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(1) 10 points. Let X be a discrete random variable with pmf p(x|θ), θ ∈ {1, 2, 3}. One
data point x is taken from p(x|θ). Find the MLE of θ.

x p(x | 1) p(x | 2) p(x | 3)

0 1/3 1/4 0

1 1/3 1/4 0

2 0 1/4 1/4

3 1/6 1/4 1/2

4 1/6 0 1/4

Solution: For each value of x, the MLE θ̂ is the value of θ that maximises the likelihood
L(θ|x) = p(x | θ). These values are in the following table.

x 0 1 2 3 4

θ̂ 1 1 2 or 3 3 3

Thus, at x = 2, L(θ|2) = 0 when θ = 1 and L(θ|2) = 1/4 when θ = 2 or θ = 3. So both θ̂ = 2
or θ̂ = 3 are both maxima.

(2) 20 points. Let Y1, . . . , Yn be an iid sample from N(µ, σ2), with both µ and σ2 unknown.

(a) Find the likelihood and log likelihood functions.

(b) Find the maximum likelihood estimates µ̂ and σ̂.

Solution: For each sample point, y = (y1, . . . , yn) ∈ R, the likelihood function of
(µ, σ2), L(µ, σ2 | y), is the joint density f(y | µ, σ2) of Y1, . . . , Yn. By independence,

L(µ, σ2 | y) = f(y | µ, σ2) =
1

(2πσ2)n/2
exp{−(1/2)

n∑
i=1

(yi − µ)2/σ2},

and the log likelihood is

`(µ, σ2 | y) = logL(µ, σ2 | y) = −n
2

log(2π)− n

2
log σ2 − (1/2)

n∑
i=1

(yi − µ)2/σ2.

The partial derivatives, with respect to µ and σ2, are

∂

∂µ
`(µ, σ2 | y) =

1

σ2

n∑
i=1

(yi − µ),

∂

∂σ2
`(µ, σ2 | y) = − n

2σ2
+

1

2σ4

n∑
i=1

(yi − µ)2.
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Setting these partial derivatives equal to 0 and solving for µ and σ2 yields the solution

µ̂ = ȳ = n−1

n∑
i=1

yi, σ̂2 = n−1

n∑
i=1

(yi − ȳ)2.

Next, we need to verify that this solution is, in fact, a global maximum. First note that
if µ 6= ȳ, then

∑
n

i=1
(yi − µ)2 >

∑
n

i=1
(yi − ȳ)2. Hence, for any value of σ2,

1

(2πσ2)n/2
exp{−(1/2)

n∑
i=1

(yi − ȳ)2/σ2} ≥ 1

(2πσ2)n/2
exp{−(1/2)

n∑
i=1

(yi − µ)2/σ2},

with equality if and only if µ = ȳ. Hence, for any value of σ2, µ̂ = ȳ is indeed a
global maximum. Next, having verified that ȳ maximises L(µ, σ2 | y) as a function
of µ (for σ2 fixed), using univariate calculus, it is easy to verify that the function

1
(2πσ2)n/2 exp{−(1/2)

∑
n

i=1
(yi − ȳ)2/σ2}, as a function of σ2, achieves its maximum at

σ̂2 = n−1
∑

n

i=1
(yi − ȳ)2. Hence, the estimators Ȳ and n−1

∑
n

i=1
(Yi − Ȳ )2 are the MLEs

of µ and σ2, respectively.

(3) 20 points. In a certain factory, machines D, E and F all produce computer chips of
the same type. Of their production, machines D, E and F, respectively produce 2%, 3%
and 1% defective chips. Machine D produces 30% of the output of the factory, machine
E 25% and machine F the rest.

Suppose one chip is selected at random from the output of the factory and the chip is
defective

(a) Use Bayes’ theorem to find the probabilities that the chip was manufactured on
machines D, E and F.

(b) Identify the data, hypotheses, likelihoods, prior probabilities and posterior proba-
bilities.

(c) Redo the computation of (a) using a Bayesian updating table.

Solution:

(a) Relabel the machines as 1, 2, 3 and let H1 be the event that a chip was produced
by machine i. Let D be the event that a particular chip is defective. We have

P (H1) = 0.3, P (H2) = 0.25, P (H3) = 0.45.

P (D | H1) = 0.02, P (D | H2) = 0.03, P (D | H2) = 0.01.

Applying the law of total probability, the probability that a random chip is defec-
tive is

P (D) =

3∑
i=1

P (D | Hi) P (Hi) = 0.006 + 0.0075 + 0.0045 = 0.018.

If it is defective, using Bayes’ theorem the probability that it was manufactured
by machine D (machine 1) is

P (H1 | D) =
P (D | H1) P (H1)

P (D)
=

0.02× 0.3

0.018
= 0.33.
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The probability that it was manufactured by machine E (machine 2) is

P (H2 | D) =
P (D | H2) P (H2)

P (D)
=

0.03× 0.25

0.018
= 0.42.

P (H3 | D) =
P (D | H3) P (H3)

P (D)
=

0.01× 0.45

0.018
= 0.25.

(b) • Hypotheses: We are testing three hypotheses, H1, H2 and H3 that a chip was
produced by machine 1, 2 and 3, respectively.

• Data: The result of our experiment. In this case, the chip is defective, D=chip
is defective.

• Prior probabilities: The prior are the probabilities of the hypotheses before
testing the chip. In this, case

P (H1) = 0.3, P (H2) = 0.25, P (H3) = 0.45.

• Likelihood: The likelihood is the probability that the chip is defective, D
(the data) given that the hypothesis Hi is true. In this case, there are three
likelihoods, one for each hypothesis Hi

P (D | H1) = 0.02, P (D | H2) = 0.03, P (D | H2) = 0.01.

• Posterior probabilties: The posterior are the probabilities of the hypotheses
given the data D (the chip is defective). In this case

P (H1 | D), P (H2 | D), P (H3 | D).

(c) The Bayesian updating table is

Hypothesis Prior Likelihood Bayes numerator Posterior

H1 P (H1) = 0.3 P (D | H1) = 0.02 P (D | H1)P (H1) = 0.02× 0.3 = 0.006 P (H1 | D) = 0.33

H2 P (H2) = 0.25 P (D | H2) = 0.03 P (D | H2)P (H2) = 0.03× 0.25 = 0.0075 P (H2 | D) = 0.42

H3 P (H3) = 0.45 P (D | H3) = 0.01 P (D | H3)P (H3) = 0.01× 0.45 = 0.0045 P (H3 | D) = 0.25

Total 1 P (D) = 0.018 1

Law of total probability:

P (data) = P (D) =

3∑
i=1

P (D | Hi) P (Hi) = 0.006 + 0.0075 + 0.0045 = 0.018.

Bayes’ theorem: posterior=
prior×likelihood

total prob. of data

P (H1 | D) =
P (D | H1) P (H1)

P (D)
=

0.02× 0.3

0.018
= 0.33.

P (H2 | D) =
P (D | H2) P (H2)

P (D)
=

0.03× 0.25

0.018
= 0.42.

P (H3 | D) =
P (D | H3) P (H3)

P (D)
=

0.01× 0.45

0.018
= 0.25.
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(4) 50 points. Suppose that you have recently started taking a train to work in a new
location. You would like to estimate the probability q that the train arrives no more
than 5 minutes late. Based on past experience living in South London, you assign a
Beta distribution for q with parameters α = 5, β = 25 as a prior distribution.

(a) What is the mean of the prior distribution?

Suppose that you observe k late arrivals in n journeys. For this observed data, use
digits from your student ID number. Let the last three digits of your ID number be
ABC. Then take n = 10 + AB and k = C. (E.g. if the ID ends in ...092, then
n = 10 + 09 = 19, k = 2; if the ID ends in ...374, then n = 10 + 37 = 47, k = 4)

(b) What is the maximum likelihood estimate q̂ for q?

(c) What is the posterior distribution for q?

(d) What is the mean of the posterior distribution? What is the variance of the
posterior distribution?

(e) What would the mean of the posterior distribution be if you had taken as a prior
distribution the uniform distribution on [0, 1]?

Solution: This question is a direct application of the binomial example with Beta prior
distribution from the lectures.

The prior mean for q is
α

α+ β
=

5

30
= 0.167.

Combining this prior with a Binomial likelihood, with k late trains observed out of
n journeys and k ∼ Binomial(n, q), the result is a Beta(k + α, n − k + β) posterior
distribution for q.

The posterior mean for q is

E(q | k) =
k + α

n+ α+ β
.

The variance of a Beta(α, β) random variable is

αβ

(α+ β)2(α+ β + 1)
.

Hence the variance of the posterior distribution is

V ar(q | k) =
(k + α)(n− k + β)

(n+ α+ β)2(n+ α+ β + 1)
.

The maximum likelihood estimate is

q̂ =
k

n
.

If the prior distribution was uniform on [0, 1], this would correspond to a Beta distribu-
tion with α = 1, β = 1, and the posterior distribution would be Beta(k + 1, n− k + 1).
The posterior mean for q would be

E(q | k) =
k + 1

n+ 2
.
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