

Nicola Perra, Queen Mary University of London (QMUL)

Lecture 4: The model selection problem

mailto:n.perra@qmul.ac.uk

Model selection

2

Recall ridge regression:

Model selection

2

wα = arg min
w { 1

2s
∥Xw − y∥2 +

α
2

∥w∥2}Recall ridge regression:

Model selection

2

wα = arg min
w { 1

2s
∥Xw − y∥2 +

α
2

∥w∥2}Recall ridge regression:

The regularisation parameter is also referred to as hyperparameter α

Model selection

2

wα = arg min
w { 1

2s
∥Xw − y∥2 +

α
2

∥w∥2}Recall ridge regression:

The regularisation parameter is also referred to as hyperparameter α

Hyperparameters are parameters of prior distributions

Model selection

2

wα = arg min
w { 1

2s
∥Xw − y∥2 +

α
2

∥w∥2}Recall ridge regression:

The regularisation parameter is also referred to as hyperparameter α

Hyperparameters are parameters of prior distributions

The degree in polynomial regression is also a hyperparameterd

Model selection

2

wα = arg min
w { 1

2s
∥Xw − y∥2 +

α
2

∥w∥2}Recall ridge regression:

The regularisation parameter is also referred to as hyperparameter α

Hyperparameters are parameters of prior distributions

The degree in polynomial regression is also a hyperparameterd

How do we choose hyperparameters?

Model selection

2

wα = arg min
w { 1

2s
∥Xw − y∥2 +

α
2

∥w∥2}Recall ridge regression:

The regularisation parameter is also referred to as hyperparameter α

Hyperparameters are parameters of prior distributions

The degree in polynomial regression is also a hyperparameterd

How do we choose hyperparameters?

Selection of hyperparameters is known as the model selection problem

Probabilistic setup

3

Assume underlying distribution 𝒟

and that we sample from this distribution:

S := {(xi, yi) iid ∼ 𝒟}s
i=1

Probabilistic setup

3

Assume underlying distribution 𝒟

and that we sample from this distribution:

S := {(xi, yi) iid ∼ 𝒟}s
i=1

Based on these samples the ridge regression model computes the ‘best’ (linear)
weight function for fixed regularisation parameter α

fS (x) := ⟨x, wα⟩ wα = arg min
w { 1

2s

s

∑
i=1

⟨xi, w⟩ − yi
2

+
α
2

∥w∥2}for

Probabilistic setup

4

Assume underlying distribution 𝒟

and that we sample from this distribution:

S := {(xi, yi) iid ∼ 𝒟}s
i=1

Based on these samples the polynomial regression model computes the
‘best’ (linear) weight function for fixed degree d

fS (x) := ⟨x, wd⟩ wd = arg min
w

1
2s

s

∑
i=1

d

∑
n=0

xn
i wn − yi

2

for

Training error vs. expected error

5

Given a prediction function , how can we assess if it is any good?fS

Training error vs. expected error

5

Given a prediction function , how can we assess if it is any good?fS
Assume we knew the distribution , then we could compute𝒟

E(f) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error

5

Given a prediction function , how can we assess if it is any good?fS
Assume we knew the distribution , then we could compute𝒟

E(f) = 𝔼x,y [ℓ(y, f(x))]
for a given loss function

ℓ(y, f(x)) =
1
2

|y − f(x) |2

Training error vs. expected error

5

Given a prediction function , how can we assess if it is any good?fS
Assume we knew the distribution , then we could compute𝒟

E(f) = 𝔼x,y [ℓ(y, f(x))]
for a given loss function

ℓ(y, f(x)) =
1
2

|y − f(x) |2

and 𝔼x,y [ℓ(y, f(x))] = ∫(x,y)∈𝒟
ℓ(y, f(x)) ρ(x, y) dxdy

6

is known asE(f) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error

6

is known as • Population risk
• Expected risk
• Expected error

E(f) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error

6

is known as • Population risk
• Expected risk
• Expected error

This is the quantity that we are fundamentally interested in

E(f) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error

6

is known as • Population risk
• Expected risk
• Expected error

This is the quantity that we are fundamentally interested in

but it is unknown as we do not know 𝒟

(nor the probability density function)ρ

E(f) = 𝔼x,y [ℓ(y, f(x))]

Training error vs. expected error

6

is known as • Population risk
• Expected risk
• Expected error

This is the quantity that we are fundamentally interested in

but it is unknown as we do not know 𝒟

(nor the probability density function)ρ

E(f) = 𝔼x,y [ℓ(y, f(x))]

Hence, we cannot compute !E(fS)

Training error vs. expected error

7

What can we do instead?

Training error vs. expected error

7

What can we do instead?

It is therefore natural to compute the empirical risk

LS(f) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi, f(xi))

We are given the set of samples S

Training error vs. expected error

7

What can we do instead?

It is therefore natural to compute the empirical risk

LS(f) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi, f(xi))

The problem with this quantity is that is usually a function of itself:f S

LS(fS) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi , fS (xi))

We are given the set of samples S

Training error vs. expected error

7

What can we do instead?

It is therefore natural to compute the empirical risk

LS(f) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi, f(xi))

The problem with this quantity is that is usually a function of itself:f S

LS(fS) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi , fS (xi))

This quantity is also known as the training error

We are given the set of samples S

Training error vs. expected error

8

Training error is usually not representative for generalisation error, remember

d = 9

LS(fS) =
1

|S | ∑
(xi,yi)∈S

ℓ(yi , fS (xi))

From Bishop. Pattern Recognition
& Machine Learning

Training error vs. expected error

Splitting the data

9

In order to avoid that we validate our model on the same data that we train
it on, we can split the data:

Splitting the data

9

In order to avoid that we validate our model on the same data that we train
it on, we can split the data:

Training data Validation data

St Sv

Properties: , and usually also S = St ∪ Sv St ∩ Sv = ∅

Splitting the data

9

In order to avoid that we validate our model on the same data that we train
it on, we can split the data:

Training data Validation data

St Sv

Properties: , and usually also S = St ∪ Sv St ∩ Sv = ∅

Splitting the data

9

In order to avoid that we validate our model on the same data that we train
it on, we can split the data:

Training data Validation data

St Sv

Example: take original data and split into 80% training and 20 % validation data

Training error vs. validation error

10

Validation error: Lv (ft) =
1

|Sv | ∑
(xi , yi) ∈ Sv

ℓ(yi , ft (xi))

Training error: Lt (ft) =
1

|St | ∑
(xi , yi) ∈ St

ℓ(yi , ft (xi))

where is short-hand-notation for ft

ft := fSt

Cross-validation

11

run 1

run 2

run 3

run 4

-fold cross-validationK

From Bishop. Pattern Recognition & Machine Learning

Cross-validation

11

run 1

run 2

run 3

run 4

-fold cross-validationK

• Randomly partition data into
groups

K

From Bishop. Pattern Recognition & Machine Learning

Cross-validation

11

run 1

run 2

run 3

run 4

-fold cross-validationK

• Randomly partition data into
groups

K

• Train times, each time leaving

1 group for testing and for
training

K
K − 1

From Bishop. Pattern Recognition & Machine Learning

Cross-validation

11

run 1

run 2

run 3

run 4

-fold cross-validationK

• Randomly partition data into
groups

K

• Train times, each time leaving

1 group for testing and for
training

K
K − 1

• Average the resultsK
From Bishop. Pattern Recognition & Machine Learning

The validation error

12

Lv (ft) =
1

|Sv | ∑
(xi , yi) ∈ Sv

ℓ(yi , ft (xi))

Central question that we need to address:

How do we choose hyper parameters in

such that we minimise

?

 for ft(x) = ⟨ϕ(x), wα⟩ wα = arg min
w

1
2s ∑

(xi,yi)∈St

⟨ϕ(xi), w⟩ − yi
2

+
α
2

∥w∥2

(α̂, ̂d) = arg min
α,d

The validation error

13

Lv (ft) =
1

|Sv | ∑
(xi , yi) ∈ Sv

ℓ(yi , ft (xi))

This is a bi-level optimisation problem:

subject to

 for ft(x) = ⟨ϕ(x), wα⟩ wα = arg min
w

1
2s ∑

(xi,yi)∈St

⟨ϕ(xi), w⟩ − yi
2

+
α
2

∥w∥2

(α̂, ̂d) = arg min
α,d

The validation error

13

Lv (ft) =
1

|Sv | ∑
(xi , yi) ∈ Sv

ℓ(yi , ft (xi))

This is a bi-level optimisation problem:

subject to

 for ft(x) = ⟨ϕ(x), wα⟩ wα = arg min
w

1
2s ∑

(xi,yi)∈St

⟨ϕ(xi), w⟩ − yi
2

+
α
2

∥w∥2

Upper-level
problem

(α̂, ̂d) = arg min
α,d

The validation error

13

Lv (ft) =
1

|Sv | ∑
(xi , yi) ∈ Sv

ℓ(yi , ft (xi))

This is a bi-level optimisation problem:

subject to

 for ft(x) = ⟨ϕ(x), wα⟩ wα = arg min
w

1
2s ∑

(xi,yi)∈St

⟨ϕ(xi), w⟩ − yi
2

+
α
2

∥w∥2

Upper-level
problem

Lower-level problem

(α̂, ̂d) = arg min
α,d

The validation error

13

Lv (ft) =
1

|Sv | ∑
(xi , yi) ∈ Sv

ℓ(yi , ft (xi))

This is a bi-level optimisation problem:

subject to

 for ft(x) = ⟨ϕ(x), wα⟩ wα = arg min
w

1
2s ∑

(xi,yi)∈St

⟨ϕ(xi), w⟩ − yi
2

+
α
2

∥w∥2

Upper-level
problem

Lower-level problem

Important: given and we are guaranteed to find the
best possible solution of the lower-level problem

α d

14

14

How can we solve such a problem?

Grid search

15

The easiest of all optimisation algorithms is grid search:

Grid search

15

The easiest of all optimisation algorithms is grid search:

Evaluate a function at points on
a grid and record smallest value

L

Grid search

16

From Bertsekas, Nonlinear programming

L(x)

Grid search

16

From Bertsekas, Nonlinear programming

L(x)

Grid search

16

From Bertsekas, Nonlinear programming

L(x)

Grid search

17

The easiest of all optimisation algorithms is grid search:

Evaluate a function at points on
a grid and record smallest value

L

Grid search

17

The easiest of all optimisation algorithms is grid search:

Advantages:

Evaluate a function at points on
a grid and record smallest value

L

Grid search

17

The easiest of all optimisation algorithms is grid search:

Advantages:

Evaluate a function at points on
a grid and record smallest value

L

• works for any kind of function!

Grid search

17

The easiest of all optimisation algorithms is grid search:

Advantages:

Evaluate a function at points on
a grid and record smallest value

L

• works for any kind of function!
• very easy to implement

Grid search

17

The easiest of all optimisation algorithms is grid search:

Advantages:

Disadvantage: computationally infeasible for large no. of parameters

Evaluate a function at points on
a grid and record smallest value

L

• works for any kind of function!
• very easy to implement

Grid search

17

The easiest of all optimisation algorithms is grid search:

Advantages:

Disadvantage: computationally infeasible for large no. of parameters

Sample at points in each dimensionL n p ∈ ℝm ⟹ evaluations of mn L

Evaluate a function at points on
a grid and record smallest value

L

• works for any kind of function!
• very easy to implement

18

Other disadvantage: no guarantee that we end up close to a minimum!

From Bertsekas, Nonlinear programming

L(x)

19

Other disadvantage: no guarantee that we end up close to a minimum!

From
 Bertsekas, N

onlinear program
m

ing

An element is called a local minimum
point if there exists such that

L(p̂) ≤ L(p) ∀p with ∥p − p̂∥ ≤ ε

̂p

An element is called a global minimum point if there
exists such thatp̂

L(p̂) ≤ L(p) ∀p ∈ ℝm

Other noticeable approaches

20

Random search: grid search with random selection of parameter combinations

Gradient-based opt.: we will see in more details next

Bayesian opt.: builds a probabilistic model of function mapping hyperparameters
 to validation error

Evolutionary opt.: use evolutionary algorithms to search space of
hyperparameters

Other noticeable approaches

20

In this module, grid search will usually be sufficient as
we deal with relatively few hyperparameters

Random search: grid search with random selection of parameter combinations

Gradient-based opt.: we will see in more details next

Bayesian opt.: builds a probabilistic model of function mapping hyperparameters
 to validation error

Evolutionary opt.: use evolutionary algorithms to search space of
hyperparameters

Bias-variance decomposition

21

Assume the following data generation model:

y = f(x) + ε

• some arbitrary and unknown function f

Bias-variance decomposition

21

Assume the following data generation model:

y = f(x) + ε

for

• some arbitrary and unknown function f
• additive iid noise with and ε 𝔼ε[ε] = 0 Varε[ε] = σ2

Bias-variance decomposition

21

Assume the following data generation model:

y = f(x) + ε

for

• some arbitrary and unknown function f
• additive iid noise with and ε 𝔼ε[ε] = 0 Varε[ε] = σ2

Bias-variance decomposition

21

Assume the following data generation model:

y = f(x) + ε

for

We further assume that each pair is a sample of the distribution 𝒟(x, y)

• some arbitrary and unknown function f
• additive iid noise with and ε 𝔼ε[ε] = 0 Varε[ε] = σ2

Bias-variance decomposition

21

Assume the following data generation model:

y = f(x) + ε

for

We further assume that each pair is a sample of the distribution 𝒟(x, y)

Training data: St := {(xi, yi) iid ∼ 𝒟}s
i=1

• some arbitrary and unknown function f
• additive iid noise with and ε 𝔼ε[ε] = 0 Varε[ε] = σ2

Bias-variance decomposition

21

Assume the following data generation model:

y = f(x) + ε

for

We further assume that each pair is a sample of the distribution 𝒟(x, y)

Training data: St := {(xi, yi) iid ∼ 𝒟}s
i=1

ftPrediction function:

22

Bias-variance decomposition
For fixed input , look at error between model and prediction function:x̃

(f(x̃) + ε − ft(x̃))2

22

Bias-variance decomposition
For fixed input , look at error between model and prediction function:x̃

(f(x̃) + ε − ft(x̃))2

Imagine we do this for many different instances of and St ε

then we can look at the expected value of the error:

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]

23

Bias-variance decomposition

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ft (x̃)])2 + 𝔼t [(𝔼t[ft (x̃)] − ft(x̃))2]

23

Bias-variance decomposition

noise variance

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ft (x̃)])2 + 𝔼t [(𝔼t[ft (x̃)] − ft(x̃))2]

23

Bias-variance decomposition

noise variance

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ft (x̃)])2 + 𝔼t [(𝔼t[ft (x̃)] − ft(x̃))2]

Always there
in the data!

23

Bias-variance decomposition

noise variance bias

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ft (x̃)])2 + 𝔼t [(𝔼t[ft (x̃)] − ft(x̃))2]

Always there
in the data!

23

Bias-variance decomposition

noise variance bias

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ft (x̃)])2 + 𝔼t [(𝔼t[ft (x̃)] − ft(x̃))2]

Always there
in the data!

Systematic error/bias

23

Bias-variance decomposition

noise variance bias variance

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ft (x̃)])2 + 𝔼t [(𝔼t[ft (x̃)] − ft(x̃))2]

Always there
in the data!

Systematic error/bias

23

Bias-variance decomposition

noise variance bias variance

𝔼t , ε [(f(x̃) + ε − ft(x̃))2]
= σ2 + (f(x̃) − 𝔼t[ft (x̃)])2 + 𝔼t [(𝔼t[ft (x̃)] − ft(x̃))2]

Always there
in the data!

Systematic error/bias Variance in the prediction
function. How much one
instance deviates from the
average

24

Bias-variance decomposition
Example: polynomial regression

f(x) = sin(2πx) , x ∈ [0,1]

24

Bias-variance decomposition
Example: polynomial regression

f(x) = sin(2πx) , x ∈ [0,1]

Different noisy instances for training &
testing

24

Bias-variance decomposition
Example: polynomial regression

f(x) = sin(2πx) , x ∈ [0,1]

Different noisy instances for training &
testing

ft (x) =
d

∑
k=0

xkwkModel: ŵ = arg min
w

1
2

s

∑
i=1

d

∑
k=0

xk
ijwk − yi

2

St := {(xi, yi) iid ∼ 𝒟}s
i=1for and

24

Bias-variance decomposition
Example: polynomial regression

f(x) = sin(2πx) , x ∈ [0,1]

Different noisy instances for training &
testing

ft (x) =
d

∑
k=0

xkwkModel: ŵ = arg min
w

1
2

s

∑
i=1

d

∑
k=0

xk
ijwk − yi

2

St := {(xi, yi) iid ∼ 𝒟}s
i=1for and

Training
error

24

Bias-variance decomposition
Example: polynomial regression

f(x) = sin(2πx) , x ∈ [0,1]

Different noisy instances for training &
testing

ft (x) =
d

∑
k=0

xkwkModel: ŵ = arg min
w

1
2

s

∑
i=1

d

∑
k=0

xk
ijwk − yi

2

St := {(xi, yi) iid ∼ 𝒟}s
i=1for and

Training
error

Validation
Error

Bias-variance decomposition

25

Example: ridge regression ŵ = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
2

∥w∥2}

From Bishop. Pattern Recognition & Machine Learning

Low variance High bias

26

Bias-variance decomposition

From Bishop. Pattern Recognition & Machine Learning

Example: ridge regression w = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
2

∥w∥2}

Higher variance Smaller bias

27

Bias-variance decomposition

From Bishop. Pattern Recognition & Machine Learning

Example: ridge regression

Higher variance Smaller bias

ŵ = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
2

∥w∥2}

28

Bias-variance decomposition

From Bishop. Pattern Recognition & Machine Learning

Example: ridge regression ŵ = arg min
w { 1

2
∥Φ(X)w − y∥2 +

λ
2

∥w∥2}

29

Bias-variance decomposition

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Model Complexity (df)

Pr
ed

ic
tio

n
Er

ro
r

High Bias Low Bias
High VarianceLow Variance

FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Bias-variance decomposition

30

From Hastie, Tibshirani &
Friedman, The Elements of

Statistical Learning

Bias-variance decomposition

31

From Hastie, Tibshirani &
Friedman, The Elements of

Statistical Learning

Bias-variance decomposition

32

From Hastie, Tibshirani &
Friedman, The Elements of

Statistical Learning

Bias-variance decomposition

33

From Hastie, Tibshirani &
Friedman, The Elements

of Statistical Learning

