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Today’s agenda

Today’s lecture will cover

Review Bayesian updating with continuous parameters and discrete
data.

Construct a posterior for continuous parameters and continuous
data.

Conjugate priors
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Bayesian inference

Suppose we have data y generated from p(y | ✓) where ✓ is the
unknown parameter.

Start with the prior distribution p(✓) about ✓.

Likelihood is p(y | ✓).
The resulting probability distribution p(✓ | y) is called the posterior
distribution.

p(✓ | y) = p(✓) p(y | ✓)
p(y)

/ p(✓) p(y | ✓)

Posterior distribution / prior distribution ⇥ likelihood

Our inferences about ✓ are based on this posterior distribution.
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Bayesian updating: Discrete likelihoods, continuous priors

✓ : continuous parameter with prior pdf p(✓) and range [a, b].

x : random discrete data

likelihood: p(x |✓)

Bayesian updating table

Hypothesis prior prob likelihood Bayes numerator posterior prob. p(✓|x)d✓
✓ p(✓)d✓ p(x |✓) p(x |✓)p(✓)d✓ p(x|✓)p(✓)d✓

p(x)

Total
R b

a
p(✓)d✓ = 1 p(x) =

R b

a
p(x |✓)p(✓)d✓ 1

The posterior density p(✓|x) is obtained by removing d✓ from the
posterior probability in the table.
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Binomial data/beta prior example

Y ⇠ binom(n, q) with unknown binomial probability of success q.

We observe Y = k successes in n trials.

The binomial likelihood p(k |q) for this problem is:

p(k | q) =
✓
n

k

◆
qk(1� q)n�k

Convenient prior distribution for q is Beta(↵,�):

p(q) =
q↵�1(1� q)��1

B(↵,�)
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Binomial data/beta prior example

Posterior / prior ⇥ likelihood

p(q | k) / p(q)⇥ p(k | q)

=
q↵�1(1� q)��1

B(↵,�)
⇥

✓
n

k

◆
qk(1� q)n�k

Hence the posterior distribution is proportional to

p(q | k) / qk+↵�1(1� q)n�k+��1

From this, we can recognise that the posterior distribution p(q | k) is the
Beta(k + ↵, n � k + �) distribution.

General Beta(a, b) pdf: f (x) =
xa�1(1� x)b�1

B(a, b)
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Bayesian updating table: Binomial data/beta prior

Data k generated from ⇠ Binom(n,q), with q unknown

Continuous hypotheses q in [0, 1].

Beta(↵,�) prior p(q)

Binomial likelihood p(k |q)

Hypothesis prior prob. likelihood Bayes numerator posterior prob.
q Beta(↵,�)dq binomial(n, q) cqk+↵�1(1� q)n�k+��1dq Beta(k + ↵, n � k + �)dq
Total 1 T =

R
1

0
cqk+↵�1(1� q)n�k+��1dq 1

The posterior density is Beta(k + ↵, n � k + �)

Note: We don’t need to compute T . Once we know the posterior is
of the form cqk+↵�1(1� q)n�k+��1 we have to find c that makes it a
proper density. In this case c = 1/Beta(k + ↵, n � k + �)
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Conjugate distributions

• Beta(↵,�) prior distribution for q

• Binomial likelihood k ⇠ Bin(n, q)

• Beta(k + ↵, n � k + �) posterior distribution for q | k

In this example, we have the same family of distributions for the
prior and posterior distribution.

This is known as a conjugate distribution.

“The family of Beta distributions is conjugate to the binomial
likelihood”.
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Conjugate distributions

Binomial likelihood: p(k | q) =
✓
n

k

◆
qk(1� q)n�k

Beta prior: p(q) =
q↵�1(1� q)��1

B(↵,�)

Considered as functions of q, the prior and likelihood have the same
functional form as each other (proportional to qr (1� q)s for some
r , s).

When we multiply them together, we still have the same form.

This is what characterises conjugate distributions.
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Board question

Suppose your prior in the bent coin example is Beta(6, 8). You flip
the coin 7 times, getting 2 heads and 5 tails. What is the posterior
pdf p(✓|x)?

1 Beta(2, 5)
2 Beta(3, 6)
3 Beta(6, 8)
4 Beta(8, 13)
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Board question

A medical treatment has unknown probability ✓ of success.

We assume treatment has prior f (✓) ⇠ Beta(5, 5).

1 Suppose you test it on 10 patients and have 6 successes. Find the
posterior distribution on ✓. Identify the type of the posterior pdf

2 Suppose you recorded the order of the results and got SSSFFSSSFF.
Find the posterior based on this new data.
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Bayesian updating: continuous priors, continuous data

We are now ready to do Bayesian updating when both the parameters
and the data take continuous values.

✓ continuous parameter

Prior pdf, f (✓)

Data: continuous x ⇠ f (x |✓)
Likelihood: f (x |✓)
posterior pdf, f (✓|x)
Bayesian update table

Hypothesis prior prop likelihood Bayes numerator posterior prop f (x |✓)d✓
✓ f (✓)d✓ f (x |✓) f (x |✓) f (✓)d✓ f (x|✓)f (✓)d✓

f (x)

Total 1 f (x) 1

f (x) =
R
f (x |✓) f (✓)d✓
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Normal example, known variance

y1, . . . , yn ⇠ N(µ,�2).

It’s simpler if only one parameter is unknown.

First, consider case where only µ is unknown.

Is there a conjugate prior for µ?
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Normal example, known variance

Observed data y1, . . . , yn ⇠ N(µ,�2) with µ unknown and �2 known.

Prior distribution µ ⇠ N (µ0,�2

0
).

The posterior distribution is

µ ⇠ N (µ1,�
2

1
)

where

µ1 =

✓
µ0

�2

0

+
nȳ

�2

◆�✓
1

�2

0

+
n

�2

◆

�2

1
= 1

�✓
1

�2

0

+
n

�2

◆
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Normal example, known variance

Normal-normal Bayesian update table

Data: x ⇠ N (µ,�2), �2 known

Likelihood: f (x |µ) = 1p
2⇡�2

exp{� 1

2�2 (x � µ)2}.
µ continuous with prior pdf f (✓) ⇠ N (µ0,�2

0
)

posterior f (µ|x) ⇠ N (µ1,�2

1
)

Hypothesis prior prop likelihood Bayes numerator posterior prop f (x |µ)dµ
µ 1p

2⇡�2

0

exp{� 1

2�2

0

(µ� µ0)2}dµ 1p
2⇡�2

exp{� 1

2�2 (x � µ)2} c1 exp{� 1

2�2

1

(µ� µ1)2}dµ f (x|µ)f (µ)dµ
f (x) = 1p

2⇡�2

1

exp{� 1

2�2

1

(µ� µ1)2}dµ

Total 1 f (x) =
R 1

�1
c1 exp{� 1

2�2

1

(µ� µ1)2}dµ 1
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Normal example, known variance

Normal-normal updating formulas

a =
1

�2

0

, b =
n

�2
, (1)

µ1 =
aµ0 + bȳ

a+ b
, �2

1
=

1

a+ b
(2)

The posterior mean µ1 is a weighted average of the prior mean µ0

and sample average ȳ .

If n is large then the weight b is large and ȳ will have a strong
influence on the posterior. In fact if n ! 1, b/(a+ b) ! 1 and
a/(a+ b) ! 0, so µ1 ! ȳ .

If �2

0
is small then the weight a is large and µ0 will have a strong

influence on the posterior
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Board question

Suppose our data follows a N(✓, 1) distribution with unknown mean
✓.

Suppose our prior on ✓ is N(2, 1).

Suppose we obtain data x = 5

Compute the Bayesian update table and show that the posterior pdf
for ✓ is Normal

Find the posterior mean and the posterior variance

Use the updating formulas (1) to find the posterior mean and
posterior variance.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Board question
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prior: blue, posterior: purple, x = 5 (data).
The posterior mean lies between the data x = 5 and the prior mean.
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Board question

1 Which plot is the posterior to just the first data value x = 3?

2 Which plot is the posterior to all 3 data values, x = 3, x = 9 and
x = 12?
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Board question

On a basketball team the free throw percentage over all players is a
N(75, 36) distribution. In a given year individual players free throw
percentage is N(✓, 16) where ✓ is their career average.

This season, Sophie Lee made 85 percent of her free throws.

1 What is the posterior expected values of her career percentage ✓?
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Exponential model

The time until failure for a type of light bulb is exponentially
distributed with parameter �.

We observe n bulbs, with failure times t = t1, . . . , tn.

The unknown parameter is �.

Can we find a conjugate family of distributions for this likelihood?
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Conjugate priors

A prior is conjugate to a likelihood if the posterior is the same type
of distribution as the prior.

hypothesis data prior likelihood posterior
Bernoulli/Beta ✓ 2 [0, 1] x Beta(↵,�) Bernoulli(✓) Beta(↵+ 1,�) or Beta(↵,� + 1)

✓ x = 1 c1✓↵�1(1� ✓)b�1 ✓ c3✓↵(1� ✓)��1

✓ x = 0 c1✓↵�1(1� ✓)b�1 1-✓ c3✓↵�1(1� ✓)�

Binomial/Beta ✓ 2 [0, 1] x Beta(↵,�) binomial(n, ✓) beta(↵+ x ,� + n � x)
(fixed n) ✓ x c1✓↵�1(1� ✓)b�1 c2✓x(1� ✓)n�x c3✓↵+x�1(1� ✓)�+n�x�1

Normal/Normal ✓ 2 R x N(µ0,�2

0
) N(✓,�2) N(µ1,�2

1
)

(fixed �2) ✓ c1 exp{� 1

2�2

0

(✓ � µ0)2} x c2 exp{� 1

2�2 (x � µ)2} c3 exp{� 1

2�2

1

(✓ � µ1)2}
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Board question

Which are conjugate priors for the following pairs likelihood/prior?

1 Exponential/Normal

2 Exponential/Gamma

3 Binomial/Normal
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Board question

Suppose the prior has been set. Let x1 and x1 be two sets of data. Which
of the following are true?

If the likelihoods f (x1|✓) and f (x2|✓) are the same then they result in
the same posterior.

If x1 and x2 result in the same posterior then their likelihood
functions are the same.

If the likelihoods f (x1|✓) and f (x2|✓) are proportional then they
result in the same posterior.

If two likelihoods functions are proportional then they are equal.
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