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Today’s agenda

Today’s lecture will cover:

Review

Continue with MLE

Assessing uncertainty in classical statistics.
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Frequentist statistics vs Bayesian statistics

Frequentist statistics: Defines probability as long-term frequency in

a repeatable random experiment.

Bayesian statistics uses probability to quantify degree of belief in

hypotheses/parameters.

In frequentist statistics, θ is fixed. In Bayesian θ is random variable.

Frequentists put probability distributions on (random, repeatable,

experimental) data given a parameter, while Bayesians put

probability distributions on everything (parameters and data).

Only the likelihood has meaning in both frequentist and Bayesian

statistics.
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Review: MLE

The maximum likelihood estimate (MLE) is a way to estimate the

value of a parameter of interest.

The idea of MLE is to choose the parameter value such that the

observed data have the biggest probability.

Definition: Given the observed data y , the maximum likelihood

estimate (MLE) for the parameter θ is the value of θ that maximises

the likelihood function defined as

L(θ|y) = p(y | θ), θ ∈ Θ,

where Θ is the range of values of θ.

That is, the MLE is the value of θ for which the observed data y is

most likely.
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Review: MLE

If is often easier to work with the natural log of the likelihood

function

For short this is simply called the log likelihood, defined as

`(θ; y) = logL(θ|y).

Since ln(x) is an increasing function, the maxima of the likelihood

and log likelihood coincide.
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Review: MLE

Binomial example.

A coin is flipped n times. Given that there were k heads, find the

maximum likelihood estimate for the probability q of heads on a single

toss.

Let Y be the number of heads. Then, Y is binomially distributed

Y ∼ Bin(n, q).

Data: The data is the result of the experiment. In this case it is

y = k heads. Given k , the likelihood is

L(q|k) = p(k | q) =

(
n

k

)
qk(1− q)n−k , q ∈ (0, 1).

Note the likelihood is a function of q
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Review: MLE

Binomial example

The log likelihood is

`(q; k) = log

(
n

k

)
+ k log(q) + (n − k) log(1− q).

To find the MLE, q̂, we use calculus. Take the derivative of the log

likelihood function and set it to 0, to obtain

d

dq
`(q; k) =

k

q
− n − k

1− q
= 0.

Solving this for q we get

q̂ =
k

n
.

This is an extreme point in the interior of the domain 0 < q < 1.
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Review: MLE

Binomial example

Note: Our goal is to find a global maximum!

We check that the critical point is indeed a maximum with the

second derivative

d 2

dq2
`(q; k) = − k

q2
− n − k

(1− q)2
< 0 ∀ 0 < q < 1.

Then, q̂ is indeed a global maximum since it is the only critical point

in the interior and is a maximum
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Review: MLE

Binomial example

For the binomial example, as q → 0 or 1, `→ −∞.

So the stationary point must be a global maximum.

Hence the MLE is q̂ = Y
n .
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Review: MLE

Binomial example

n = 40

k = 12

q̂ = k
n = 0.3

-10

-8

-6

-4

-2

L
og

 li
ke

lih
oo

d

0.1 0.2 0.3 0.4 0.5 0.6

q

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Board example: Coins

A coin is taken from a box containing three coins, which gives heads with

probability q = 1/3, q = 1/2, and q = 2/3. The mystery coin is tossed

80 times, resulting in 49 heads and 31 tails.

What is the likelihood of this data for each type of coin? Which coin

gives the maximum likelihood?

Now suppose that we have a single coin with unknown probability q

of landing heads. Find the likelihood and log likelihood functions

given the same data. What is the MLE for q?

Work from scratch. Set the problem by defining random variables and

pmf.
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An example with continuous data

Example: Light bulbs

The time until failure for a type of light bulb is exponentially

distributed with parameter λ.

We tested n bulbs and observe independently failure times

t = (t1, . . . , tn).

The unknown parameter is λ.

Find the likelihood function and the log likelihood function

Find the MLE for λ
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Board example: Light bulbs

Suppose 5 bulbs are tested and have lifetimes of 2, 3, 1, 3, 4 years,

respectively.

Find the MLE of λ.

Work from scratch. Set the problem by defining random variables and

pmf.
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MLE: Normal example

Y1, . . . ,Yn be an i.i.d ∼ N(µ, σ2).

There are two unknown parameters.

So θ is a vector, θ = (µ, σ).

Exercise: Find the likelihood function and the MLE of θ.
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Assessing uncertainty

Suppose we want to estimate a population parameter θ.

In frequentist statistics the idea is to design an estimator θ̂, where

an estimator is a function of the data.

Sample statistics or estimators vary from sample to sample (they will

not match the parameter exactly)

We usually want to assess the uncertainty in any estimate.
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Assessing uncertainty

KEY QUESTIONS: For a given sample statistic, what are plausible

values for the population parameter? How much uncertainty

surrounds the sample statistic?

KEY ANSWER: It depends on how much the statistic varies from

sample to sample!

In frequentist statistics, two common summaries of the uncertainty
are:

the standard error;

a confidence interval.

The quantify the uncertainty in θ̂ due to random variation in the

data we might have observed.
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Sampling distribution

Frequentist statistics uses the idea of the sampling distribution.

If we could repeatedly generate data from a certain model, we would

get a distribution of values for θ̂.

This is the sampling distribution for θ̂.

A sampling distribution is the distribution of sample statistics computed

for different samples of the same size from the same population.

A sampling distribution shows us how the sample statistic varies

from sample to sample
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Standard error

The standard error of θ̂ is the standard deviation of the sampling

distribution

It quantifies the spread or the variability of the sampling distribution.

So this is the simplest summary of the uncertainty in θ̂.

It measures how much the statistic varies from sample to sample

and quantifies the uncertainty in θ̂ due to random variation in the

data we might have observed.
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History of likelihood

The use of likelihood in frequentist statistics was mainly developed

by Ronald Fisher.

“On an Absolute Criterion for Fitting Frequency Curves”

Published in 1912, while he was a maths undergraduate.

Later papers more fully developed the theory.
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