Coursework 1 Solutions

PS 1: 3(3) [10 points]

$$
u_{x}+e^{y} u_{y}=0 \text { is } a
$$

linear homogeneous equation

PS I: 510 points]

$$
\begin{aligned}
& u_{x}=f^{\prime}(x) g(y) \\
& u_{y}=f(x) g^{\prime}(y) \\
& u_{x y}=f^{\prime}(x) g^{\prime}(y)
\end{aligned}
$$

So $u \cdot u_{x y}=f(x) f(y) \cdot f^{\prime}(x) g^{\prime}(y)$

$$
\begin{aligned}
& =f^{\prime}(x) g(y) \cdot f(x) g^{\prime}(y) \\
& =u_{x} \cdot u_{y}
\end{aligned}
$$

PS 2: 5
[20 points]
By the change of coodinate

$$
\left\{\begin{array}{l}
\tilde{x}=x+2 y \\
\tilde{y}=2 x-y
\end{array}\right.
$$

we have

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\frac{\partial}{\partial \widetilde{x}} \frac{\partial \tilde{x}}{\partial x}+\frac{\partial}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial x} \\
& =\frac{\partial}{\partial \widetilde{x}}+2 \frac{\partial}{\partial \widetilde{y}} \\
\frac{\partial}{\partial y} & =\frac{\partial}{\partial \tilde{x}} \frac{\partial \widetilde{x}}{\partial y}+\frac{\partial}{\partial \sqrt[y]{r}} \frac{\partial \tilde{y}}{\partial y} \\
& =2 \frac{\partial}{\partial \tilde{x}}-\frac{\partial}{\partial \widetilde{y}}
\end{aligned}
$$

Now the equation becomes

$$
\begin{aligned}
\left(\frac{\partial}{\partial \bar{x}}+2 \frac{\partial}{\partial y}\right) u+2\left(2 \frac{\partial}{\partial \tilde{x}}-\frac{\partial}{\partial y}\right) u+(2 x-y) u & =(x+2 y)(2 x-y) \\
(1+4) u_{\hat{x}}+(2-2) u_{\tilde{y}}+\tilde{y} u & =\tilde{x} \cdot \tilde{y} \\
5 u_{\tilde{x}}+\tilde{y} u & =\tilde{y} \cdot \tilde{y}
\end{aligned}
$$

Using integrating factor $e^{\frac{x y}{5}}$
we get $e^{\frac{\pi \tilde{y}}{5}} u_{\tilde{x}}+\frac{\tilde{T}}{5} e^{\frac{\pi \tilde{y}}{5}} u=\frac{e^{\frac{\pi \bar{y}}{5} \cdot \tilde{x} \tilde{y}}}{5}$

$$
\frac{\partial}{\partial \tilde{y}}\left[e^{\frac{\pi \hat{y}}{5}} u\right]=\frac{1}{5} e^{\frac{\pi \gamma}{5} \cdot \tilde{x} \cdot \hat{y}}
$$

Integrating with respect to \bar{x} gives

$$
e^{\frac{\sqrt[x]{y}}{5}} u=\int \frac{1}{5} e^{\frac{\pi x}{5}} \tilde{x} \tilde{y} d \tilde{x}
$$

Using integration by parts, we get

$$
\begin{aligned}
& e^{\frac{\pi \bar{y}}{5}} u=e^{\frac{x \tilde{y}}{5} \cdot \hat{x}}-\int e^{\frac{\pi \hat{y}}{5}} d \tilde{x}^{2} \\
& e^{\hat{x} \hat{y}} u=e^{\frac{\pi \gamma}{5} \cdot \tilde{x}}-\frac{5}{y} e^{\frac{\pi \hat{y}}{5}}+f(\tilde{y}) \\
& u(\tilde{x}, \tilde{y})=\tilde{x}-\frac{5}{\tilde{y}}+f(\tilde{y}) e^{-\frac{\pi \tilde{y}}{5}}
\end{aligned}
$$

changing the coodirate back, we get

$$
u(x, y)=x+2 y-\frac{5}{2 x-y}+f(2 x-y) \cdot e^{\frac{-2 x^{2}-3 x y+2 y^{2}}{5}}
$$

PS 2:7 [10 points]
The characteristic carves are

$$
\begin{aligned}
& \frac{d t}{d x}=-1 \\
& t+x=c
\end{aligned}
$$

so the equation becorres

$$
\begin{aligned}
\frac{\partial}{\partial x} u-\frac{\partial t}{\partial x} u-u & =0 \\
\frac{d}{d x} u & =u \\
\frac{d u}{u} & =1
\end{aligned}
$$

integrating both sides:

$$
\begin{aligned}
\ln u & =x+f(c) \\
u & =e^{x} \cdot \tilde{f}(c) \\
u(x, t) & =e^{x} \cdot \tilde{f}(t+x)
\end{aligned}
$$

Now when $t=0$, we get
from the cheraferistic equation that

$$
x=c
$$

So

$$
z=u(x, 0)=e^{c} \cdot \hat{f}(c)
$$

we get $\quad \tilde{f}(c)=2 \cdot e^{-c}$
The solution to the mitial value problem is thus

$$
\begin{aligned}
u(x, t) & =e^{x} \cdot 2 \cdot e^{-c} \\
& =e^{x} \cdot 2 \cdot e^{-(x+t)} \\
& =2 e^{-t}
\end{aligned}
$$

The characteristic carves are

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{2}}{x^{2}} \\
\frac{d y}{y^{2}} & =\frac{d y}{x^{2}} \\
\frac{-1}{y} & =\frac{-1}{x}+C \\
\text { we get } y & =\frac{1}{\frac{1}{x}-C} \\
\text { and } c & =\frac{1}{x}-\frac{1}{y}
\end{aligned}
$$

Along the cheratenstic curves, one has

$$
\begin{aligned}
\frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial y}{\partial x} \cdot \frac{\partial u}{\partial y} & =u_{x}+\frac{y^{2}}{x^{2}} u_{y} \\
& =\frac{x^{2} u_{x}+y^{2} u_{y}}{x^{2}} \\
& =\frac{(x+y) u}{x^{2}} \\
& =\frac{\left(x+\frac{1}{\frac{1}{x}-c}\right) u}{x^{2}} \\
& =\frac{2-c x}{x(1-c x)} u
\end{aligned}
$$

Divide both sides by 4 , get

$$
\begin{aligned}
\frac{d u}{u} & =\frac{2-c x}{x(1-c x)} d x \\
\frac{d u}{u} & =\frac{1+c(1-c x)}{x(1-c x)} d x \\
\frac{d u}{u} & =\frac{1}{x(1-c x)} d x+\frac{1}{x} d x \\
\frac{d u}{u} & =\frac{-c}{1-x} d x+\frac{1}{x} d x+\frac{1}{x} d x
\end{aligned}
$$

Integrating both sides, get

$$
\begin{aligned}
& \ln u=-\ln (1-(x)+2 \cdot \ln x+\hat{f}(c) \\
& U(x, y(x))=\frac{x^{2}}{1-c x} \cdot f(c)
\end{aligned}
$$

using $\frac{1}{x}-\frac{1}{y}=c$, we get

$$
\begin{aligned}
U(x, y) & =\frac{x^{2}}{1-\left(\frac{1}{x}-\frac{1}{y}\right) \cdot x} \cdot f\left(\frac{1}{x}-\frac{1}{y}\right) \\
& =\frac{x^{2}}{\frac{y}{y}} f\left(\frac{y-x}{x y}\right) \\
& =x \cdot y \cdot f\left(\frac{y-x}{x y}\right)
\end{aligned}
$$

PS 3: 6
[10 points]
The charateristic carves are

$$
\begin{aligned}
& \frac{d t}{d x}=-1 \\
& x+t=c
\end{aligned}
$$

The equation becomes

$$
\begin{aligned}
& \frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial t}{\partial x} \frac{\partial u}{\partial t}=u_{x}-u_{t}=\frac{1}{u^{2}} \\
& \text { so } \quad u^{2} d u=d x
\end{aligned}
$$

integrating. both sides, get

$$
\begin{aligned}
\frac{u^{3}}{3} & =x+f(c) \\
u^{3}(x, t) & =x+f(x+t) \\
u(x, t) & =[3 x+3 f(x+t)]^{\frac{1}{3}}
\end{aligned}
$$

for any differentiable function f.

PS: $8(1)$ [10 points $]$

$$
b^{2}-a c=1^{2}-1^{2}=0
$$

The equation is parabolic

PS 3: $8(2) \quad[10$ points $]$

$$
b^{2}-a c=1^{2}-1 \cdot 0=1>0
$$

The equation is hyperbolic.

