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Today's agenda

Today's lecture will cover

@ Review Bayesian updating with continuous parameters and discrete
data.

@ Construct a posterior for continuous parameters and continuous
data.

@ Conjugate priors
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Bayesian inference

@ Suppose we have data y generated from p(y | 6) where 0 is the
unknown parameter.

@ Start with the prior distribution p(#) about 6.
o Likelihood is p(y | 0).
@ The resulting probability distribution p(6 | y) is called the posterior

distribution.
p(9) p(y | )
plf|y)= x p(0) ply | 0
(01y) () (0) p(y | 0)
Posterior distribution oc prior distribution x likelihood |

@ Our inferences about 6 are based on this posterior distribution.
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Bayesian updating: Discrete likelihoods, continuous priors

@ 6 : continuous parameter with prior pdf p(#) and range [a, b].
@ x : random discrete data
o likelihood: p(x|0)

Bayesian updating table

Hypothesis | prior prob likelihood | Bayes numerator posterior prob. p(0|x)d6
0 p(0)do p(xl0) | p(x|0)p(0)do prllip)d
Total [ p(6)do =1 p(x) = [ p(x|0)p(6)do | 1

@ The posterior density p(6|x) is obtained by removing df from the

posterior probability in the table /9//‘@/‘

plolas = £
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Binomial data/beta prior example

@ Y ~ binom(n, q) with unknown binomial probability of success g.
@ We observe Y = k successes in n trials. J ~ Z)IVIOWl (‘mzi

@ The binomial likelihood p(k|q) for this problem is:

g - (oo

@ Convenient prior distribution for g is Beta(«, 3):
Crs—————

g 1(1 - q)f1 / 7 € [O/d
B(a, B)

p(q) =
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Binomial data/beta prior example

Buyes numenehor

Posterior € prior X likelihoo

p(q | k) < p(q) x p(k | q)

_,@CDG\D ()@ €0

Hence the posterior distribution is proportional to

p(q | k) o< g“F*H(1 — )" P
w

From this, we can recognise that the posterior distribution p(q | k) is the
Beta(k + o, n — k + (3) distribution.

x71(1 — x)b=t

~ General Beta(a, b) pdf: f(x -)§ )

P
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Bayesian updating table: Binomial data/beta prior

© 6 o6 ©

Data k generated from ~ Binom(n,q), with g unknown

ContTn~u<1us hypothesesgin [0,1].

(Beta(a,ﬁ) prior p(q)

Binomial likelihood p(k|q)

Hypothesis | prior prob. likelihood Bayes numerator posterior prob.
q (CEEI s IE Ginomia!! n, aD cg“(1— q)"~"'dg Beta(k + a,n — k + 3)dq
Total 1 T g T—q | 1

The posterior density is Beta(k + a, n — k + 3)

Note: We don't need to compute 7. Once we know the posterior is
of the form cqg***~*(1 — g)"**#~' we have to find ¢ that makes it a
proper density. In this case ¢ = 1/Beta(k + a,n — k + f3)

—
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Conjugate distributions

: Inidrol  rambev
..Oii_g = c;{ {,ww&w

prior distribution for g

e Binomial likelihood k ~ Bin(n, q)
o Beta(k + a,n — k + [3) posterior distribution for q | k
e G = e—

—

@ In this example, we have the same family of distributions for the
prior and posterior distribution.
et

@ This is known as a conjugate distribution.

@ “The family of Beta distributions is conjugate to the binomial
likelihood”. ~ = -

o

-
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Conjugate distributions

Binomial likelihood: p(k | q) = (n) g (1 — q)"* F/X': 1321 (7(.9

T —

g“ (1 —q)""
B(a, B)

Beta prior: p(q) =

o Considered as functions of g, the prior and likelihood have the same
functional form as each other (proportional to ¢"(1 — gq)° for some
r,s).

@ When we multiply them together, we still have the same form.

@ This is what characterises conjugate distributions.
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Board question

Q:PW}ME([% & hatds

@ Suppose your prior in the bent coin example is Beta(6,8). You flip
. . . . ‘_ .
the coin 7 times, getting 2 heads and 5 tails. What is the posterior

pdf p(6]x)? -
So/w/w/l
@ Beta(2,5) Q__,G[ 632
O Beta(3 6) —

d Beta(8 13) D

’I
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Board question

@ A medical treatment has unknown probability 6 of success.

@ We assume treatment has prior f(6) ~ Beta(5,5).

@ Suppose you test it on 10 patients and have 6 successes. Find the
posterior distribution on 6. Identify the type of the posterior pdf
@ Suppose you recorded the order of the results and go{ SSSFFSSSFF:
Find the posterior based on this new data.
6 g
B’ (1-0)
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Bayesian updating: continuous priors, continuous data

We are now ready to do Bayesian updating when both the parameters
and the data take continuous values.
.—,=gg'

@ 6 continuous parameter

@ Prior pdf, f(6)

o Data: continuous x f(x|0)
o Likelihood FIXIO]>

@ posterior pdf, f(H\)(

- E——

o Bayesian update table

Hypothesis | prior prop | likelihood | Bayes numerator | posterior prop f(x|0)do
i 0w oD Qo) oy |

Total 1 Q—v@\ 7

o f(x) = [f(x]0) f(6)do
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Normal example, known variance

(&

O Yi,--yYn N(:u70-2)'
S~ N\ w

@ It's simpler if only one parameter is unknown.

)
o First, consider case where only p is unknown. (§ [> Pnou)ﬂ

U

@ Is there a conjugate prior for p7?
~——— N
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Normal example, known variance

o Observed data yi,...,y, & wath 1+ unknown and (0% known.)
~ 7 VY -

@ Prior distribution p ~ N (g, 03).

@ The posterior distribution is

CNNN(ULU%) >
_(Ho . m tyn
M_(ﬁ+0)/(%+ﬁ)
1 n
2
=1
71 /(%+UJ

where

l\J“<|
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Normal example, known variance

Normal-normal Bayesian update table

o Data: x ~ N(u,0?), o® known

o Likelihood: f(x|u) = ﬁexp{—ﬁ(x—,u)z}.

@ u continuous with prior pdf () ~ N(,LLO7O-§)

o posterior f(u|x) ~ N(u1,0%)

Hypothesis | prior prop likelihood Bayes numerator posterior prop f(x|u)du
1 fF(x[p)f(p)dp 1 1
0 o P gzl — )Y | rs epl=ga(x — )} | cexp{—guz(n —m)}du Clfa)dn Jamar P (1 — )}
Total 1 f(x) =" aexp{—52(n—m)}du | 1
1
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Normal example, known variance

Normal-normal updating formulas

1 n
==, b=— 1
0= o b= (1)
a/’LO_|_b.)_/ 2 1
— — 2

@ The posterior mean i, is a weighted average of the prior mean i,
and sample average y.

@ If nis large then the weight b is large and y will have a strong
influence on the posterior. In fact if n — oo, b/(a+ b) — 1 and
a/(a+b) —0,so u, —y.

o If o5 is small then the weight a is large and 1, will have a strong
influence on the posterior

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Board question

@ Suppose our data follows a N(6, 1) distribution with unknown mean
6.

@ Suppose our prior on 0 is N(2,1).
@ Suppose we obtain data x =5

@ Compute the Bayesian update table and show that the posterior pdf
for 6 is Normal

@ Find the posterior mean and the posterior variance

@ Use the updating formulas (1) to find the posterior mean and
posterior variance.
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prior: blue, posterior: purple, x =5 (data).
The posterior mean lies between the data x = 5 and the prior mean.
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@ Which plot is the posterior to just the first data value x = 37

@ Which plot is the posterior to all 3 data values, x = 3, x =9 and
x =127
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Board question

On a basketball team the free throw percentage over all players is a

N(75,36) distribution. In a given year individual players free throw
percentage is N(6,16) where 6 is their career average.

This season, Sophie Lee made 85 percent of her free throws.

@ What is the posterior expected values of her career percentage 67
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Exponential model

@ The time until failure for a type of light bulb is exponentially
distributed with parameter A.

@ We observe n bulbs, with failure times t = t1,..., t,.
@ The unknown parameter is .

@ Can we find a conjugate family of distributions for this likelihood?
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-ugate priors

@ A prior is conjugate to a likelihood if the posterior is the same type
of distribution as the prior.

hypothesis | data prior likelihood posterior
Bernoulli/Beta | 6 € [0,1] | x Beta(«, 3) Bernoulli(9) Beta(a + 1, 3) or Beta(a, 5+ 1)
0 X = a0 (1—6)y—" |46 c0*(1—0)°
0 X = a0 (1-06)y—"| 1-0 0711 — 6)°
Binomial/Beta | 6 € [0,1] | x Beta(a, 55) binomial(n, &) beta(ar + x, 5+ n — x)
(fixed n) 0 X a0 (1—-0)y" | (1 —0) G0 (1 — 9)r—t
Normal/Normal | # € R X N( o, 072) N(0, %) N( gy, 0?)
(fixed 0?) 0 G exp{—ri_oz(ﬁ — 1o)?} | x G exp{—z(x — p)*} | exp{—ﬁ(@ — 1y)?}
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~ Board questior

Which are conjugate priors for the following pairs likelihood /prior?

@ Exponential/Normal
@ Exponential/Gamma
@ Binomial /Normal
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Board question

Suppose the prior has been set. Let x; and x; be two sets of data. Which
of the following are true?

o If the likelihoods f(x,|6) and f(x,|0) are the same then they result in
the same posterior.

@ If x, and x, result in the same posterior then their likelihood
functions are the same.

o If the likelihoods f(x,|6) and f(x,|f) are proportional then they
result in the same posterior.

o If two likelihoods functions are proportional then they are equal.
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