Exercise sheet 3 solutions

1. For the first part of the question, we saw in the lectures that with a $\operatorname{Gamma}(\alpha, \beta)$ prior distribution for λ, the posterior distribution for λ is $\operatorname{Gamma}(n+\alpha, S+\beta)$, where $S=\sum_{i=1}^{n} t_{i}$.
The observed data for this part have $n=6$ and $S=55$. So with $\alpha=0.1$ and $\beta=2$, the posterior distribution is $\operatorname{Gamma}(6.1,57)$.

For the second part of the question, we can reorder the data so that the data-point where the exact time was not observed is the last one. There are $m=5$ data-points with the exact time known. The likelihood function is

$$
p(t \mid \lambda)=\lambda^{m} e^{-\lambda S}
$$

A gamma distribution as a prior for λ with parameters α and β has probability density function

$$
p(\lambda)=\frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)}, \lambda>0
$$

So the posterior distribution is

$$
\begin{aligned}
p(\lambda \mid t) & \propto p(\lambda) p(t \mid \lambda) \\
& \propto \lambda^{\alpha-1} e^{-\beta \lambda} \lambda^{m} e^{-\lambda S} \\
& =\lambda^{m+\alpha-1} e^{-(S+\beta) \lambda}
\end{aligned}
$$

So the posterior distribution is now $\operatorname{Gamma}(m+\alpha, S+\beta)$. The data has changed to give $S=56$, so the posterior distribution is Gamma($5.1,58$).
2. The datapoints follow a Poisson distribution, which is discrete, so the likelihood contribution for each datapoint is the Poisson probability mass function

$$
p\left(y_{i} \mid \lambda\right)=\frac{\lambda^{y_{i}} e^{-\lambda}}{y_{i}!}
$$

5 The overall likelihood is

$$
p(y \mid \lambda)=\prod_{i=1}^{n} \frac{\lambda^{y_{i}} e^{-\lambda}}{y_{i}!}=\frac{\lambda^{S} e^{-n \lambda}}{\prod_{i=1}^{n} y_{i}!}, \text { where } S=\sum_{i=1}^{n} y_{i} \text {. }
$$

The log-likelihood is

$$
\ell(\lambda ; y)=S \log (\lambda)-n \lambda-\log \left(\prod_{i=1}^{n} y_{i}!\right)
$$

Differentiating and setting to zero gives

$$
\frac{d \ell}{d \lambda}=\frac{S}{\lambda}-n=0
$$

Hence the MLE is

$$
\hat{\lambda}=\frac{S}{n}=\bar{y} .
$$

For the data in the question, $n=6$ and $S=24$, so the MLE is

$$
\hat{\lambda}=\frac{24}{6}=4 .
$$

A gamma distribution as a prior for λ with parameters α and β has probability density function

$$
p(\lambda)=\frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)}, \lambda>0
$$

Multiplying the prior and likelihood, the posterior distribution has pdf

$$
\begin{aligned}
p(\lambda \mid y) & \propto p(\lambda) p(y \mid \lambda) \\
& =\frac{\lambda^{S} e^{-n \lambda}}{\prod_{i=1}^{n} y_{i}!} \frac{\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda}}{\Gamma(\alpha)} \\
& \propto \lambda^{S} e^{-n \lambda} \lambda^{\alpha-1} e^{-\beta \lambda}=\lambda^{S+\alpha} e^{-(n+\beta) \lambda} .
\end{aligned}
$$

$p(\lambda \mid y)$ is proportional to a $\operatorname{Gamma}(S+\alpha, n+\beta)$ pdf, hence the posterior distribution for λ must be $\operatorname{Gamma}(S+\alpha, n+\beta)$.

The posterior distribution is in the same family of distributions as the prior, hence the family of gamma distributions is conjugate to the Poisson likelihood.
With $\alpha=1, \beta=1$, the posterior distribution is $\operatorname{Gamma}(25,7)$.

3, 4. There is R code for these questions on QMPlus.

