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-enda

Today's lecture

o Review

@ Use Bayes' theorem to compute posterior pmf with discrete pmf
priors.

@ Use Bayes' theorem to compute posterior pfd with continuous pdf
priors
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New office hours starting from today

o Every Wednesday from 12:00-13:00, room MB-B11
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Bayesian inference

%M

@ Probability model p(y | ) depends on a set of parameters 6.
@ 0 is unknown and we would like to learn about 6.

Q Let@be the observed data, assumed to be generated by thi
probability model, p(y | ) Y?—S (he vealsakon A Yj

@ In Bayesian statistics, we assign probabilities on both the parameters

6 and data y
- >
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Bayesian inference

@ So we start with a probability distribution for the parameter
called the prior distribution.

@ 6 is either discrete or continuous random variable. Hence, p(0) is
. —
either a pmf or pdf

@ The prior is a subjective distribution, based on experimenter’s belief,

and is formulated before the data y are seen.
i )
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I Bayesian inference

o LeL)L be the observed data.

@ We then update the_prior distributian (pmf or pdf) to a posterior
_ distribution (pmf or pdf) for 6, p(¢ | y), using Bayes' theorem

where the observed data enters through the likelihood p(y | ).
Q Eg g! is the normalising constant, which is given by

p(y) = /p(9)py|9)d9’ or Y p(t)p(y |0

'-—'?’ "’ _I—(;avn(!'

@ p(y) does not depend on ¢

D15 (onhvicass JNQI&JU@ 1
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What does it mean?

p(0|y) o< p(d) p(y|0) (1)

A/~

Posterior o< prior X likelihood

L

@ p(y | 0) is the likelihood and it the probability of data y given the

true 6.
=

@ Start with initial beliefs/information about 6, p(f) - this is the prior

[C—

distribution formulated before the data are seen.

@ Bayesian updating: Update the prior distribution using the data vy,
using (1).
@ The updated prior, p(6 | y) is called the posterior distribution .

@ We base our inferences about 6 based on this posterior distribution.
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Bayesian updating with discrete data, discrete prior

@ parameter 6 discrete with values 6; and 6, and prior pmf p(6)

% — ———

@ Discrete data x
‘_’——'

o Discrete likelihood, p(x|6)

o Posterior pmf: p(6,|x), p(6,|x) P[@‘[X] = f[(gt’ 91 [_7.()

Hypothesis | prior | likelihood Bayes numerator | posterior
0 p(6) | p(x|0) p(x[0)p(0) p(0|x)
= [ @) (P10 SBl(X16,) pv, - B0
= | % p(0.) | p(x|6:) %\%) p(6:) - | p(6:]x)
Total 1 NOT SUM TO 1 X 1

o Law of total probability: p(x) = p(x|0,)p(6.) + p(x|6.)p(0).

p(x]01)p(61) _ p(x]62)p(62)
p(x) v p((92|X) — p(x)

P o P —

likelihood % prior

o Bayes' theorem: p(6,|x) =

osterior = .
P total prob. of data
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Board Question: Coins

@ There are three types of coins which have different probabilities of
heads

o Type A coins are fair, with probability 0.5 of heads.
o Type B are bent and have probability 0.6 of heads.
o Type C are bent and have probability 0.9 of heads.

Suppose | have a drawer containing 5 coins: 2 of type A, 2 of type
B, an’(zl__l__of/td\z_g_e' C. | pick a coin at random, and without showing

you the coin | flip it once andget heads.

@ Make a Bayesian update table and compute the posterior pmf that
the chosen coin is each of the three coins.
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@ In the previous lecture, we have done Bayesian updating when we
had a finite number of hypotheses or a discrete parameter 6 e.g.,
- in the diagnostic example had 2 hypotheses (HIV +ve, HIV -ve),
- in the coin example we had 3 hypothesis (A, B and C).

@ In this topic we will study Bayesian updating where there is a

continuous range of hypotheses, i.e., 6 is a continuous random
.

variable.

@ The Bayesian updating will be essentially the same, based on the
Bayes' theorem

posterior o< prior X likelihood
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Examples with continuous parameters

@ Suppose we have a medical treatment for a disease than can succeed

or fail with probability g. Then g is a continuous quantity between 0
and 1.

@ The lifetime of a certain light bulb T is modeled as an exponential
distribution exp(\) with unknown A. We can assume that \ takes
any value greater than 0.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Baysian updating: Discrete likelihoods, continuous priors

6 : continuous parameter with prior pdf p(#) and range [a, b].
x : random discrete data

discrete likelihood: p(x|0)

© 6 o ©

posterior pdf: p(f|x)

o By Bayes’ theorem we update the prior pdf to a posterior pdf

p(xI0)p(6) _  p(x0)p(6)
p(x) J; p(x|6)p(8)d6

p(0|x) =

o Law of total probability: p(x) = [ p(x|0)p(8) db.
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Baysian updating: Discrete likelihoods, continuous priors

@ p(x) does not depend on # and serves as the normalising constant
so that p(@|x) is a proper pdf and integrates to 1.

@ Hence, we can express Bayes' theorem in the form

p(0]x) o< p(x|0)p(0).

posterior o< prior X likelihood
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Bayesian inference

p(0 | x) o< p(0) p(x | 0)

@ p(0) - initial beliefs/information about 6, the prior pdf.
@ p(x | #) - the likelihood for observed data x with parameters 6.
@ Update information about 6 using the likelihood.

@ The resulting pdf p(0 | x) is called the posterior pdf of ¢

posterior o< prior X likelihood
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Bayesian updating: Discrete likelihoods, continuous priors

@ Sometimes, it is better to use(p(6)df o work with probabilities

instead of densities
e.g the prior probability that 6 is in a small interval of width df

around 0.5 if p(0.5)d#.

@W)‘\)w\g
-

@ In this case, the Bayes' theorem is
—— N\

sk o
O o Pp0)8 _ pl) I
0 e P() 17 p(x16)p(0) do

0 Tho ewhubildy $hat B hesm a by
3\1“\63\(\) wherval ohoxd i 0O ovna

oS S OQQVOJ\W\O.L&j F[O'T)d&

‘I
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Bayesian updating: Discrete likelihoods, continuous priors

@ 6 : continuous parameter with prior pdf p(#) and range [a, b].

@ —

@ x : random discrete data

o likelihood: p(x|6

Bayesian updating table

P —

Hypothesis | prior prob likelihood | Bayes numerator posterior prob(p(@ x)d%
o Px10)p(0)d0
>0 GED GRS | GCTEagD 7
Total [ p(6)do =1 @ [ p(x|0)p(6)do | 1

@ The posterior density p(6|x) is obtained by removing df from the
posterior probability | |n the table.

((6lp(8lp8"
()(&h(\g%f T

Tho pokevior dorsidy 1o p[&(ﬂ)
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

@ A biased coin has probability of heads g which is unknown.

@ We toss the coin n times and observe k heads (This is my data
x = k). XN\O\V\QW\(“\ Z\
@ The binomial likelihood for this problem: X=X
brnowial

n .
k@)= (F)a-ar* 7 ek
¥~
@ For Bayesian inference, we need to_specify a prior distribution for q.

@ q is a continuous quantity between 0 and 1.

@ What is a possible probability distribution for g (or family of
distributions)? —
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

@ The family of Beta distributions seems a natural choice for a prior
distribution for g, since it describes continuous random variables
with support orf [0, 1].

o If g ~ Beta(a, 3), its probability density function is
—_— —=

where B is the Beta function and o and 3 are parameters,

1
B(a,B) = ./0 x*7H1 = x)P71 dx

M(a)r(B) (] otk
= Blh) =05 Joetws. korchol
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-tions

36)?&(1[ 1\ B He UY\\EOYW\ Ahh\m\(w\ S)\ Edl(:\

a, B
05,2 —— (1,T—
55— 10,40

@ Probability density
functions.

o If g ~ Beta(a, )

Probability density
AN
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

@ Bayesian updating:
posterior o prior x likelihood KX

S———0) ./
@ The posterior distribution p(q|¥) is proportional to
o |

p(q | k) o T (1 — g)" AT
~— ~

@ We recognise this to have the form of a beta distribution, so the
posterior is a beta distribution, beta(k + a,n — k + 3).

@ Hence, the normalising constant must be 1/B(k + a,n — k + (3).
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Bayesian updating: Discrete likelihoods, continuous priors

@ The actual, normalized pdf is

k—|—a—1(1 . q)n—k—|—6—1
B(k 4+ a,n— k+ 0)

p(q | k) =

the pdf of a Beta(k + a,n — k + 3) r.v. (Remember: the random
variable is g and k is fixed).

o Bayesian updating: We update the prior Beta(a, 3) to posterior

Beta(k+a n—k—|-5 CFE/V bW‘OW\(dJW

E. Solea, QMUL

MTH6102: Bayesian Statistical Methods




Bayesian updating table: Discrete likelihoods, continuous
priors

Example: Binomial data, Beta prior

@ Y ~ Binom(n,q), with g unknown

f\/l’-\"
o Continuous hypotheses g in [0, 1].

-Gy 13

o Prior p(q)
——
o L|keI|hood@
Hypothesis | prior prob. likelihood Bayes numerator posterior prob.
9 q Beta(«, 8)dg | binomial(n, q) | cg“™*(1 — q)"***~'dq Beta(k + a,n — k + 3)dq
Total 1 T = fol cqg* (1 —q)"*P'dg | 1

@ The posterior density is Betaf K+ «a, nfjkv—l— 5)

@ Note: We don't need to compute T. Once we know the posterior is
of the form cg***~*(1 — q)"***~' we have to find ¢ that makes it a
proper density. In this case ¢ = 1/Beta(k + a,n — k + )
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Unknown parameters and prior parameters

Remarks:

@ We need to distinguish between the parameters we are estimating,

which we generally have denoted by 6 and the parameters for the
prior distribution(s).

@ In this binomial example, g is uncertain: we have prior and posterior
distributions for q.

@ The parameters of the prior distribution, here o and 3, are taken as
fixed.

p(e| ~ beka (2( _@) whoe, 08 o Yh

0N NN
X ~ binam RV\Z) 4 (S Wlnown
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Board question: bent coin

@ Bent coin with unknown probability 6 of heads
-—
@ Prior: p(6) =26 on [0, 1]

@ Data: toss and get heads

@ Compute the Bayesian update table.
@ Find the posterior pdf to this data.
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Posterior mean

In Bayesian how would you choose a particular value of g?

@ A natural estimate for g is the mean of the posterior distribution
p(qg|k), called the posterior mean.

@ For the binomial case with Eeta(a,ﬁ) prior, the posterior mean is

k+ «
n+a-+p

Gs = E((ﬂ k) —

@ The prior distribution has mean a/(a + ) which would be our best
estimate of g without having observed the data.

@ lgnoring the prior, we would estimate g using the maximum
anlfii—
likelihood estimate (MLE)

-

§=-

-

@ The Bayes' estimate g; combines all of this information.

S
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Posterior mean

@ Note that we can rewrite §, as

A n a+ ( Q
qB_n+a+/3 n+a+ 0 \a+p

@ Thus Gg is a linear combination of the prior mean and the MLE, with
the weights being determined by n, a and 3

! Bayesron.
R Sdond (fa/ Jre/nur mearc/ Y
ta> foads ea+(ma4€ [Rees extimeke
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Flat priors

@ One important prior is called flat prior or uniform prior.
—

~

@ A flat prior assumes that every hypothesis is equally probable.dew\ \0}*(0,\
\

N é(b)«
o For example if g has range [0,1], thepi p(q) = INs a flat prior.

o E.g. a uniform distribution on [0, 1] is Beta(1,1)  Q.=\; =
—

@ So, posterior distribution is Beta(k +1,n — k + 1)
W

k+1

n-+ 2
W

@ Posterior mean: E(q | k) =
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Board question

@ Bent coin with unknown probability 6 of heads
o Flat prior: p(6) =1 on [0, 1]

@ Data: toss 27 times and get 15 heads and 12 tails.
—

@ Compute the Bayesian update table.

@ Give the integral for the normalising factor but do not compute it.
Call its value T and give the posterior pdf in terms of T.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Board question

@ A medical treatment has unknown probability 6 of success.

@ We assume treatment has prior f(6) ~ Beta(5,5).

@ Suppose you test it on 10 patients and have 6 successes. Find the
posterior distribution on 6. Identify the type of the posterior pdf

@ Suppose you recorded the order of the results and got SSSFFSSSFF.
Find the posterior based on this new data.
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