
MTH6134 Statistical Modelling II

Exercises

Autumn 2023

Exercises built upon a list provided by Dr S Coad (formerly of QMUL).

1. Suppose that Yi ∼ Bin(ri, π) for i = 1, 2, . . . , n, all independent, where the ri are known.

1. Write down the likelihood for the data y1, . . . , yn.

Solution: The likelihood is

L(π;y) =

n∏
i=1

(
ri
yi

)
πyi(1− π)ri−yi

=

{
n∏

i=1

(
ri
yi

)}
π
∑n

i=1 yi(1− π)
∑n

i=1(ri−yi).

2. Find the maximum likelihood estimator π̂ of π.

Solution: The log-likelihood is

ℓ(π;y) =

n∑
i=1

log

(
ri
yi

)
+

n∑
i=1

yi log π +

n∑
i=1

(ri − yi) log(1− π).

Thus, we have
dℓ

dπ
=

∑n
i=1 yi
π

−
∑n

i=1(ri − yi)

1− π
.

Setting this derivative to zero, we obtain

n∑
i=1

yi(1− π̂)−
n∑

i=1

(ri − yi)π̂ = 0,

which yields the maximum likelihood estimate

π̂ =

∑n
i=1 yi∑n
i=1 ri

.
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3. Prove that π̂ is an unbiased estimator of π.

Solution: We can write

E(π̂) =
1∑n
i=1 ri

E

(
n∑

i=1

Yi

)

=
1∑n
i=1 ri

n∑
i=1

E(Yi)

=
1∑n
i=1 ri

n∑
i=1

riπ = π,

and so π̂ is an unbiased estimator of π.

2. Suppose you have the following binomial data from a single binomial sample: r = 15, y = 7.

1. Write down the likelihood for the data y.

2. Find the maximum likelihood estimator π̂ of π.

3. Using R, make a plot of the likelihood function L(π). Examine and describe this function.

Solution: Here is the the plot of the likelihood. The line indicates the position of
maximum likelihood estimate π̂ (x-coordinate), and the line joins with the value L(π̂)
(at the top of the curve). Recall that for the code below to work, you need to define
quantities, e.g. ri<-15 and yi<-7.

par(mar=c(4,4,1,1)); (phat<-yi/ri)

## [1] 0.4666667

L<-function(p) dbinom(x=yi,size=ri,prob=p)

curve(expr=L,from=0,to=1,n=150,xlab=expression(pi),ylab="Likelihood")

lines(phat*c(1,1),c(0,L(p=phat)),col="red")
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The assymmetry of L(π) indicates that higher values of π than the mle are more likely
than smaller values of π, for the data given.

4. Consider the following binomial sample: r = 105, y = 49. Repeat the computation of the
likelihood L(π), the maximum likelihood estimate π̂ and the plot of L(π). Compare the
results with those of the original data and comment.

3. Consider the following binomial data pairs (r, y): (60, 19), (70, 25), (30, 15), (40, 14), (20, 9).

1. Repeat the computations of steps 1-3 of the previous question (problem 2). In this case,
consider and analyze each data pair separately.

2. Analyze the data jointly, using the result of the problem 1.

3. Compare the results of the two analyses. Are the estimates that you obtained related?

4. Suppose that Yi ∼ Poisson(µ) for i = 1, 2, . . . , n, all independent.

1. Write down the likelihood for the data y1, . . . , yn.

Solution: The likelihood is

L(µ;y) =

n∏
i=1

µyie−µ

yi!
=
µ
∑n

i=1 yie−nµ∏n
i=1 yi!

.

2. Find the maximum likelihood estimator µ̂ of µ.

Solution: The log-likelihood is

ℓ(µ;y) =
n∑

i=1

yi logµ− nµ−
n∑

i=1

log(yi!).
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Thus, we have
dℓ

dµ
=

∑n
i=1 yi
µ

− n.

Setting this derivative to zero, we obtain

n∑
i=1

yi − nµ̂ = 0,

which yields the maximum likelihood estimate

µ̂ =

∑n
i=1 yi
n

= y.

3. Prove that µ̂ is an unbiased estimator of µ.

Solution: We can write

E(µ̂) =
1

n
E

(
n∑

i=1

Yi

)
=

1

n

n∑
i=1

E(Yi)

=
1

n
nµ = µ,

and so µ̂ is an unbiased estimator of µ.

5. The following count data 5, 1, 3, 5, 5, 4, 3, 2, are assumed to be a series of independent realiza-
tions of Poisson(µ).

1. Write down the likelihood for the data y1, . . . , yn.

2. Find the maximum likelihood estimator µ̂ of µ.

3. Plot the likelihood function L(µ) with R. Examine and describe this function.

Solution: Here I give the R code for the likelihood. Remember you need to define
the variable y<-c(5, 1, 3, 5, 5, 4, 3, 2).

Lp<-function(mu){
res<-1

for(i in y) res<-res*dpois(x=i,lambda=mu)

return(res)

}

4. Now suppose that you have a sample of Poisson data with the same sample value ȳ as
with the data above, but with n = 16. Redo the plot of L(µ), compare with the first plot
and comment.
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Solution:

Note that if the mean is to be the same as before (ȳ = 3.5), this implies that
∑n

i=1 yi =
56 and we need to define these quantities for the code below, e.g. s<-56 for the sum
and n<-16. I give the two plots so that they can be compared. The line indicates the
location of the maximum likelihood estimate µ̂.

par(mar=c(4,4,1,1),mfrow=c(2,1))

curve(expr = Lp,from=0,to=5,n=150,xlab=expression(mu),

ylab="Likelihood")

lines(x=mean(y)*c(1,1),c(0,Lp(mu=mean(y))),col="red")

Lp2<-function(mu) mu^s*exp(-n*mu)

## the likelihood ignores the constant factor! <- explain why.

curve(expr = Lp2,from=0,to=5,n=150,xlab=expression(mu),

ylab="Likelihood 2")

lines(x=mean(y)*c(1,1),c(0,Lp2(mu=mean(y))),col="red")
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What are the similarities and differences between the likelihood plots of the two data
sets?

6. Consider the count data 47, 40, 46, 41, 40. Repeat the computations of items 1-3 of problem 5.
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7. Suppose that Yi ∼ N(βxi, σ
2) for i = 1, 2, . . . , n, all independent, where xi is a known covariate.

1. Write down the likelihood for the data y1, . . . , yn.

Solution: The likelihood is

L(β, σ2;y) =
n∏

i=1

1√
2πσ2

exp

{
−(yi − βxi)

2

2σ2

}

= (2πσ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi − βxi)
2

}
.

2. Find the maximum likelihood estimators β̂ and σ̂2 of β and σ2.

Solution: The log-likelihood is

ℓ(β, σ2;y) = −n
2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − βxi)
2.

Thus, we have

∂ℓ

∂β
=

1

σ2

n∑
i=1

xi(yi − βxi)

and
∂ℓ

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(yi − βxi)
2.

Setting the first derivative to zero, we obtain

n∑
i=1

xiyi − β̂
n∑

i=1

x2i = 0,

which yields the maximum likelihood estimate

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

Similarly, setting the second derivative to zero, we obtain

σ̂2 =
1

n

n∑
i=1

(yi − β̂xi)
2.

3. Prove that β̂ is an unbiased estimator of β.
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Solution: We can write

E(β̂) =
1∑n

i=1 x
2
i

E

(
n∑

i=1

xiYi

)
=

1∑n
i=1 x

2
i

n∑
i=1

xiE(Yi)

=
1∑n

i=1 x
2
i

n∑
i=1

βx2i = β,

and so β̂ is an unbiased estimator of β.

8. In this problem we study properties of the link function g(u) = log(u).

1. Determine the domain and range of g(u).

Solution: This function is defined for positive values of u and takes real values, i.e.
its domain is R>0 = (0,∞) and the range is all of R.

2. For which type of response is the link g(u) function most suitable?

Solution: This link is most suitable for positive responses.

3. Invert g(u) and compute directly the derivative of the inverse g−1(u), i.e. d
dug

−1(u).

Solution: The inverse g−1(·) is the function such that g−1(g(u)) = u. For the loga-
rithm, the inverse is g−1(u) = exp(u), and the derivative of the inverse is the standard
result d

dug
−1(u) = exp(u).

4. Find out about the inverse function theorem. Use the inverse function theorem to compute
the derivative of the inverse g−1(u).

Solution: The inverse theorem states that if g−1(u) is the inverse of g(u), then the
derivative of the inverse satisfies d

dug
−1(u) = 1/

(
g′(g−1(u))

)
, where g′(u) = d

dug(u).

In our case, we have g′(u) = d
du log(u) = 1/u so that d

dug
−1(u) = 1/ (1/ exp(u)) =

exp(u) that coincides with the earlier computation.

5. Repeat the steps and computations above for the following link functions:

(a) The identity link g(u) = u.

(b) The inverse quadratic link g(u) = u−2.

(c) The square root link g(u) = u−1/2 =
√
u.

(d) The logit link g(u) = log(u/(1− u)).

(e) The complementary log-log link g(u) = log(− log(1− u)).

(f) The Cauchy link g(u) = Φ−1(u), where Φ(u) = 1
2 + 1

π arctan(u).
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(g) (Medium) The Gumbel link g(u) = Φ−1(u), where Φ(u) = exp(− exp(−u)) is the
cumulative Gumbel distribution. Discuss one potential disadvantage of this link.

(h) (Hard) The probit link g(u) = Φ−1(u), where Φ(u) is the cumulative distribution of
the standard normal random variable.

9. Suppose that Yi ∼ N(µ, σ2) for i = 1, 2, . . . , n, all independent,

1. Write down the likelihood for the data y1, . . . , yn. Hint: Try to reuse the equations in
lecture notes (ditto for the second item).

2. Determine analytically the maximum likelihood estimates.

Solution: You should obtain the maximum likelihood estimates of the sample mean
for µ and the (biased) sample variance for σ2.

3. Find the Fisher information matrix.

10. The observations 6.3, 4.2, 6.02, 4.32, 4.04, 3.95 are assumed to be independent realizations of
the normal model N(µ, σ2).

1. Using R, compute the likelihood estimates with formulæ µ̂ = ȳ and σ̂2 =
∑n

i=1(yi− ȳ)2/n.

Solution: Recall that you need to define the variables y<-c(6.3, 4.2, 6.02, 4.32,

4.04, 3.95) and n<-6 for the analysis below.

mean(y) ## easy

## [1] 4.805

var(y) ## not quite, as this is the unbiased version

## [1] 1.12575

The above computation with var is not the correct maximum likelihood estimate and
here we compute the correct σ̂2 in two ways:

var(y)*(1-1/n) ## rectify the unbiased to be mle

## [1] 0.938125

mean( (y-mean(y))^2 ) ## the definition above

## [1] 0.938125

2. Formulate the estimation of µ, σ like a linear regression in R and compute the estimates
µ̂, σ̂2. In other words, use the function lm and process its output.

Solution: To formulate as regression, just note that there is no ”explanatory vari-
able”, so the model has only the intercept.

lm(y~1)->M
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From which we retrieve µ̂ (the mean) as the intercept

M$coefficients

## (Intercept)

## 4.805

and then estimate σ̂2 in two ways. First the usual way with the residuals of this very
simple model, then by exploiting the function summary:

mean( M$residuals^2 )

## [1] 0.938125

summary(M)->S

S$sigma^2*(1-1/n) ## corrected to obtain the mle

## [1] 0.938125

11. The Federal Trade Commission measured the numbers of milligrammes of tar (x) and carbon
monoxide (y) per cigarette for all domestic filtered and mentholated cigarettes of length 100
millimetres. A sample of 12 brands yielded the following data:

Brand x y

Capri 9 6
Carlton 4 6
Kent 14 14
Kool Milds 12 12
Marlboro Lights 10 12
Merit Ultras 5 7
Now 3 4
Salem 17 18
Triumph 6 8
True 7 8
Vantage 8 13
Virginia Slims 15 13

1. Calculate the least squares regression line for these data.

Solution: The data give
∑12

i=1 xi = 110,
∑12

i=1 yi = 121,
∑12

i=1 xiyi = 1, 294 and∑12
i=1 x

2
i = 1, 234. So we have

β̂1 =
1, 294− 110× 121/12

1, 234− 1102/12
= 0.8191

and

β̂0 =
121

12
− 0.8191× 110

12
= 2.575.

It follows that the least squares regression line is

ŷi = µ̂i = 2.575 + 0.8191xi.
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2. Plot the points and the least squares regression line on the same graph.

Solution: Here is the R code and the plot with data and fitted line.

DAT<-matrix(ncol=2,byrow=TRUE,c(9,6,4,6,14,14,12,12,

10,12,5,7,3,4,17,18,6,8,7,8,8,13,15,13))

colnames(DAT)<-c("x","y")

plot(DAT) ## The data

lm(y~x,data=as.data.frame(DAT))->M

abline(a=M$coefficients[1],b=M$coefficients[2])

4 6 8 10 12 14 16

4
6

8
10

12
14

16
18

x

y

M$coefficients

## (Intercept) x

## 2.5753323 0.8190547

3. Find an unbiased estimate of σ2.
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Solution: An unbiased estimate of σ2 is

s2 =
1

10

12∑
i=1

(yi − β̂0 − β̂1xi)
2 = 3.953.

As an extra output, here is the computation using R:

summary(M)$sigma^2 ## using summary

## [1] 3.952806

sum(M$residuals^2)/(M$df.residual) ## The traditional formula

## [1] 3.952806

12. Consider the data on manatees in Practical 1. Use R to answer the questions below.

1. Produce a scatterplot of the data. Does the relationship between y and x seem to be
linear?

Solution: Note that this analysis was covered in the lab so here we only give addi-
tional comments.

Concerning the scatterplot, there is some evidence of a linear relationship between y
and x. However, it is not a particularly strong relation.

2. Fit a simple linear regression model to the data. Give the values of β̂0 and β̂1, and test
H0 : β1 = 0.

Solution: The fitted linear regression model is

ŷi = µ̂i = −38.29 + 0.1187xi.

Since the p-value for the test of H0 : β1 = 0 is P < 0.001, there is very strong evidence
that β1 ̸= 0.

3. By examining the residual plots, comment on whether there is any reason to doubt the
assumptions of the model.

Solution: There is no reason to doubt the assumptions of linearity or constant vari-
ance. Although the first and last points on the Q-Q plot are a little away from the
line, there does not seem much reason to doubt the normality assumption either.

13. Suppose that Yi ∼ N(βxi, σ
2) for i = 1, 2, . . . , n, all independent, where xi is a known covariate.

1. Find the Fisher information matrix. Hint: Try to reuse the equations in the lecture notes.
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Solution: In this case, the Fisher information matrix V is 2× 2. We have

∂2ℓ

∂β2
= − 1

σ2

n∑
i=1

x2i ,
∂2ℓ

∂β∂σ2
= − 1

σ4

n∑
i=1

xi(yi − βxi)

and
∂2ℓ

∂σ4
=

n

2σ4
− 1

σ6

n∑
i=1

(yi − βxi)
2.

Computing expectations and reversing the sign, it follows that v11 =
∑n

i=1 x
2
i /σ

2,
v12 = 0 and v22 = n/(2σ4). Thus, we obtain

V =

( ∑n
i=1 x

2
i

σ2 0
0 n

2σ4

)
.

2. State the asymptotic distributions of the maximum likelihood estimators β̂ and σ̂2 of β
and σ2.

Solution: We have

V −1 =

(
σ2∑n
i=1 x

2
i

0

0 2σ4

n

)
.

This shows that, for large n, β̂ ∼ N(β, σ2/
∑n

i=1 x
2
i ) and σ̂

2 ∼ N(σ2, 2σ4/n).

3. Explain why the distribution of β̂ is exact.

Solution: The distribution of β̂ is exact because β̂ is a linear combination of normal
random variables.

To be sure, the maximum likelihood estimator is β̂ = (
∑n

i=1 xiyi) /
(∑n

i=1 x
2
i

)
, which

is easily rewritten as β̂ =
∑n

i=1 ciyi where the ci are constants ci = xi/
(∑n

j=1 x
2
j

)
.

That is, β̂ is a linear combination of the yi. When we considere these as normal
random variables Yi, we use a known result that a linear combination of normal random
variables has a normal distribution, hence it is exact.

14. Consider the manatees’ data again and a regression model that passes through the origin.

1. Explain in simple terms what does a model going through the origin imply for the mana-
tees’ data.

2. Using the data, compute with the help of R an estimate of the matrix V and then give
its inverse V −1 which is an estimation of the variance-covariance matrix for the model
parameters.
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Solution: We use the formulæ directly. Initial calculations are:

## Manatee data

x <- c(447,460,481,498,513,512,526,559,585,614,645)

y <- c(13,21,24,16,24,20,15,34,33,33,39)

M<-lm(y~x-1) ## the regression through the origin

M$coefficients ## this is \hat\beta_1

## x

## 0.04749354

sigma2<-mean(M$residuals^2) ## this is \hat\sigma^2
sigma2

## [1] 37.65413

We are not ready to compute the elements of V :

v11<-sum(x^2)/sigma2

v22<-length(x)/(2*sigma2^2)

so that the estimate of V is V̂ =

(
8.34036× 104 0

0 0.0038792

)
and an estimate of

the variance-covariance matrix is V̂ −1 =

(
1.198989× 10−5 0

0 257.7879122

)
.

The estimated standard errors of model parameters are given by square roots of the
previous matrix, i.e. the standard error of β̂1 is 0.0035 and for σ̂2 is 16.0558.

3. Briefly comment upon your results.

Solution: Let us look at a 95% confidence intervals for each parameter, for β1 we
have (0.0407, 0.0543), and for σ2 we have (6.1854, 69.1229).

The interval for σ2, does not including zero but it is quite wide if we compare it with
(3.1191, 34.8563) which is the interval for σ2 from the model including intercept. This
is a consequence of the increased variability σ̂ = 16.0558 of the no intercept model
relative to the variability σ̂ = 8.0964 of the model with intercept.

We may remove the intercept, but the price to pay is increased variability by about a
factor of two. This is perhaps too high a price to pay.

15. Consider the model Yi ∼ N(µ, µ2) for i = 1, 2, . . . , n, all independent,

1. Write down the likelihood for the data y1, . . . , yn.

2. Determine analytically the maximum likelihood estimate.

3. Find the Fisher information matrix.

16. Suppose that Yi ∼ N(µi, σ
2
i ) for i = 1, 2, . . . , n, all independent, where µi = xiβ and the σi are

known.

1. Write down the likelihood for the data y1, . . . , yn.
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Solution:

The likelihood is

L(β;y) =

n∏
i=1

1√
2πσ2i

exp

{
−(yi − xiβ)

2

2σ2i

}

=

(
n∏

i=1

2πσ2i

)− 1
2

exp

{
−1

2

n∑
i=1

(yi − xiβ)
2

σ2i

}

= (2π)−
n
2

(
n∏

i=1

σ2i

)− 1
2

exp

{
−1

2

n∑
i=1

(yi − xiβ)
2

σ2i

}
.

2. Show that β̂ = (X⊤Σ−1X)−1X⊤Σ−1Y is the maximum likelihood estimator of β. Here
Σ = diag(σ21, . . . , σ

2
n).

Solution: Since

n∑
i=1

(yi − xiβ)
2

σ2i
= (y −Xβ)⊤Σ−1(y −Xβ),

where X is the n × p design matrix with ith row x⊤
i and Σ = diag(σ21, . . . , σ

2
n), we

write

L(β;y) = (2π)−
n
2

(
n∏

i=1

σ2i

)− 1
2

exp

{
−1

2
(y −Xβ)⊤Σ−1(y −Xβ)

}
.

So the log-likelihood is

ℓ(β;y) = −n
2
log(2π)− 1

2

n∑
i=1

log(σ2i )−
1

2
(y −Xβ)⊤Σ−1(y −Xβ).

Thus, we have
∂ℓ

∂β
= X⊤Σ−1(y −Xβ).

Assume that rank(X) = p, so that the p× p matrix X⊤Σ−1X is non-singular. Then,
setting the above derivatives to zero, we obtain

β̂ = (X⊤Σ−1X)−1X⊤Σ−1y.

3. Find the Fisher information matrix.

Solution: We have
∂2ℓ

∂β∂β⊤
= −X⊤Σ−1X.
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It follows that the Fisher information matrix is

V = X⊤Σ−1X.

17. Consider the following data (-1,3.1), (-1,2.1), (0,5.4), (0,4.2), (1,6), (1,6), which is given as
pairs (xi, yi). Implement in R the results of the model Yi ∼ N(µi, σ

2
i ) for i = 1, 2, . . . , n,

all independent, where µi = β0 + β1xi. The σi are known as σ21 = σ22 = 1, σ23 = σ24 = 2,
σ25 = σ26 = 4.

In particular, compute the maximum likelihood estimate β̂ and its asymptotic variance-covariance
matrix.

Solution: The maximum likelihood estimate is the β̂ = (X⊤Σ−1X)−1X⊤Σ−1y which to
be implemented, requires declaring the variables x,y with R commands x<-c(-1, -1, 0,

0, 1, 1) and y<-c(3.1, 2.1, 5.4, 4.2, 6, 6) and variances sigma2i<-c(1, 1, 2,

2, 4, 4).

X<-cbind(1,x) ## Design model matrix: intercept and variable x

S<-diag(sigma2i) ## Matrix of variances

FIM<- t(X)%*%solve(S)%*%X; ## Fisher information matrix

betah<-solve(FIM)%*%t(X)%*%solve(S)%*%y

We have the following results β̂, Fisher information matrix X⊤Σ−1X and asymptotic
variance-covariance matrix (X⊤Σ−1X)−1.

betah ## mle

## [,1]

## 4.492308

## x 1.815385

FIM ## Fisher information matrix

## x

## 3.5 -1.5

## x -1.5 2.5

solve(FIM) ## Asymptotic variance-covariance matrix

## x

## 0.3846154 0.2307692

## x 0.2307692 0.5384615

18. Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, where the ri are known,
πi = β0 + β1xi and xi is a known covariate.
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1. Write down the likelihood for the data y1, . . . , yn.

Solution: The likelihood is

L(β0, β1;y) =

n∏
i=1

(
ri
yi

)
πyii (1− πi)

ri−yi

=
n∏

i=1

(
ri
yi

)
(β0 + β1xi)

yi(1− β0 − β1xi)
ri−yi .

2. Obtain the likelihood equations.

Solution: The log-likelihood is

ℓ(β0, β1;y) =

n∑
i=1

log

(
ri
yi

)
+

n∑
i=1

yi log(β0 + β1xi) +

n∑
i=1

(ri − yi) log(1− β0 − β1xi).

Thus, we have

∂ℓ

∂β0
=

n∑
i=1

yi
β0 + β1xi

−
n∑

i=1

ri − yi
1− β0 − β1xi

and
∂ℓ

∂β1
=

n∑
i=1

xiyi
β0 + β1xi

−
n∑

i=1

xi(ri − yi)

1− β0 − β1xi
.

Setting these derivatives to zero yields the likelihood equations.

3. Find the Fisher information matrix.

Solution: In this case, the Fisher information matrix V is 2× 2. We have

∂2ℓ

∂β20
= −

n∑
i=1

yi
(β0 + β1xi)2

−
n∑

i=1

ri − yi
(1− β0 − β1xi)2

,

∂2ℓ

∂β0∂β1
= −

n∑
i=1

xiyi
(β0 + β1xi)2

−
n∑

i=1

xi(ri − yi)

(1− β0 − β1xi)2

and
∂2ℓ

∂β21
= −

n∑
i=1

x2i yi
(β0 + β1xi)2

−
n∑

i=1

x2i (ri − yi)

(1− β0 − β1xi)2
.

Concerning the expectations required, since E(Yi) = riπi = ri(β0 + β1xi), it follows
that

v11 =
n∑

i=1

ri
πi(1− πi)

, v12 =

n∑
i=1

xiri
πi(1− πi)

and

v22 =
n∑

i=1

x2i ri
πi(1− πi)

.
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Thus, we obtain

V =

( ∑n
i=1

ri
πi(1−πi)

∑n
i=1

xiri
πi(1−πi)∑n

i=1
xiri

πi(1−πi)

∑n
i=1

x2
i ri

πi(1−πi)

)
.

19. Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, where µi = β0 + β1xi and
xi is a known covariate.

1. Write down the likelihood for the data y1, . . . , yn.

Solution: The likelihood is

L(β0, β1;y) =
n∏

i=1

µyii e
−µi

yi!
=

∏n
i=1(β0 + β1xi)

yie−
∑n

i=1(β0+β1xi)∏n
i=1 yi!

.

2. Obtain the likelihood equations.

Solution: The log-likelihood is

ℓ(β0, β1;y) =

n∑
i=1

yi log(β0 + β1xi)− nβ0 − β1

n∑
i=1

xi −
n∑

i=1

log(yi!).

Thus, we have

∂ℓ

∂β0
=

n∑
i=1

yi
β0 + β1xi

− n

and
∂ℓ

∂β1
=

n∑
i=1

xiyi
β0 + β1xi

−
n∑

i=1

xi.

Setting these derivatives to zero yields the likelihood equations.

3. Find the Fisher information matrix.

Solution: In this case, the Fisher information matrix V is 2× 2. We have

∂2ℓ

∂β20
= −

n∑
i=1

yi
(β0 + β1xi)2

,

∂2ℓ

∂β0∂β1
= −

n∑
i=1

xiyi
(β0 + β1xi)2

and
∂2ℓ

∂β21
= −

n∑
i=1

x2i yi
(β0 + β1xi)2

.
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For the expectation, since E(Yi) = µi = β0 + β1xi, it follows that

v11 =
n∑

i=1

1

µi
, v12 =

n∑
i=1

xi
µi

and

v22 =
n∑

i=1

x2i
µi
.

Thus, we obtain

V =

( ∑n
i=1

1
µi

∑n
i=1

xi
µi∑n

i=1
xi
µi

∑n
i=1

x2
i

µi

)
.

20. Consider the data on diabetics in Practical 2. Use R to answer the questions below.

1. Produce scatterplots of y against each of the explanatory variables. Does y appear to be
linearly related to them?

2. Fit a multiple linear regression model to the full data. Give the values of the estimated
regression coefficients and test H0 : β1 = 0.

3. Remove x1 from the model. By examining the residual plots, comment on whether there
is any reason to doubt the assumptions of the reduced model.

21. Suppose that Yi ∼ Poisson(µ) for i = 1, 2, . . . , n, all independent, and consider testing H0 : µ =
µ0 against H1 : µ ̸= µ0, where µ0 is known.

1. Write down the restricted maximum likelihood estimate µ̂0 of µ under H0 and the maxi-
mum likelihood estimate µ̂.

Solution: The restricted maximum likelihood estimate of µ under H0 is µ̂0 = µ0 and
the maximum likelihood estimate of µ is µ̂ = y.

2. Obtain the generalised likelihood ratio.

Solution: The generalised likelihood ratio is

Λ(y) =
L(µ̂0;y)

L(µ̂;y)

=
µ̂
∑n

i=1 yi
0 e−nµ̂0∏n

i=1 yi!

∏n
i=1 yi!

µ̂
∑n

i=1 yie−nµ̂

=
µ
∑n

i=1 yi
0 e−nµ0

y
∑n

i=1 yie−ny

=

(
µ0
y

)∑n
i=1 yi

en(y−µ0).
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3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α for large n.

Solution: We have

−2 log{Λ(y)} = −2

{
ny log

(
µ0
y

)
+ n(y − µ0)

}
= 2n

{
y log

(
y

µ0

)
+ µ0 − y

}
.

Here, p = 1 and p0 = 0, so that s = 1. Therefore, by Wilks’ theorem, when H0 is true
and n is large,

2n

{
Y log

(
Y

µ0

)
+ µ0 − Y

}
∼ χ2

1.

Hence, for a test with approximate significance level α, we reject H0 if and only if

2n

{
y log

(
y

µ0

)
+ µ0 − y

}
> χ2

1,α.

22. Consider the data 5, 1, 3, 5, 5, 4, 3, 2 which are assumed to be independent realizations of the
Poisson distribution with expectation µ. We want to test H0 : µ = µ0 with µ0 = 3.

1. Obtain the numerical value of the generalised likelihood ratio Λ(y) and discuss about the
distribution of this statistic to perform the test H0 : µ = µ0.

Solution:

After defining y with commands y<-c(5, 1, 3, 5, 5, 4, 3, 2), here is the ob-
served value of the ratio

LLobs<-prod(dpois(x=y,lambda=3)/dpois(x=y,lambda=mean(y)))

LLobs

## [1] 0.7288998

Make sure you can explain what the above code means.

As for the distribution and the test, we rejectH0 if the observed value of Λ(y) is smaller
than the α lower quantile of the distribution of Λ(y) under the null hypothesis.

We can use simulation, as in lectures of week 4 to obtain samples of this null distri-
bution of Λ, see the code below.
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NN<-25000 ## number of simulations

LLsim<-c(matrix(ncol=NN))

for(i in 1:NN){
set.seed(i)

y<-rpois(n=n,lambda=3) ## Simulate under the null

lambdares<-3 ## Restricted

lambdamle<-mean(y) ## unrestricted

LL<-prod(dpois(x=y,lambda=lambdares)/dpois(x=y,lambda=lambdamle))

LLsim[i]<-LL

}

After running the code, plot a histogram of LLsim and see where is the value LLobs

located. You can compute the p-value with mean(LLsim<LLobs). What do you con-
clude?

2. Use Wilk’s theorem to test H0 : µ = µ0, perform the test and write your conclusions.

Solution: Here is the observed statistic and the 5% upper quantile of the χ2
1 distri-

bution.

-2*log(LLobs)

## [1] 0.6324381

qchisq(p=0.05,df=1,lower.tail = FALSE)

## [1] 3.841459

What do you conclude?

3. Using the normal approximation to the data, perform the test H0 : µ = µ0 and compare
with the earlier results.

23. Suppose for i = 1, 2, . . . , n, we have independent Yi ∼ Bin(ri, p), where ri is known. Using data
y1, . . . , yn, consider testing H0 : p = p0 against H1 : p ̸= p0, where p0 is known.

1. Write down the restricted maximum likelihood estimate p̂0 of p under H0 and the maxi-
mum likelihood estimate p̂.

2. Obtain the generalised likelihood ratio for this test.

3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α, for large n.

4. The following (25,10), (15,6), (30,10) are data pairs (ri, yi) from acceptance sampling in
textile industry. Apply your results to build the generalized likelihood ratio and use Wilks’
theorem with α = 0.05 to test H0 : p = 0.3.
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Solution: The maximum value of the likelihood restricted to H0 is 0.0019, com-
puted as the product of binomial probabilities using the value p̂0 = 0.3; the unre-
stricted maximum value of the likelihood is 0.0043, obtained as the product of bino-
mial probabilities using the maximum likelihood estimate p̂ = 0.3714. Thus the ratio
is Λ(y) = 0.4417.

To apply Wilks’ theorem, we compute −2 log Λ(y) = 1.6344, which is to be compared
with the critical value 3.8415, where the χ2 distribution has one degree of freedom.
As result of the comparison, we do not reject H0.

24. Suppose that Y ∼ Bin(r, π), where r is known.

1. Show that this distribution is a member of the exponential family.

Solution: We write

fY (y;π) =

(
r

y

)
πy(1− π)r−y

= exp

{
log

(
r

y

)
+ y log π + (r − y) log(1− π)

}
= exp

{
y log

(
π

1− π

)
+ r log(1− π) + log

(
r

y

)}
.

Thus, we have a(y) = y, b(π) = log{π/(1−π)}, c(π) = r log(1−π) and d(y) = log
(
r
y

)
.

2. Explain why the distribution is in canonical form and write down the natural parameter.

Solution: Since a(y) = y, the distribution is in canonical form. The natural param-
eter is log{π/(1− π)}.

3. Use the general results for E{a(Y )} and Var{a(Y )} to verify that E(Y ) = rπ and
Var(Y ) = rπ(1− π).

Solution: We have b′(π) = 1/{π(1 − π)}, b′′(π) = (2π − 1)/{π(1 − π)}2, c′(π) =
−r/(1− π) and c′′(π) = −r/(1− π)2. So we obtain

E(Y ) = − −r/(1− π)

1/{π(1− π)}
= rπ

and

Var(Y ) =

2π−1
(π(1−π))2

× −r
1−π + r

(1−π)2
× 1

π(1−π)

1
(π(1−π))3

= −rπ(2π − 1) + rπ2 = rπ(1− π),
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25. Suppose that Y ∼ N(µ, σ2), where σ2 is known.

1. Show that this distribution is a member of the exponential family.

Solution: We write

fY (y;µ) =
1√
2πσ2

exp

{
−(y − µ)2

2σ2

}
= exp

{
−1

2
log(2πσ2)− (y − µ)2

2σ2

}
= exp

{
−1

2
log(2πσ2)− y2

2σ2
+
yµ

σ2
− µ2

2σ2

}
= exp

{
yµ

σ2
− µ2

2σ2
− 1

2
log(2πσ2)− y2

2σ2

}
.

Thus, we have a(y) = y, b(µ) = µ/σ2, c(µ) = −µ2/(2σ2) and d(y) = − log(2πσ2)/2−
y2/(2σ2).

2. Explain why the distribution is in canonical form and write down the natural parameter.

Solution: Since a(y) = y, the distribution is in canonical form. The natural param-
eter is µ/σ2.

3. Use the general results for E{a(Y )} and Var{a(Y )} to verify that E(Y ) = µ and Var(Y ) =
σ2.

Solution: We have b′(µ) = 1/σ2, b′′(µ) = 0, c′(µ) = −µ/σ2 and c′′(µ) = −1/σ2. So
we obtain

E(Y ) = −−µ/σ2

1/σ2
= µ

and

Var(Y ) =
(0×−µ/σ2)− (−1/σ2 × 1/σ2)

1/σ6
= σ2.

26. Consider a sequence of independent Bernoulli trials, where each trial has success probability
p. The number of failures observed until we obtain r successes is a negative binomial random
variable X ∼ NB(r, p) with probability mass function Pr(X = x) =

(
x+r−1

x

)
pr(1− p)x.

1. Show that this distribution is a member of the exponential family.

2. Is the distribution in canonical form? Which is the natural parameter?

3. Using exponential family results, show that E(X) = r(1− p)/p.

4. Consider data x1, x2, . . . , xn. Determine the maximum likelihood estimate p̂. Is this
estimator unbiased? Justify your answer.

5. Compute the Fisher information number for estimating p.
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27. Consider the random variable Y ∼ Ber(p).

1. Show that this distribution is a member of the exponential family.

2. Determine if the distribution is in canonical form and write down the natural parameter.

3. Use the general results for E{a(Y )} and Var{a(Y )} to determine that E(Y ) and Var(Y ).

28. Repeat the calculations of Exercise 27 for the following distributions: a) binomial, b) geometric,
c) exponential, d) gamma, e) lognormal and f) chi-squared.

29. Consider the mean µ = E(Y ) and variance σ2 = V (Y ) of the random variable Y ∼ Ber(p).
Determine if the variance is a function of the mean and if so, give its explicit formula σ2 = f(µ).

30. Repeat the calculations of Exercise 29 for the following distributions of the exponential family:
a) binomial, b) geometric, c) negative binomial, d) Poisson, e) exponential, f) chi-squared, g)
gamma and h) lognormal.

31. Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, where the ri are known,
log{πi/(1− πi)} = β0 + β1xi and xi is a known covariate.

1. Find the Fisher information matrix.

Solution: We know that µi = riπi. It follows that

ηi = log

(
πi

1− πi

)
= log

(
µi

ri − µi

)
and

∂ηi
∂µi

=
ri

µi(ri − µi)
=

1

riπi(1− πi)
.

Thus, since Var(Yi) = riπi(1− πi), the Fisher information matrix is

V =

( ∑n
i=1 riπi(1− πi)

∑n
i=1 xiriπi(1− πi)∑n

i=1 xiriπi(1− πi)
∑n

i=1 x
2
i riπi(1− πi)

)
.

2. Obtain the asymptotic distributions of the maximum likelihood estimators β̂0 and β̂1 of
β0 and β1.

Solution: We have

V −1 =
1

|V |

( ∑n
i=1 x

2
i riπi(1− πi) −

∑n
i=1 xiriπi(1− πi)

−
∑n

i=1 xiriπi(1− πi)
∑n

i=1 riπi(1− πi)

)
,

where

|V | =
n∑

i=1

riπi(1− πi)

n∑
i=1

x2i riπi(1− πi)−

{
n∑

i=1

xiriπi(1− πi)

}2

.

This shows that, for large n, β̂0 ∼ N(β0, v
11) and β̂1 ∼ N(β1, v

22), where v11 =∑n
i=1 x

2
i riπi(1− πi)/|V | and v22 =

∑n
i=1 riπi(1− πi)/|V |.
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3. State the approximate standard errors of β̂0 and β̂1.

Solution: The approximate standard errors of β̂0 and β̂1 are
√
v̂11 and

√
v̂22, respec-

tively.

32. Suppose that the continuous random variables Y1, . . . , Yn have distributions depending on the
parameters θ1, . . . , θp and that their ranges do not depend on the parameters. Let L(θ;y) and
l(θ;y) denote the likelihood and log-likelihood of the parameter vector θ, respectively.

1. Show that
∂l(θ;y)

∂θj
=

1

L(θ;y)

∂L(θ;y)

∂θj
.

Solution: Since l(θ;y) = logL(θ;y), we can write

∂l(θ;y)

∂θj
=

1

L(θ;y)

∂L(θ;y)

∂θj
.

2. Prove that

E

{
∂l(θ;Y)

∂θj

}
= 0.

Solution: Let S be the sample space. Then we have

E

{
∂l(θ;Y)

∂θj

}
=

∫
S

∂l(θ;y)

∂θj
L(θ;y)dy

=

∫
S

∂L(θ;y)

∂θj
dy

=
∂

∂θj

∫
S
L(θ;y)dy

=
∂

∂θj
(1) = 0.

3. By differentiating the identity in part 1 with respect to θk, prove that

E

{
−∂

2l(θ;Y)

∂θj∂θk

}
= E

{
∂l(θ;Y)

∂θj

∂l(θ;Y)

∂θk

}
.

Solution: Differentiating the identity in part 1 with respect to θk, we obtain

∂2l(θ;y)

∂θj∂θk
=

1

L(θ;y)

∂2L(θ;y)

∂θj∂θk
− 1

{L(θ;y)}2
∂L(θ;y)

∂θj

∂L(θ;y)

∂θk

=
1

L(θ;y)

∂2L(θ;y)

∂θj∂θk
− ∂l(θ;y)

∂θj

∂l(θ;y)

∂θk
.
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It follows that

E

{
−∂

2l(θ;Y)

∂θj∂θk

}
= −

∫
S

∂2L(θ;y)

∂θj∂θk
dy + E

{
∂l(θ;Y)

∂θj

∂l(θ;Y)

∂θk

}
= − ∂2

∂θj∂θk
(1) + E

{
∂l(θ;Y)

∂θj

∂l(θ;Y)

∂θk

}
= E

{
∂l(θ;Y)

∂θj

∂l(θ;Y)

∂θk

}
.

33. Consider the data on beetles in Practical 3. answer the questions below. Fit the logistic, probit
and extreme value models in R. Which of these provides the best description of the data?
Present the results in a clear and concise table.

Solution: Note that this is indeed what the lab covers, so this exercise is about writing
your summary of what you obtained in the lab session. As some help for your analysis, here
are the deviances for the different link functions suggested, together with their p-values. A
small p-value suggests that the model (link) is inadequate for the data. This information
should be also compared with plots as obtained in the lab.

beetle<-read.csv("beetle.csv")

x<-beetle[,1]

r<-beetle[,2]

y<-beetle[,3]

p <- y/r

candidates<-c("logit", "probit", "cloglog")

deviance<-c()

for(link in candidates){
beetle <- glm(p ~ x,family=binomial(link=link),weights=r)

deviance<-c(deviance,beetle$deviance)

}
deviance<-rbind(deviance,pchisq(q=deviance,df=beetle$df.residual,

lower.tail=FALSE))

colnames(deviance)<-candidates

rownames(deviance)<-c("deviance","p-value")

round(deviance,4)

## logit probit cloglog

## deviance 11.2322 10.1198 3.4464

## p-value 0.0815 0.1197 0.7511

34. Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, where log(µi) = β0 + β1xi
and xi is a known covariate.

1. Find the Fisher information matrix.
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Solution: We know that ηi = log(µi). It follows that ∂ηi/∂µi = 1/µi. Thus, since
Var(Yi) = µi, the Fisher information matrix is

V =

( ∑n
i=1 µi

∑n
i=1 xiµi∑n

i=1 xiµi
∑n

i=1 x
2
iµi

)
.

2. Obtain the asymptotic distributions of the maximum likelihood estimators β̂0 and β̂1 of
β0 and β1.

Solution: We have

V −1 =
1

|V |

( ∑n
i=1 x

2
iµi −

∑n
i=1 xiµi

−
∑n

i=1 xiµi
∑n

i=1 µi

)
,

where

|V | =
n∑

i=1

µi

n∑
i=1

x2iµi −

(
n∑

i=1

xiµi

)2

.

This shows that, for large n, β̂0 ∼ N(β0, v
11) and β̂1 ∼ N(β1, v

22), where v11 =∑n
i=1 x

2
iµi/|V | and v22 =

∑n
i=1 µi/|V |.

3. State the approximate standard errors of β̂0 and β̂1.

Solution: The approximate standard errors of β̂0 and β̂1 are
√
v̂11 and

√
v̂22, respec-

tively.

35. Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, where the ri are known,
log{πi/(1− πi)} = β0 + β1xi and xi is a known covariate.

1. Show that the maximum likelihood estimate of πi in the maximal model is yi/ri.

Solution: Let π = (π1, . . . , πn)
⊤. Then the likelihood is

L(π;y) =

n∏
i=1

(
ri
yi

)
πyii (1− πi)

ri−yi ,

and so the log-likelihood is

l(π;y) =
n∑

i=1

log

(
ri
yi

)
+

n∑
i=1

yi log(πi) +
n∑

i=1

(ri − yi) log(1− πi).

Thus, we have
∂l

∂πi
=
yi
πi

− ri − yi
1− πi

.
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Setting this derivative to zero, we obtain

yi(1− π̂i,max)− (ri − yi)π̂i,max = 0,

which yields the maximum likelihood estimate π̂i,max = yi/ri.

2. Obtain the generalised likelihood ratio.

Solution: The generalised likelihood ratio is

Λ(y) =
L(β̂;y)

L(β̂max;y)

=
n∏

i=1

(
π̂i

π̂i,max

)yi ( 1− π̂i
1− π̂i,max

)ri−yi

,

where π̂i is the maximun likelihood estimate of πi in the two-parameter model.

3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α for large n.

Solution: We have

−2 log{Λ(y)} = −2

n∑
i=1

{
yi log

(
π̂i

π̂i,max

)
+ (ri − yi) log

(
1− π̂i

1− π̂i,max

)}

= 2

n∑
i=1

[
yi log

(
yi
riπ̂i

)
+ (ri − yi) log

{
ri − yi

ri(1− π̂i)

}]
.

Here, p = n and p0 = 2, so that s = n− 2. Therefore, by Wilks’ theorem, when H0 is
true and n is large,

2
n∑

i=1

[
Yi log

(
Yi
riπ̂i

)
+ (ri − Yi) log

{
ri − Yi
ri(1− π̂i)

}]
∼ χ2

n−2.

Hence, for a test with approximate significance level α, we reject H0 if and only if

2
n∑

i=1

[
yi log

(
yi
riπ̂i

)
+ (ri − yi) log

{
ri − yi

ri(1− π̂i)

}]
> χ2

n−2,α.

36. In lectures we have surveyed the logistic, probit and extreme value (complementary log-log)
links which are used for the analysis of proportions (binomial data). In principle, a link for
proportion data is any continuous function that transforms (0, 1) → R. For example, the probit
link Φ−1(·) is the inverse of the standard normal cumulative distribution function.

1. Do some research about the link using the inverse cauchy distribution; write its explicit
expression and show that it satisfies the transformation (0, 1) → R.
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2. Plot the link transformation and compare with other links mentioned. Can you see some
advantages or drawbacks of the Cauchy?

3. Analyze the beetle data of Practical 3 using the link cauchit. Compare what you obtain
with the earlier results. Does it improve over these? Write your comments.

37. A researcher wishes to know if consumption of caffeine improves performance on a memory
test. There were 30 volunteers for each dose of caffeine (x), in milligrammes, and the number
of volunteers who achieved a grade A in the memory test (y) is recorded. Below are the results.

x 0 50 100 150 200 250 300 350 400 450 500
y 10 13 17 15 10 5 4 3 3 1 0

1. Fit a logistic regression model to the data. Give the values of the estimated regression
coefficients and assess the goodness of fit of the model.

Solution: The fitted logistic regression model is

π̂i =
exp(0.2385− 0.0064xi)

1 + exp(0.2385− 0.0064xi)

and the deviance is D = 18.625. Since χ2
9,0.05 = 16.92 and χ2

9,0.01 = 21.67, the p-value
is 0.01 < P < 0.05, and so there is moderate evidence that this model does not fit the
data particularly well. These results can be obtained in R as follows.
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x <- c(0,50,100,150,200,250,300,350,400,450,500)

y <- c(10,13,17,15,10,5,4,3,3,1,0)/30

mod1 <-glm(y~x, family=binomial, weights = rep(30,11))

summary(mod1)

##

## Call:

## glm(formula = y ~ x, family = binomial, weights = rep(30, 11))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.238469 0.226199 1.054 0.292

## x -0.006442 0.001009 -6.381 1.75e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 69.358 on 10 degrees of freedom

## Residual deviance: 18.625 on 9 degrees of freedom

## AIC: 55.87

##

## Number of Fisher Scoring iterations: 4

qchisq(0.95,df = 9)

## [1] 16.91898

qchisq(0.99,df = 9)

## [1] 21.66599

pchisq(q = 18.625, df = 9,lower.tail = FALSE)

## [1] 0.02857711

2. Add x2 to the model. Is there evidence that this model is an improvement over the
two-parameter one?

Solution: The new model is

π̂i =
exp(−0.3974 + 0.0046xi − 0.000028x2i )

1 + exp(−0.3974 + 0.0046xi − 0.000028x2i )

and the deviance is D = 7.6639. Since χ2
8,0.1 = 13.36, the p-value is P > 0.1, and so

there is no evidence that this model does not fit the data well.

Page 29



mod2 <-glm(y~x+I(x^2), family=binomial, weights = rep(30,11))

summary(mod2)

##

## Call:

## glm(formula = y ~ x + I(x^2), family = binomial, weights = rep(30,

## 11))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.974e-01 3.021e-01 -1.315 0.18836

## x 4.600e-03 3.633e-03 1.266 0.20538

## I(x^2) -2.762e-05 9.257e-06 -2.984 0.00285 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 69.3577 on 10 degrees of freedom

## Residual deviance: 7.6639 on 8 degrees of freedom

## AIC: 46.909

##

## Number of Fisher Scoring iterations: 5

pchisq(q = deviance(mod2), df = mod2$df.residual, lower.tail = FALSE)

## [1] 0.4669742

3. Obtain the fitted values of the new model. Plot both the proportions and the fitted values
against the doses.

Solution: A plot of both the proportions and the fitted values of the new model
against the doses is given below.

plot(x,y, xlab="Doses",

ylab="Observed (black) and fitted (red) values")

lines(x, fitted(mod2), col="red")
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This shows that the new model captures the data quite well.

38. Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, where log(µi) = β0 + β1xi
and xi is a known covariate.

1. Show that the maximum likelihood estimate of µi in the maximal model is yi.

Solution: Let µ = (µ1, . . . , µn)
⊤. Then the likelihood is

L(µ;y) =
n∏

i=1

µyii e
−µi

yi!
,

and so the log-likelihood is

ℓ(µ;y) =
n∑

i=1

yi log(µi)−
n∑

i=1

µi −
n∑

i=1

log(yi!).
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Thus, we have
∂ℓ

∂µi
=
yi
µi

− 1.

Setting this derivative to zero yields the maximum likelihood estimate µ̂i,max = yi.

2. Obtain the generalised likelihood ratio.

Solution: The generalised likelihood ratio is

Λ(y) =
L(β̂;y)

L(β̂max;y)

=

n∏
i=1

(
µ̂i

µ̂i,max

)yi

e−µ̂i+µ̂i,max ,

where µ̂i is the maximum likelihood estimate of µi in the two-parameter model.

3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α for large n.

Solution: We have

−2 log{Λ(y} = −2
n∑

i=1

{
yi log

(
µ̂i

µ̂i,max

)
− µ̂i + µ̂i,max

}

= 2
n∑

i=1

{
yi log

(
yi
µ̂i

)
− yi + µ̂i

}
.

Here, p = n and p0 = 2, so that s = n− 2. Therefore, by Wilks’ theorem, when H0 is
true and n is large,

2
n∑

i=1

{
Yi log

(
Yi
µ̂i

)
− Yi + µ̂i

}
∼ χ2

n−2.

Hence, for a test with approximate significance level α, we reject H0 if and only if

2

n∑
i=1

{
yi log

(
yi
µ̂i

)
− yi + µ̂i

}
> χ2

n−2,α.

39. Suppose that Yi ∼ N(βxi, σ
2) for i = 1, 2, . . . , n, all independent, where xi is a known covariate

and σ is known. The fitted values are µ̂i = β̂xi and the variance of Yi is V (µ̂i) = σ2, and we
have V (x) = σ2. .

1. Write down the Pearson residual ePi .
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Solution: The Pearson residual is

ePi =
yi − µ̂i
σ

.

2. Find the transformation A(x).

Solution: The Anscombe residuals are

A(x) =

∫
σ−

2
3dx = σ−

2
3x+ c,

where c is an arbitrary integration constant.

3. Obtain the Anscombe residual eAi .

Solution: Since A′(x) = σ−
2
3 , the Anscombe residual is

eAi =
yi − µ̂i
σ

,

which is the same as the Pearson residual.

40. In an experiment designed to assess the potency of two test preparations of an insecticide rela-
tive to a standard, 60 aphids were placed on each of 12 cabbage plants. The three insecticides
(w) were then applied in various doses (x), in milligrammes per litre of water, to each of four
plants. The number of aphids still alive after three days (y) is determined and the results are
as follows:

x 1.2 2.4 4.8 9.6 1.2 2.4 4.8 9.6 1.2 2.4 4.8 9.6
w 1 1 1 1 2 2 2 2 3 3 3 3
y 43 37 26 15 35 27 18 7 52 44 36 28

Analyse the data by fitting probit regression models in which the probit of the proportion of
aphids killed by the insecticide is related to the logarithm of the dose.

1. Plot the proportions against the logarithms of the dose by insecticide. What are your
conclusions?

Solution: A plot of the proportions against the logarithms of the dose by insecticide
is given below.

x <- c(1.2,2.4,4.8,9.6,1.2,2.4,4.8,9.6,1.2,2.4,4.8,9.6)

w <- as.factor(c(1,1,1,1,2,2,2,2,3,3,3,3))

y <- c(43,37,26,15,35,27,18,7,52,44,36,28)/60

plot(log(x), y, col = w, xlab="Log of dose")
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This shows that the regression lines for the three insecticides are roughly parallel.

2. By comparing the deviance for the model which allows a different intercept and slope
for each insecticide with that for one in which the slopes are the same, test whether the
regression lines are parallel.

Solution: The deviance for the model which allows a different intercept and slope for
each insecticide is 1.6008 on six degrees of freedom, while that for the one in which
the slopes are the same is 1.8554 on eight degrees of freedom. Thus, the difference in
the deviances is 0.2546 on two degrees of freedom. Clearly, the p-value is P > 0.1,
and so there is no evidence that the regression lines are not parallel.
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# same slope

mod1 <- glm(y ~ log(x) + w, family = binomial(link = "probit"),

weights = rep(60,12))

summary(mod1)

##

## Call:

## glm(formula = y ~ log(x) + w, family = binomial(link = "probit"),

## weights = rep(60, 12))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.74989 0.11669 6.426 1.31e-10 ***

## log(x) -0.60522 0.06602 -9.167 < 2e-16 ***

## w2 -0.40415 0.12069 -3.349 0.000812 ***

## w3 0.46753 0.12148 3.849 0.000119 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 135.7846 on 11 degrees of freedom

## Residual deviance: 1.8554 on 8 degrees of freedom

## AIC: 61.818

##

## Number of Fisher Scoring iterations: 4
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# different slope

mod2 <- glm(y ~ log(x) * w, family = binomial(link = "probit"),

weights = rep(60,12))

summary(mod2)

##

## Call:

## glm(formula = y ~ log(x) * w, family = binomial(link = "probit"),

## weights = rep(60, 12))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.75193 0.16045 4.686 2.78e-06 ***

## log(x) -0.60689 0.11154 -5.441 5.30e-08 ***

## w2 -0.36110 0.22364 -1.615 0.1064

## w3 0.40877 0.23889 1.711 0.0871 .

## log(x):w2 -0.03891 0.16106 -0.242 0.8091

## log(x):w3 0.04398 0.16058 0.274 0.7842

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 135.7846 on 11 degrees of freedom

## Residual deviance: 1.6008 on 6 degrees of freedom

## AIC: 65.563

##

## Number of Fisher Scoring iterations: 4

Page 36



# difference in deviance

anova(mod2)

## Analysis of Deviance Table

##

## Model: binomial, link: probit

##

## Response: y

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev

## NULL 11 135.785

## log(x) 1 82.436 10 53.349

## w 2 51.494 8 1.855

## log(x):w 2 0.255 6 1.601

# critical value

qchisq(0.95,2)

## [1] 5.991465

3. Test whether there are differences between the insecticides.

Solution: The deviance for the model in which both the intercept and the slope are
the same for each insecticide is 53.349 on 10 degrees of freedom. Thus, the difference in
the deviances for this model and the previous one is 51.494 on two degrees of freedom.
Since χ2

2,0.001 = 13.82, the p-value is P < 0.001, and so there is overwhelming evidence
of differences between the insecticides.

# critical region

qchisq(0.999,2)

## [1] 13.81551

41. Consider again the cloth data in Practical 6. Show that the estimate of the dispersion parameter
ψ is ψ̂ = 2.194.

Solution: The fitted values are µ̂i = 0.0151xi and the original variance of Yi is V (µ̂i) = µ̂i.
So the estimate of ψ is

ψ̂ =
1

31

32∑
i=1

(yi − 0.0151xi)
2

0.0151xi
= 2.194.

This can be computed in R as follows.

Page 37



cloth <- read.csv("cloth.csv")

mod1 <- glm(y ~ x - 1,family=poisson(identity), data=cloth)

n <- dim(cloth)[1]

param <- mod1$coefficients[1]

dispersion<-sum(((cloth$y-param*cloth$x)^2)/(param*cloth$x))/(n-1)

print(dispersion)

## [1] 2.194371

42. The following relationships can be described by generalized linear models. For each one, identify
the response variable and the explanatory variables, select a probability distribution for the
response (justifying your choice) and write down the linear component.

1. The effect of age, sex, height, mean daily food intake and mean daily energy expenditure
on a person’s weight.

Solution: Response: Yi = weight - continuous scale, possibly Normally distributed;
Explanatory variables: x1i = age, x2i = sex (indicator variable), x3i = height, x4i
= mean daily food intake, and x5i = mean daily energy expenditure; E(Yi) = β0 +
β1x1i + β2x2i + β3x3i + β4x4i + β5x5i;Yi ∼ Normal(µ,σ

2)

2. The proportions of laboratory mice that became infected after exposure to bacteria when
five different exposure levels are used and 20 mice are exposed at each level.

Solution: Response: Yi = number of mice infected in each group of n = 20 mice;
Explanatory variables: x1i, . . . , x5i, as indicator variables for exposure levels; Yi ∼
Binomial(n, πi) because ‘infection’ is a binary outcome (but the plausibility of the
assumption of independence of infection for mice depends on the experimental condi-
tions); g(πi) = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i

3. The relationship between the number of trips per week to the super- market for a household
and the number of people in the household, the household income and the distance to the
supermarket.

Solution: Response: Yi = number of trips per week; Explanatory variables: x1i
= number of people in the household, x2i = household income, x3i = distance to
supermarket; Yi ∼ Poisson(λi) is a simple model for count data with log(λi) = β0 +
β1x1i + β2x2i + β3x3i

43. In a cross-sectional study of skin cancer, the site of the tumour and its histological type were
recorded for 400 patients. The contingency table below shows the number of patients (y) with
each combination of tumour type and site.

Page 38



Site
Histological Type Head and Neck Trunk Extremities Total

Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56

Total 68 106 226 400

The null hypothesis is that tumour type and site are independent.

1. Express the null hypothesis as a log-linear model, explaining your notation and any addi-
tional constraints.

Solution: The null hypothesis may be expressed as the log-linear model

log{E(Yjk|N = n)} = µ+ αj + βk

with
∑4

j=1 αj = 0 and
∑3

k=1 βk = 0, where µ is the overall effect, αj is the effect of
tumour type j and βk is the effect of site k.

2. Obtain the expected values under the null hypothesis. Compare these with the observed
values.

Solution: First of all, we input the data in R.

counts <- c(22,16,19,11,2,54,33,17,10,115,73,28)

site <- gl(3,4, length = 12)

type <- gl(4,1, length=12)

The expected values under the null hypothesis are ejk = yj.y.k/n, where n = 400, and
they can be computed as follows in R.

cancer <- glm(counts ~ site + type, family = poisson)

Look at the table with data and fitted values, written as column vectors.
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cbind(site, type, counts,fitted(cancer))

## site type counts

## 1 1 1 22 5.780

## 2 1 2 16 31.450

## 3 1 3 19 21.250

## 4 1 4 11 9.520

## 5 2 1 2 9.010

## 6 2 2 54 49.025

## 7 2 3 33 33.125

## 8 2 4 17 14.840

## 9 3 1 10 19.210

## 10 3 2 115 104.525

## 11 3 3 73 70.625

## 12 3 4 28 31.640

The column of fitted can be reformatted as matrix:

matrix(nrow=4,fitted(cancer))

## [,1] [,2] [,3]

## [1,] 5.78 9.010 19.210

## [2,] 31.45 49.025 104.525

## [3,] 21.25 33.125 70.625

## [4,] 9.52 14.840 31.640

Thus, we obtain the following table:

Site
Histological Type Head and Neck Trunk Extremities Total

Hutchinson’s melanotic freckle 5.780 9.010 19.210 34
Superficial spreading melanoma 31.450 49.025 104.525 185
Nodular 21.250 33.125 70.625 125
Indeterminate 9.520 14.840 31.640 56

Total 68 106 226 400

By comparing these with the observed values, we see that cell (1, 1) accounts for much
of the lack of fit. Hutchinson’s melanotic freckle is more common on the head and
neck than under the assumed model.

3. Find the deviance and the value of Pearson’s goodness-of-fit test statistic. What is your
conclusion?

Solution: The deviance is

D = 2
4∑

j=1

3∑
k=1

yjk log

(
yjk
ejk

)
= 51.795
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and the value of Pearson’s goodness-of-fit test statistic is

X2 =
4∑

j=1

3∑
k=1

(yjk − ejk)
2

ejk
= 65.813.

These can be computed in R as follows.

# deviance, computed in two ways

deviance(cancer)

## [1] 51.79501

2*sum(counts*log(counts/fitted(cancer)))

## [1] 51.79501

# pearson's goodness of fit test, computed in two ways as well

sum((residuals(cancer,type="pearson")^2))

## [1] 65.81293

sum( (counts-fitted(cancer))^2/fitted(cancer) )

## [1] 65.81293

# critical region

qchisq(0.999,6)

## [1] 22.45774

# or alternatively p-value

pchisq(q = 65.81,df = 6, lower.tail = FALSE)

## [1] 2.947238e-12

Since χ2
6,0.001 = 22.46, the p-value is P < 0.001, and so there is overwhelming evidence

that tumour type is not independent of site.

44. In a prospective study on a new treatment for pneumonia, patients were randomly allocated
to two groups each of 40 patients. One group received the new treatment and the other the
standard one, and the responses were the time taken to recover. The contingency table below
shows the number of patients (y) with each combination of treatment and time taken to recover.

Time to Recover
Short Medium Long Total

Standard 6 15 19 40
New 10 21 9 40

The null hypothesis is that the time taken to recover is the same for each treatment group.

1. Express the null hypothesis as a log-linear model, explaining your notation and any addi-
tional constraints.
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Solution: The null hypothesis may be expressed as the log-linear model

log{E(Yjk|Yj. = yj.)} = µ+ αj + βk

with
∑2

j=1 αj = 0 and
∑3

k=1 βk = 0, where µ is the overall effect, αj is the effect of
treatment j and βk is the effect of time to recover k.

2. Obtain the expected values under the null hypothesis. Compare these with the observed
values.

Solution: The expected values under the null hypothesis are ejk = yj.y.k/n, where
n = 80. Thus, in R we obtain the following table:

Time to Recover
Short Medium Long Total

Standard 8 18 14 40
New 8 18 14 40

By comparing these with the observed values, we see that the time taken to recover
is longer for the standard treatment. The R commands to obtain these result are the
following.

counts <- c(6,10,15,21,19,9)

time <- gl(3,2, length = 6)

treatment <- gl(2,1, length=6)

mod1 <- glm(counts ~ time + treatment, family = poisson)

mod2 <- glm(counts ~ time, family = poisson)

fitted(mod2)

## 1 2 3 4 5 6

## 8 8 18 18 14 14

anova(mod1)

## Analysis of Deviance Table

##

## Model: poisson, link: log

##

## Response: counts

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev

## NULL 5 13.6602

## time 2 7.9934 3 5.6669

## treatment 1 0.0000 2 5.6669

3. Find the deviance and the value of Pearson’s goodness-of-fit test statistic. What is your
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conclusion?

Solution: The deviance is

D = 2

2∑
j=1

3∑
k=1

yjk log

(
yjk
ejk

)
= 5.6669

and the value of Pearson’s goodness-of-fit test statistic is

X2 =
2∑

j=1

3∑
k=1

(yjk − ejk)
2

ejk
= 5.5714.

Since χ2
2,0.1 = 4.605 and χ2

2,0.05 = 5.991, the p-value is 0.05 < P < 0.1, and so there
is weak evidence that the time taken to recover is not the same for each treatment
group. In R, this is as follows.

deviance(mod1)

## [1] 5.666881

sum(residuals(mod1, type="pearson")^2)

## [1] 5.571429

qchisq(0.9,2)

## [1] 4.60517

qchisq(0.95,2)

## [1] 5.991465

pchisq(q = deviance(mod1), df = mod1$df.residual, lower.tail = FALSE)

## [1] 0.05881016

pchisq(q = sum(residuals(mod1, type="pearson")^2), df = mod1$df.residual, lower.tail = FALSE)

## [1] 0.06168501

45. Suppose that Ti ∼ Exp(λi) for i = 1, 2, . . . , n, all independent. Consider model M1, in which
all the λi are parameters; and model M2 for which λ = λ1 = · · · = λn. That is, M1 and M2
are the maximal and the null models, respectively.

1. Derive the corresponding maximum likelihood estimates for M1 and M2.

2. Using your estimates, determine the maximum value of the (log) likelihood in each case,
i.e. l̂max = l̂M1 = l(λ̂1, . . . , λ̂n; y) and l̂null = l̂M2 = l(λ̂; y).

3. Derive an expression for the Fisher information matrix for the parameters in each of M1
and M2, and write formulæ for confidence intervals for parameters estimates in each case.

4. Repeat all the computations above for the case when Ti ∼ Exp(θi). Your analysis will
consider models 1 and 2. Compare which results and comment on the similarities when
they appear. Hint. When using Exp(λi) in the first part of this problem, you will use the
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density fT (t) = λi exp(−λit) for t ≥ 0, while for Exp(θi), you’ll use fT (t) = θ−1
i exp(−t/θi)

for t ≥ 0. In both cases the density is zero for negative t.

Solution: The likelihood estimates satisfy a useful property: if we have a maximum
likelihood estimate β̂, then the maximum likelihood estimate of a one to one trans-
formation γ = f(β) is γ̂ = f(β̂). In this example, we have that parameters λ, θ are
related as λ = 1/θ, and we have λ̂ = n/

∑n
i=1 ti whose reciprocal is directly the mle

θ̂ = 1/λ̂ = 1
n

∑n
i=1 ti. Additionally, the maximum value attained by the likelihood,

that is, L(λ̂; y) is exactly equal to L(θ̂; y).

46. The following values are lifetimes of electronic components: 1.86, 12.96, 13.74, 8.57, 2.54. Using
the results of Exercise 45 or otherwise,

1. Plot the likelihood function of the data under the model Ti ∼ Exp(λ). Do another plot of
the likelihood using the model Ti ∼ Exp(θ).

Solution: Assuming you have already loaded the data, i.e. y<-c(1.86, 12.96,

13.74, 8.57, 2.54), the following commands will be used.

n<-length(y)

## likelihood for lambda

l1<-function(x) n*log(x)-x*sum(y); L1<-function(x) exp(l1(x=x))

## likelihood for theta

l2<-function(x) -n*log(x)-sum(y)/x; L2<-function(x) exp(l2(x=x))

par(mar=c(4,4,1,1),mfrow=c(1,2))

curve(expr=L1,from=0,to=0.4,xlab=expression(lambda),ylab=expression(L(lambda)))

abline(v=1/mean(y)) ## mle

curve(expr=L2,from=0,to=35,xlab=expression(theta),ylab=expression(L(theta)))

abline(v=mean(y)) ## mle
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Note that the value l̂null is exactly the same in both cases:
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l1(x=1/mean(y)) ## for the model with lambda

## [1] -15.35579

l2(x=mean(y)) ## for the model with theta

## [1] -15.35579

2. Give confidence intervals for each case. Use α = 0.05.

Solution: Here is the confidence interval for λ, together with estimate.

qnorm(p=c(0.025,0.5,0.975),mean=1/mean(y),sd=1/(mean(y)*sqrt(n)))

## [1] 0.01556308 0.12603983 0.23651658

And the confidence interval for θ, together with estimate

qnorm(p=c(0.025,0.5,0.975),mean=mean(y),sd=mean(y)/sqrt(n))

## [1] 0.9796702 7.9340000 14.8883298

In the likelihood plots, the assymetry of the likelihood suggests that we should be
cautious when using e.g. confidence intervals because higher values of the parameter
are more likely than smaller values.

47. Suppose that Ti ∼ Exp(λi) for i = 1, 2, . . . , n, all independent, where λi = βxi and xi is a
known covariate.

1. Write down the likelihood for the data t1, . . . , tn.

Solution: The likelihood is

L(β; t) =
n∏

i=1

βxie
−βxiti

= βn

(
n∏

i=1

xi

)
e−β

∑n
i=1 xiti .

2. Show that the maximum likelihood estimator of β is β̂ = n/
∑n

i=1 xiTi.

Solution: The log-likelihood is

ℓ(β; t) = n log β +

n∑
i=1

log(xi)− β

n∑
i=1

xiti.

Thus, we have

dℓ

dβ
=
n

β
−

n∑
i=1

xiti.

Page 45



Setting this derivative to zero, we obtain

n− β̂
n∑

i=1

xiti = 0,

which yields the maximum likelihood estimate

β̂ =
n∑n

i=1 xiti
.

3. Find the Fisher information.

Solution: We have
d2ℓ

dβ2
= − n

β2
.

It follows that the Fisher information is

v =
n

β2
.

48. The break strength ti in MPa was recorded for n = 5 industrial ceramic components. It
is assumed that the distribution of strength is associated with porosity index xi, which is a
quantity controlled in the manufacturing process. The data is (1,6.798), (3,21.223), (3,1.873),
(5,0.1), (5,0.398), which is given as pairs (xi, ti).

1. Using the model of Exercise 47, compute the maximum likelihood estimate of β.

Solution: The mle of β is

β̂ =
5

6.798 + 63.669 + 5.619 + 0.5 + 1.99
= 0.0636.

2. Compute its observed Fisher information.

Solution: The observed Fisher information is obtained by evaluating the Fisher in-
formation using the mle β̂.

v =
5

0.004049
= 1234.8376.

3. Using your results and α = 0.05, give a confidence interval for β̂.
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Solution: The approximate variance of β̂ is the reciprocal of the observed Fisher
information, i.e. v−1 = 8.1 × 10−4; and the approximated standard error is v−1/2 =
0.02846. The confidence interval for β̂ is thus β̂ ∓ 1.96v−1/2 = (0.0079, 0.1194).

49. Suppose that the survival time T > 0 of a patient has a Weibull distribution with probability
density function

f(t) = αλtα−1 exp(−λtα),

where α > 0 and λ > 0.

1. Show that the survivor function is S(t) = exp(−λtα).

Solution: The survivor function is

S(t) =

∫ ∞

t
αλuα−1 exp(−λuα)du = exp(−λtα).

2. Obtain the hazard function.

Solution: The hazard function is

h(t) =
αλtα−1 exp(−λtα)

exp(−λtα)
= αλtα−1.

3. Explain how the hazard function behaves for different values of α.

Solution: If α = 1, the hazard function is constant. However, if α > 1, it is mono-
tonically increasing in t, whereas, if α < 1, it is monotonically decreasing in t.

50. Using R, plot the hazard function for the Weibull distribution considering the scale parameter
λ = 1 and the the following cases for the shape parameter α = 0.25, 0.5, 1, 1.5, 3.

Solution: For creating the plot, consider that the Weibull distribution implemented in R

has two parameters: scale and shape. The scale parameter is σ which is defined as the
reciprocal of λ as was used in Exercise 49. In this exercise we set this scale parameter to
one, and vary the shape parameter as requested to produce the plot below for the range
t ∈ [0, 1]. We see the monotonic behaviour of h(t) as described in Exercise 49.
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51. Consider a set of censored life times observations (δi, ti) for i = 1, . . . , n. Here δi indicates
censoring, i.e. if δi = 1 we observed Ti = ti and if δi = 0 then we had Ti > ti. Assume that the
times ti follow an exponential distribution.

1. Using the null model, derive an expression for the mle of λ.

2. Compute the Fisher information number and by plugging-in the mle λ̂, give a formula for
the observed Fisher information.

3. Using the earlier results give a formula for the estimated standard error of λ̂ and for a
100(1− α) confidence interval for λ̂.

52. Consider the data (1,0.62), (0,4.32), (1,4.58), (1,2.86), (1,0.85), (0,5.28), (1,0.1), (1,2.27),
(1,21.22), (0,1.87), where the pairs are (δi, ti) as above. Using the results of Exercise 51,
estimate λ, compute its estimated variance and give a confidence interval for λ̂ using α = 0.05.

53. Consider the data (1,63.67), (0,5.62), (1,0.5), (1,1.99), (1,10.09), (0,13.44), (1,41.13), (1,28.24),
(0,39.36), (1,17.59), (1,15.98), (0,13.05), where the pairs are (δi, ti) as above. Using the results
of Exercise 51, estimate λ, compute its estimated variance and give a confidence interval for λ̂
using α = 0.05.
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