Questions Week 2 - Solutions

1. the central rate of mortality m_{x} is
$\mathrm{m}_{\mathrm{x}}=\mathrm{q}_{\mathrm{x}} / \int_{0}^{1} \mathrm{t}_{\mathrm{x}} \mathrm{dt}$
now we also know that $\mathrm{q}_{\mathrm{x}}=\int_{0}^{1} \mathrm{t}_{\mathrm{x}} \mu_{\mathrm{x}+\mathrm{t}} \mathrm{dt}$ and if the force of mortality is a constant μ then
$\mathrm{q}_{\mathrm{x}}=\int_{0}^{1} \mathrm{t}_{\mathrm{x}} \mu \mathrm{dt}=\mu \int_{0}^{1} \mathrm{t} \mathrm{p}_{\mathrm{x}} \mathrm{dt}$ and then
$\mathrm{m}_{\mathrm{x}}=\mathrm{q}_{\mathrm{x}} / \int_{0}^{1}{ }_{\mathrm{t}} \mathrm{p}_{\mathrm{x}} \mathrm{dt}=\mu \int_{0}^{1}{ }_{\mathrm{t}} \mathrm{p}_{\mathrm{x}} \mathrm{dt} / \int_{0}^{1} \mathrm{t}_{\mathrm{t}} \mathrm{dt}=\mu$
2. we seek the discrete expectation of life (in days) which is an e_{x} type measure and $\mathrm{e}_{\mathrm{x}}=\sum_{\text {all } k} \mathrm{k} \mathrm{p}_{\mathrm{x}}$

The question gives a set of $1 q$ type probabilities

Day (k)	1	2	3	4	5
$1 q$	0.25	0.46	0.64	0.85	1
1 p	0.75	0.54	0.36	0.15	0
kp	0.75	0.405	0.1458	0.02187	0

so " e_{x} " $=0.75+0.405+0.1458+0.02187+0=1.32267$ days
3. (a) the force of mortality is $\mu_{\mathrm{x}}=\mathrm{B} \mathrm{c}^{\mathrm{x}}$ where B, c are constants
(b) we are given
$\mu_{45}=B c^{45}=0.0046$
$\mu_{46}=B^{46}=0.0048$
therefore dividing these 2 equations $c^{46} / c^{45}=48 / 46=24 / 23$
therefore
$c=24 / 23=1.043487$
$B=0.000678$
4. under the exponential model $S(t)=\exp (-\mu t)$ where we measure t in days here from the first day we estimate $\mu=24 / 64000=0.000375$
probability of still working after a year is $\mathrm{S}(365)=\exp (-0.000375 \times 365)=0.872$
5. we know that $\mathrm{m}_{70}=\mathrm{q}_{70} / \int_{0}^{1} \mathrm{t}_{70} \mathrm{dt}$
now $\int_{0}^{1}{ }_{\mathrm{t}}^{\mathrm{x}} \mathrm{dt} \leq 1$ and in fact is <1 unless $\mathrm{t} \mathrm{p}_{\mathrm{x}}=1$ all t (which in practice is never the case) therefore, m_{70} is larger than q_{70}

