Lecture 3B
 MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture

- Conjugate priors for the normal likelihood
- Update a gamma prior for the inverse of the normal variance given a normal likelihood with known mean and unknown variance.

Normal example, known variance

- $y_{1}, \ldots, y_{n} \sim N\left(\mu, \sigma^{2}\right)$.
- We saw that a normal prior distribution for μ is conjugate in this case.
- It's conjugate because it results in a posterior in the same family as the prior.

Normal example, known variance

- Observed data $y_{1}, \ldots, y_{n} \sim N\left(\mu, \sigma^{2}\right)$.
- Prior distribution $\mu \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$.
- The posterior distribution is

$$
\mu \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)
$$

where

$$
\begin{gathered}
\mu_{1}=\left(\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{n \bar{y}}{\sigma^{2}}\right) /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right) \\
\sigma_{1}^{2}=1 /\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)
\end{gathered}
$$

Normal example, known mean

- Observed data $y_{1}, \ldots, y_{n} \sim N\left(\mu, \sigma^{2}\right)$.
- Suppose that μ is known and σ is unknown.
- It is easier to work with $\tau=1 / \sigma^{2}$.
- τ is known as the precision.
- τ is the reciprocal of the variance, so large τ means small variance and hence high precision.

Normal example, known mean

- In this case, a gamma prior is conjugate for τ.
- Prior $\tau \sim \operatorname{Gamma}(\alpha, \beta)$.
- Posterior

$$
\tau \sim \operatorname{Gamma}\left(\alpha+\frac{n}{2}, \beta+\frac{\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}}{2}\right)
$$

- The family of gamma distributions is conjugate to the normal likelihood for the normal precision parameter τ, if the mean μ is known.

Normal example, both parameters unknown

- If μ and τ are unknown then there is a bivariate distribution which is conjugate.
- Marginal distribution

$$
\tau \sim \text { Gamma }
$$

and conditional distribution

$$
\mu \mid \tau \sim \text { Normal. }
$$

- The joint prior distribution is the product of these two.
- The posterior is of the same form.
- We're not going into details in this module.

